SELENIUM SUBSTITUTED SPIRO PHOSPHORUS HETEROCYCLES

Christo M. Angelov

Department of Chemistry, Higher Pedagogical Institute, 9700 Shoumen, BULGARIA

ABSTRACT - The reaction of cyclohexylideneethenylphosphonic acid and its esters with arylselenenyl chlorides leads to the formation of 4-arylseleno-2-oxo-1-oxa-2-phospha-spiro(4,5)-3-decene derivatives. The dichloride of this acid with the same reagents cyclized only in the presence of sulfur dioxide.

INTRODUCTION

Although there has been published many papers on the preparation of 1,2-oxaphosphol-3-ene-2-oxides ¹⁻¹⁰, this class of organophosphorus heterocycles is still not very well known. In particular bicyclic compounds are rare ⁶⁻⁹. One of the methods for preparation of 1,2-oxaphosphol-3-ene derivatives is the reaction of phosphorylated allenes with electrophiles. It was shown recently that the cyclization in this case depends on the substituents at the C³ atom of the allenic bond and the P-atom ¹⁰. The reaction of selenenyl chlorides as electrophilic reagents with 1,2-alkadienyl-phosphonates, except for one preliminary communication ¹¹, has not been studied. This paper presents our results on the reactions of cyclohexylideneethenylphosphonic acid and some of its derivatives with these reagents which give rise to spiro 1,2-oxaphosphol-3-ene-2-oxides.

RESULTS and DISCUSSION

The reaction of benzene- or p-chlorobenzeneselenenyl chlorides with cyclohexylideneethenylphosphonic acid ($\underline{1a}$) and four of its esters ($\underline{1b}$ - \underline{e}) gave products which were assigned the spiro cyclic structure ($\underline{2a}$ - \underline{e} , $\underline{3c}$ - \underline{e}):

The reactions was conducted in chloroform with heating for <u>la</u>, or at room temperature for <u>lb-e</u>. The compounds obtained after removal of the solvent were viscous oils which soon crystallized. The structure of the products was ascertained by nmr and ir spectroscopy (Table 1) and elemental analysis (Table 2).

Table 1. H-nmr and ir data of spiro commpounds 2a-d, 3c-e, 5a,b

No	Y	Ar	 Chemical shifts, 8			(CDC1) Spin-Spin Coupl.,J E			ir absorptions, cm ⁻¹			
			Y	Ar	cyclo hexyl	Н	Y-P	н ³ -р	Y-P	P=O	C=C	
<u>2a</u>	но	Ph	9.32s	7.40m	1.72s	5.18d	-	28.0	-	1220	1542	
<u>b</u>	MeO	Ph	3.58d	7.40m	1.70s	5.14d	12.0	28.0	1015	1240	1545	
c	EtO	Ph	4.02dq 1.24t	7.40m	1.65s	5.20đ	9.6	28.8	1025	1230	1535	
<u>d</u>	Pr ⁿ O	Ph	3.84dt 1.60m 0.84t	7.30m	1.68s	5.14d	8.0	28.0	1000	1240	1536	
<u>3c</u>	EtO	p-C1Ph	4.00dq 1.26t	7.36m	1.73s	5.18d	10.0	27.6	1000	1250	1540	
<u>d</u>	Pr ⁿ O	p-ClPh	3.90dt 1.52m 0.88t	7.36m	1.73s	5.21d	8.2	27.6	1000	1230	1535	
<u>e</u>	Pr ⁱ O	p-C1Ph	4.56dq 1.22d	7.32m	1.68s	5.14d	8.0	27.2	998	1236	1548	
<u>5a</u>	Cl	Ph	-	7.36m	1.76s	5.39d	_	33.9	-	1240	1538	
<u>b</u>	C1	p-ClPh	-	7.38m	1.76s	5.36d		33.6	-	1240	1536	

s- singlet, d- doublet, t- triplet, q- quartet, dt- doublet-triplet, dq-doublet-quartet, m- multiplet

The $^1\text{H-nmr}$ spectra of all spiro compounds showed a doublet from the H 3 of the oxaphospholene ring (δ 5.14 - 5.40, $^2\text{J}_{\text{HP}}$ 27.0 - 33.9 Hz) typical for 4-substituted oxaphospholenes 9,12,13 . The ^{31}P chemical shifts (34.2 - 34.6 ppm) are characteristic for heterocycles with tetracoordinate phosphorus 13,14 .

