STUDIES ON KETENE AND ITS DERIVATIVES 114. 1 1,4-CYCLOADDITION OF KETENE TO ETHYL N-(2-PYRIDYL)FORMIMIDATES

Nobuya Katagiri, Ryuji Niwa, and Tetsuzo Kato Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

Abstract — Reaction of ketene with ethyl N-(2-pyridyl)formimidate ($\underline{1a}$) in acetone at room temperature gave 3-acetyl-pyrido(1,2-a)pyrimidin-4(4H)-one ($\underline{2}$) whereas excess ketene gas was passed over the imidate $\underline{1a}$ without solvent at 75 °C to give pyrido(1,2-a)pyrimidin-4(4H)-one ($\underline{3a}$) and 2-formamidopyridine ($\underline{4a}$), both of which would be formed by 1,4-cycloaddition of ketene. Similarly, reactions of ketene with the methyl analogs $\underline{1b}$ - \underline{e} were also carried out to give pyridopyrimidines ($\underline{3b}$ - \underline{e}) and 2-formamidopyridines ($\underline{4b}$, \underline{c} , \underline{e}).

It had been recognized that, compared to substituted ketenes, ketene itself hardly reacted with imines because of its low reactivity. $^{2-5}$ However, we have found that α -unsubstituted β -lactams are obtained by passing ketene gas over Schiff bases without solvent under heating. Under the same conditions ketene also reacts with compounds having conjugated C=N double bond such as N-cinnamylidene aniline to give β -lactams. On the other hand, it has been reported that ketene undergoes 1,4-cycloaddition with ethyl α -(dimethylaminomethylene)-2-pyridineacetate to give a quinazoline derivative.

In this communication we wish to report the 1,4-cycloaddition of ketene to ethyl N-(2-pyridyl)formimidates, which possess C=N double bond conjugated with pyridine ring C=N. When ethyl N-(2-pyridyl)formimidate $(\underline{1a})^8$ was allowed to react with excess ketene in acetone for 2 days at room temperature, 3-acetylpyrido-[1,2-a]pyrimidin-4(4H)-one $(\underline{2})$ [mp 152 - 153 °C (lit. 9 mp 150 °C)] was obtained in 12% yield. Since diketene reacts with $\underline{1a}$ to give $\underline{2}$, 10 compound $\underline{2}$ would be formed by the reaction of $\underline{1a}$ with diketene derived from ketene.

Next, excess ketene gas was passed over $\underline{1a}$ at 75 °C without solvent to give pyrido[1,2-a]pyrimidin-4(4H)-one ($\underline{3a}$) [mp 131 - 132 °C (1it. $\underline{11}$ mp 127 °C)] and 2-formamidopyridine ($\underline{4a}$) [mp 75 - 77 °C (1it. $\underline{12}$ mp 71 °C)] in 58 and 34% yields, respectively. Similarly, reaction of ketene with methyl analogs ($\underline{1b}$,c,e) gave pyrido(1,2-a)pyrimidin-4(4H)-ones ($\underline{3b}$,c,e) and 2-formamides ($\underline{4b}$,c,e). However, reaction with ethyl N-(5-methyl-2-pyridyl)formimidate ($\underline{1a}$) did not give the 2-formamide $\underline{4d}$, but gave a 68% yield of the pyrido- $\underline{11}$,2-a)pyrimidine 3d as a sole product.

CH₂=C=0
In acetone

CH₂=C=0
In acetone

CH₂=C=0
$$\frac{8}{5}$$
NN

CH₂=C=0
 $\frac{7}{5}$
Without solvent
 $\frac{1}{3}$
 $\frac{1}{3}$

Table 1. Reaction of Ketene with Ethyl N-(2-Pyridyl)formimidates (la-e)^{a)}

Formimidate		Reaction	Product, Yield (%)		
Compd. No.	R	time (h)	3	4 (mp, °C)	
<u>la</u>	Н	1.5	58	34 (75 - 77) (lit. ¹² mp 71)	
<u>lb</u>	3-Me	0.5	85	6 (122 - 124) (11t. ¹³ mp 138 - 139)	
<u>lc</u>	4-Me	0.5	44	45 (87 - 88)	
<u>ld</u>	5-Me	1.5	68		
<u>le</u>	6-Me	1.5	25	31 (78 - 79)	

a) The reaction was carried out at 75 °C.

