SYNTHESIS OF 2-CARBOXYLCEPHEM DERIVATIVE FROM 6-AMINOPENICILLANIC ACID

Tetsuji Kametani*, Naoaki Kanaya, Tomoko Mochizuki, and Toshio Honda Institute of Medicinal Chemistry, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan

Abstract — 6-Aminopenicillanic acid (6-APA) has been converted into 2α -carboxycephem derivative by a carbene insertion reaction, followed by Michael reaction.

Synthesis of new derivatives of cephem and penem antibiotics has recently attracted a considerable interest $^{1-7}$ owing to their potent antibacterial activity, though non-classical carbapenem or carbacephem antibiotics has been discovered. Among the various syntheses of cephem derivatives, much attention has been focused on the chemical modifications of the amino-function at the C_7 -position and of acetoxymethyl-function at the C_3 -position 8 . Interest in the synthesis of 2-substituted cephem antibiotics arose from their expected biological activity and oral use 9 . We here wish to report an efficient synthesis of 2α -carboxycephem derivative by a carbene reaction with 6-APA derivative. The transformation of 6-APA into cephem nucleus via 1,2-secopenicillin using a carbene reaction has originally been reported by Sankyo group 10 and the similar conversion to cephem by a nitrene reaction has been published by Takeda group 11 . Our synthesis of 2α -carboxylated cephem (7) began with the preparation of the corresponding 1,2-secopenicillin (3).

Thus, p-nitrobenzyl 6-phthalimidylpenicillanate (1) was treated with \underline{t} -butyl p-nitrobenzyl α -diazomalonate (2) in benzene-CH₂Cl₂ (1 : 1 v/v) in the presence of Rh₂ (OAc)₄ to give the 1,2-secopenicillin derivative (3) in 83 % yield. Ozonolysis of 3, followed by treatment with Me₂S, resulted in the formation of the β -keto ester (4) in 95 % yield, whose ring closure to the cephem (6) was achieved by Michael reaction of the mesylate (5) with 1,4-diazabicyclooctane (DABCO) in Me₂NCHO in 23 % yield. Since 6-APA was successfully converted to the cephem nucleus, the mono-decarboxylation of β was carried out by treatment with CF₃CO₂H in CH₂Cl₂ to give the diester (7) as a single stereoisomer in 79 % yield. The stereochemistry of the ester group at the C₂-position was tentatively assigned to be α by its NMR spectral data¹³.

Thus, we could synthesize the 2-carboxylcephem ring system from 6-APA efficiently by a carbene reaction, followed by Michael reaction, and a variety of 2-functionalized cephem derivatives would be synthesized by use of this approach.

References

(1) I. Ernest, J. Gosteli, C. W. Grrengrass, W. Holick, D. E. Jackman, H. R. Pfaendler, and R. B. Woodward, J. Am. Chem. Soc., 1978, 100, 8214. (2) H. R. Pfaendler, J. Gosteli, R. B. Woodward, and G. Rihs, J. Am. Chem. Soc., 1981, 103, 4526. (3) M. Foglio, G. Fransceshi, C. Scarafile, and F. Arcamone, J. Chem. Soc., Chem. Commun., 1980, 70. (4) S. Oida, A. Yoshida, T. Hayashi, N. Takeda, T. Nishimura, and E. Ohki, J. Antibiotics, 1980, 33, 107. (5) C. M. D. Beels and M. S. J. Abu-Rabie, J. Chem. Soc., Chem. Commun., 1979, 665. (6) A. Martel, P. Dextraze, J.-P. Daris, R. Saintonge, P. Lapointe, T. T. Conway, I. Monkovic, G. Kavadias, Y. Ueda, P. Elie, S. Patil, G. Caron, J. L. Douglas, M. Ménard, and B. Belleau, Can. J. Chem., 1982, 60, 942. (7) C. U. Kim, P. F. Misco, and D. N. McGregor, J. Org. Chem., 1982, (8) P. G. Sammes, "Topics in Antibiotic Chemistry", vol 4, John Wiley & Sons, New York, 1980. (9) T. Kamiya, T. Teraji, M. Hashimoto, O. Nakaguchi, and T. Oku, J. Am. Chem. Soc., 1976, 98, 2342. (10) M. Yoshimoto, S. Ishihara, E. Nakayama, E. Shoji, H. Kuwano, and N. Soma, Tetrahedron Letters, 1972, 4387. (11) M. Numata, Y. Imashiro, I. Minamida, and M. Yamaoka, Tetrahedron Letters, 1972, 5097. (12) All new compounds have been fully characterized by IR, NMR, and mass spectra and microanalysis; (6) IR v_{max} (CHCl₃) 1795, 1780, 1730 (C=O) and 1350 cm⁻¹ (NO₂); NMR δ (CDCl₃) 1.43 (4.5H, s, 1/2Bu), 1.50 (4.5H, s, 1/2Bu), 2.15 (1.5H, s, 1/2CH₃), and 2.20 (1.5H, s, 1/2CH₃); (7) IR v_{max} (CHCl₃) 1790, 1780, 1730 (C=O), and 1350 cm⁻¹ (NO₂); NMR δ (CDCl₃) 2.15 (3H, s, CH₃), 4.16 (1H, s, C_2 -H), 5.21 (1H, d, \underline{J} = 5 Hz, C_6 -H), 5.31 (1H, d, \underline{J} = 5 Hz, C_7 -H). (13) The long range coupling between C_2 -H and C_7 -H has been observed in 200 MHz NMR spectrum, which indicated the stereochemistry of the ester group to be lpha ; see D. O. Spry, Tetrahedron Letters, 1972, 3717 and also see ref. 9.

Received, 6th January, 1983