When cyclohexylideneethenylphosphonic dichloride $\underline{4}$ was treated with arylselenenyl chlorides at $0-5^{\circ}$ C no cyclic product was observed (1 H-nmr). In the presence of sulfur dioxide, however, cyclization took place with the formation of spiro 1,2-oxaphospholene-2-oxides $\underline{5a},\underline{b}$.

It is known that the reaction of cyclohexylideneethenylphosphonic dichloride with

chlorine ¹¹ and benzenesulfenyl chloride ¹² proceeds with elimination of HCl and formation of 1,3-alkadienylphosphonic dichlorides. However, sulfuryl chloride reacted with the same allenic dichloride to give an oxaphosphol-3-ene-2-oxide ¹¹. Probably the sulfur dioxide which forms during the reaction in this case is responsible for the heterocyclization of allenephosphonate. Moreover, it has been shown that 3,3-disubstituted allenylphosphonic dichlorides with halogens cyclized and gave oxaphospholenes with pentavalent phosphorus which are stable in CCl₄ solution for several days. The latter compounds with SO₂ lead to formation of 1,2-oxaphosphol-3-ene-2-oxides ¹³. Cyclohexylideneethenylphosphonic dichloride and selenenyl chlorides, in the presence of sulfur dioxide, probably react by a similar mechanism via an unstable intermediate (I) which is trapped by SO₂ to give 5a, 5b:

$$\begin{array}{c|c} H & C & \\ \hline \\ Cl_2P_O & \underline{4} \end{array} \qquad \begin{array}{c|c} +ArSeCl & \\ \hline \\ Cl_3P_O & \\ \hline \\ \end{array} \qquad \begin{array}{c|c} SeAr \\ \hline \\ Cl_3P_O & \\ \hline \\ \end{array} \qquad \begin{array}{c|c} +SO_2 & O \\ \hline \\ \hline \\ Cl_3P_O & \\ \hline \end{array} \qquad \begin{array}{c|c} Cl_3P_O & \\ \hline \\ \hline \\ \end{array} \qquad \begin{array}{c|c} -SOCl_2 & O \\ \hline \\ \hline \\ \end{array} \qquad \begin{array}{c|c} SeAr \\ \hline \\ \hline \\ \end{array} \qquad \begin{array}{c|c} -SOCl_2 & O \\ \hline \\ \hline \\ \end{array} \qquad \begin{array}{c|c} SeAr \\ \hline \\ \hline \\ \end{array} \qquad \begin{array}{c|c} -SOCl_2 & O \\ \hline \\ \hline \\ \end{array} \qquad \begin{array}{c|c} SeAr \\ \hline \\ \hline \\ \end{array} \qquad \begin{array}{c|c} -SOCl_2 & O \\ \hline \\ \hline \\ \end{array} \qquad \begin{array}{c|c} SeAr \\ \hline \\ \hline \\ \end{array} \qquad \begin{array}{c|c} -SOCl_2 & O \\ \hline \\ \hline \\ \end{array} \qquad \begin{array}{c|c} SeAr \\ \hline \\ \hline \\ \end{array} \qquad \begin{array}{c|c} -SOCl_2 & O \\ \hline \\ \hline \\ \end{array} \qquad \begin{array}{c|c} SeAr \\ \hline \\ \end{array} \qquad \begin{array}{c|c} -SOCl_2 & O \\ \hline \\ \hline \end{array} \qquad \begin{array}{c|c} SeAr \\ \hline \\ \hline \end{array} \qquad \begin{array}{c|c} -SOCl_2 & O \\ \hline \\ \hline \end{array} \qquad \begin{array}{c|c} SeAr \\ \hline \\ \hline \end{array} \qquad \begin{array}{c|c} -SOCl_2 & O \\ \hline \\ \hline \end{array} \qquad \begin{array}{c|c} SeAr \\ \hline \\ \hline \end{array} \qquad \begin{array}{c|c} -SOCl_2 & O \\ \hline \\ \hline \end{array} \qquad \begin{array}{c|c} SeAr \\ \hline \\ \hline \end{array} \qquad \begin{array}{c|c} -SOCl_2 & O \\ \hline \\ \hline \end{array} \qquad \begin{array}{c|c} -SOCl_2 & O \\ \hline \\ \hline \end{array} \qquad \begin{array}{c|c} -SOCl_2 & O \\ \hline \end{array} \qquad$$