Compd. No.	mp (°C)	1 _H -	vmax. (CHCl ₃)		
	[lit. mp (°C)]	2-н	3-н	6-H	cm ⁻¹
<u>3a</u>	131 - 132 (127) ¹¹	8.33 (d)	6.50 (d)	9.13 (d)	1690 1640
<u>3b</u>	113 - 115 (113.8 - 114.8) ¹⁴	8.21 (d)	6.45 (d)	9.00 (d)	1685 1635
<u>3c</u>	146 - 147	8.28 (d)	6.43 (d)	9.00 (d)	1685 1645
<u>3d</u>	98 - 99 (78.8 - 82.8) ¹⁴	8.25 (d)	6.40 (d)	8.87 (s)	1680 1640
<u>3e</u>	109 - 111 (118 - 119) ¹⁴	8.05 (d)	6.25 (d)		1690 1640

Table 2. Melting Points and Spectral Data for Pyrido(1,2-a)pyrimidin-4(4H)-ones (3a-e)

The mechanisms of formation of the pyrido[1,2-a]pyrimidine $\underline{3}$ and the formamide $\underline{4}$ can be elucidated as follows; 1,4-cycloaddition of the C=C bond of ketene to the imidate $\underline{1}$ would give an intermediate A, which eliminates ethanol to be transformed into $\underline{3}$ (path-a). On the other hand, the C=O bond of ketene undergoes 1,4-cycloaddition with $\underline{1}$ to give an intermediate B, hydrolysis of which gives $\underline{4}$ via an intermediate C (path-b).

path-a

path-a

$$\begin{array}{c}
 & \bigoplus_{CH_2-C=0}^{\bigoplus} \bigoplus_{N=N}^{\infty} \frac{-\text{EtOH}}{OEt} \\
 & A
\end{array}$$

$$\begin{array}{c}
 & A \\
 & A
\end{array}$$

$$\begin{array}{c}$$

a) Satisfactory elemental analyses were obtained from all compounds.

REFERENCES AND NOTES

- Part 113: N. Katagiri, R. Niwa, Y. Furuya, and T. Kato, Chem. Pharm. Bull., in press.
- 2. H. Staudinger, Chem. Ber., 1917, 50, 1035.
- 3. R. Pfleger and A. Jäger, Chem. Ber., 1957, 90, 2460.
- 4. J. C. Sheehan and E. J. Corey, Org. React., 1957, 9, 388.
- 5. T. Tschamber and J. Streith, Tetrahedron Lett., 1980, 4503.
- 6. N. Katagiri, Y. Miura, R. Niwa, and T. Kato, Chem. Pharm. Bull., in press.
- 7. T. Kato, and T. Chiba, Yakugaku Zasshi, 1969, 89, 1464.
- 8. B. Pal and L. Pallos, J. Prakt. Chem., 1971, 313, 179.
- 9. H. Antaki, J. Am. Chem. Soc., 1958, 80, 3066.
- 10. T. Kato and S. Masuda, Chem. Pharm. Bull., 1975, 23, 2251.
- 11. R. Adams, I. J. Pachter, J. Am. Chem. Soc., 1952, 74, 5419.
- 12. A. E. Tschitschibabin and I. L. Knunjanz, Ber., 1931, 64, 2839.
- 13. G. R. Clemo and G. A. Swan, J. Chem. Soc., 1945, 603.
- 14. These compounds are synthesized from cyclic malonates, prepared by the somewhat troublesome method; Sterling Drug Inc. Brit. 1,147,760 (Chem. Abstr. 1969, 71, 49967a).
- 15. Hydrolysis would take place during the purification by column chromatography.

Received, 13th January, 1983