Table 2. Elemental Analysis of Oxaphospholenes 2a-e, 3c-e and 5a,b

No	Yield mp		Found, %				Formula	Calculated, %			
	8	°c	С	Н	P	C1		С	Н	P	Cl
<u>2a</u>	79	186	48.50	4.72	8.65	_	C ₁₄ H ₁₇ O ₃ PSe	48.99	4.99	9.02	-
\underline{b}	68	96	50.56	5.70	8.21	-	C ₁₅ H ₁₉ O ₃ PSe	50.99	5.36	8.67	-
<u>c</u>	87	73	51.64	5.57	8.28	-	C ₁₆ H ₂₁ O ₃ PSe	51.74	5.70	8.34	_
₫	82	76	59.63	5.83	7.98	-	C ₁₇ H ₂₃ O ₃ PSe	59.98	6.01	8.03	-
<u>e</u>	81	102	59.76	5.82	7.78	-	C ₁₇ H ₂₃ O ₃ PSe	59.98	6.01	8.03	
<u>3c</u>	92	131	46.92	5.06	7.76	8.59	Cless Closes	47.36	4.96	7.63	8.74
<u>d</u>	88	130	48.21	5.35	6.98	8.22	C ₁₇ H ₂₂ ClO ₃ PSe	48.64	5.28	7.38	8.45
<u>e</u>	77	128	48.25	5.70	7.06	8.52	C ₁₇ H ₂₂ ClO ₃ PSe	48.64	5.28	7.38	8.49
<u>5a</u>	74	72	46.10	4.28	8.17	9.63	C14H16C103PSe	46.49	4.46	8.58	9.89
<u>Þ</u>	76	121	42.17	4.01	7.53	17.55	C ₁₄ H ₁₅ C1 ₂ O ₂ PSe	42.45	3.88	7.88	17.90

The products obtained in this work may be interconverted by standard procedures:

SeAr SeAr SeAr H₂O
$$\frac{SOCl_2}{ROH, base}$$
 $Old PO$ Ol

The compounds synthesized by both methods have identical spectroscopical data and physical constants.

EXPERIMENTAL

The $^1\text{H-}$ and $^{31}\text{P-nmr}$ spectra were obtained on JEOL JNM PS 10 and FX 90 Q spectrometers using TMS and 85% H_3PO_4 as standards. The ir spectra were run on a IR-72 spectrophotometer (Karl Zeis Jena, DDR). The cyclohexylideneethenylphosphonic acid and its derivatives were synthesized according to the literature 15 . Arylselenenyl chlorides were freshly prepared from the corresponding diselenides and chlorine or sulfuryl chloride and used without purification.

4-Benzeneseleno-2-hydroxy-1-oxa-2-phospha-spiro(4,5)-3-decene-2-oxide (2a)

Method A

A solution of 3.85 g (0.02 mole) of benzeneselenenyl chloride in 15 ml of dry chloroform was added dropwise to 3.76 g (0.02 mole) of cyclohexylideneethenyl-phosphonic acid dissolved in 10 ml of CHCl_3 at 40 to 50°C . The reaction mixture was kept overnight at room temperature, then the solvent was removed and residue recrystallized from heptane. Yield 79%.

Method

0.9 g (0.015 mole) of water was added dropwise to 3.62 g (0.01 mole) of $\underline{5a}$ dissolved in 50 ml of heptane at $40 - 50^{\circ}$ C. The reaction mixture was kept at the same temperature for one hour and then the solvents were removed in vacuo to give a residue which soon became crystalline. Yield 70%.

4-Arylseleno-2-alkoxy-1-oxa-2-phospha-spiro(4,5)-3-decene-2-oxides (<u>2b-e</u>, <u>3c-e</u>).

Method

A solution of 0.02 mole of the arylselenenyl chloride in 15 ml of dry chloroform was added dropwise to 0.02 mole of the dialkyl cyclohexylideneethenylphosphonate dissolved in 10 ml of CHCl₃ at room temperature. The reaction mixture was kept for two hours and the solvent then removed. The crystalline residue was recrystallized from heptane. Yield 65-90%.

Method B

0.01 mole of the alkohol was added dropwise to a mixture of 0.01 mole of $\underline{5a}$ or $\underline{5b}$ and 0.012 mole of triethylamine dissolved in dry benzene at 40 to 50° C. The reaction mixture was stirred for one hour at the same temperature. The precipitate was filtered off and the solvent removed to give a solid residue which was recrystallized from heptane. Yield 50-60%.

 $\underline{4-\text{Arylseleno-2-chloro-1-oxa-2-phospha-spiro}(4,5)-3-\text{decene-2-oxides}} \ (\ \underline{5a,b}\).$

Method A

Through a solution of 0.02 mole of cyclohexylideneethenylphosphonic dichloride in dry chloroform at $0-5^{\circ}C$ was bubbled sulfur dioxide for 15-20 min. Continuing the admission of SO_2 with stirring, a solution of 0.02 mole of the selenenyl chloride in CHCl $_3$ was added dropwise. The reaction mixture was stirred for one hour and then the solvent was removed and the solid residue recrystallized from heptane. Yield 74-76%.

Method B

0.02 mole of <u>2b</u> or <u>3c</u> was added in one portion to 15 ml of thionyl chloride. The reaction mixture was boiled for 4 - 5 hours. Then, thionyl chloride was removed and the residue was recrystallized from heptane. Yield 45-50%.

ACKNOWLEDGMENT The author is indebted to Dr. Otto Dahl (The H. C. Ørsted Institute, University of Copenhagen, Denmark) for the 31 P-nmr spectra.

REFERENCES

- V. S. Tsivunin, S. V. Fridland, T. F. Zikova and G. Kh. Kamai, <u>Zh. Obshch.</u>
 Khim., 1966, <u>36</u>, 1424.
- 2. I. G. M. Campbell and S. M. Raza, J. Chem. Soc. C, 1971, 1836.
- 3. V. K. Khairulin and G. V. Dmitrieva, Zh. Obshch. Khim., 1976, 46, 272.
- 4. Y. Machida and I. Saito , <u>J. Org. Chem.</u>, 1979, <u>44</u>, 865.
- 5. Ch. M. Angelov and Ch. Zh. Christov, Heterocycles, in press.
- 6. J. A. Miles and R. W. Strect, <u>J. Org. Chem.</u>, 1978, <u>43</u>, 4668.
- 7. J. A. Miles, R. C. Grabiak and C. Cummins, <u>J. Org. Chem.</u>, 1982, <u>47</u>, 1677.
- 8. Ch. M. Angelov, K. V. Vachkov, M. Kirilov, B. I. Ionin, G. N. Vasilev and
- A. A. Petrov, <u>C. r. Acad. bulg. Sci.</u>, 1978, <u>31</u>, 1589; <u>Chem. Abst.</u>, 1979, <u>91</u>, 20622m.
- 9. Ch. M. Angelov, K. V. Vachkov, M. Kirilov, B. I. Ionin and A. A. Petrov,
- C. r. Acad. bulg. Sci., 1979, 32, 611; Chem. Abst., 1980, 92, 22561k.

- 10. Ch. M. Angelov, Phosphorus and Sulfur, in press.
- 11. Ch. M. Angelov, V. Ch. Christov and B. I. Ionin, Zh. Obshch. Khim., 1981, 51, 1230.
- 12. N. G. Khusainova, L. V. Naumova, E. A. Berdnikov, G. A. Kutyrev and
- A. N. Pudovik, Phosphorus and Sulfur, 1982, 13, 147.
- 13. T. S. Mikhailova, Ch. M. Angelov, V. M. Ignat'ev, B. I. Ionin and A. A. Petrov, Zh. Obshch. Khim., 1979, 49, 570.
- 14. Ch. M. Angelov, K. V. Vachkov, B. I. Ionin, M. Kirilov, <u>Zh. Obshch. Khim.</u>, 1979, <u>49</u>, 2438.
- 15. Ch. M. Angelov, T. S. Mikhailova, V. M. Ignat'ev, A. V. Događina, B. I. Ionin, C. r. Acad. bulg. Sci., 1979, 32, 619; Chem. Abst., 1980, 92, 2253n.

Received, 19th November, 1982