PYRAZOLE N- AND C- β -D-RIBOFURANOSYL NUCLEOSIDES. SYNTHESIS OF SOME β -D-RIBOFURANOSYL-4,7-METHANOINDAZOLES AND PYRAZOLO[1,5- α]AZEPINES

Shin-ichi Nagai, Taisei Ueda, Noriichi Oda, and Jinsaku Sakakibara *
Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya 467, Japan

Abstract—— Condensation of *O*-isopropylidene-D-ribosylhydrazine (1) with (1*R*,4*S*)-3-hydroxymethylenebornan-2-ones (2*a*-*b*) led to selective N-1 ribosylation of pyrazole ring to provide (4*S*,7*R*)-1-(2,3-*O*-isopropylidene-β-D-ribofuranosyl)-4,5,6,7-tetrahydro-4,7-methano-1*H*-indazoles (3*a*-*b*), and deprotected 4,7-methano-1*H*-indazole (4) after treatment with methanolic HCl. Structure determination including anomeric configuration assignment was discussed based on ¹H-NMR spectroscopy.

1,3-Dipolar cycloaddition of diazoketone (5) with β-D-ribofuranosylpropiolate (8) followed by [1,5] sigmatropic rearrangement was used as a key reaction step in a novel synthesis of pyrazole C-ribofuranoside, (4*S*,7*R*)-3-(2,3-0- isopropylidene-5-0-trityl-β-D-ribofuranosyl)-8-oxo-4,7-methano-8*H*-pyrazolo[1,5-*a*] azepine (11). The protective groups of 11 were easily removed by methanolic HCl to give 3-(β-D-ribofuranosyl)-8*H*-pyrazolo[1,5-*a*] azepine (12).

We have recently prepared a series of optically active (4s,7r)-7,8,8-trimethyl-4,5,6,7-tetrahydro-4,7-methano-l#-indazoles and elucidated their appreciable pharmacological activities such as stimulatory action on nerve-muscle preparation of bullfrog, $^{(1)}$ anticholinergic action, $^{(2)}$ and central nervous system stimulant activity in mice. $^{(3)}$

Since it has been well known that β -D-ribofuranosyl moiety was a structural unit common to numerous pharmacologically active nucleosides, we considered that the introduction of β -D-ribofuranosyl group into the pyrazole ring of (4S,7R)-4,5,6,7-tetrahydro-4,7-methano-lH-indazole might bring about interesting biological activity change. We now describe the convenient synthesis of a new class of

pyrazole N- and C-β-D-ribofuranosides.

The pyrazole $N-\beta-D$ -ribofuranosides were synthesized as follows.

Condensation of (1R,4S)-3-hydroxymethylenebornan-2-one (2a) with 2,3-0-isopropylidene-D-ribosylhydrazine (1) in refluxing methanol and subsequent loose layer chromatography afforded (4S,7R)-1-(2,3-0-isopropylidene- β -D-ribofuranosyl)-7,8,8-trimethyl-4,5,6,7-tetrahydro-4,7-methano-1H-indazole (3a) as a single product in 72 % yield. Similarly, (1R,4S)-2-oxobornaneglyoxylic acid (2b) was treated with hydrazine (1) and worked up as described in the preparation of 3a to give (4S,7R)-1-(2,3-0-isopropylidene- β -D-ribofuranosyl)-7,8,8-trimethyl-4,5,6,7-tetrahydro-4,7-methano-1H-indazole-3-carboxylic acid (3b) in 85 % yield.

Assignment of D-ribofuranosyl groups of both 3a and 3b to N-1 position of the pyrazole ring was confirmed by $^1\text{H-NMR}$ spectral data. Namely, the anomeric protons of 3a and 3b appeared at 6 5.90 and 5.91 respectively. This chemical shift of 3b is appropriate for an anomeric proton not deshielded by the adjacent C-3 carbo-xylic group; the anomeric proton of 3b would show a fairly downfield shift compared with 3a if the D-ribofuranosyl moiety was bonded to N-2 position of the pyrazole ring. This assignment also agrees with our previous work 1,2) which clarified the higher electrophilic property of the C-enolized hydroxy group of 2 0 than the strained five-membered carbonyl group, resulting in the exclusive formation of the N-1 substituted pyrazoles in the condensation reaction with monosubstituted hydrazines.

On the other hand, the assignment of anomeric β -configuration of the carbohydrate moieties of 3a and 3b was based on the following 1H -NMR spectral data; (a) the observed $J_{1,2}$, values of 3a and 3b were both 0 Hz. (b) the chemical shift

differences ($\Delta\delta$) between the two methyl signals of the isopropylidene groups of 3a and 3b were 0.22 and 0.23 respectively, which were in excellent agreement with the value characteristic of β -configuration. Consequently, these compounds were assigned as the structure 3a and 3b.

Deisopropylidation of 3a with methanolic HCl gave a good yield of the corresponding (4S,7R)-7,8,8-trimethyl-l- $(\beta$ -D-ribofuranosyl)-4,5,6,7-tetrahydro-4,7-methanolithindazole $\binom{4}{4}$ without cleavage of a linkage between the sugar and heterocyclic moieties. The structure of $\binom{4}{4}$ was confirmed by spectral data. Attempted deprotection of 3b with a variety of reagents, however, was unsuccessful.

We next investigated a novel synthesis of pyrazole $C-\beta-D-ribofuranosides$. Our earlier studies 9 indicated that the reaction of (1R,4S)-3-diazobornan-2-one (5) with methyl propiolate (6: R=H) gave spiropyrazole, whose a [1,5] sigmatropic rearrangement of acyl group afforded methyl (4S,7R)-4,7-methano-8H-pyrazolo[1,5- α] azepine-2-carboxylate (7a).

We anticipated that adaptation of this synthetic sequence should make it possible to establish a novel synthetic route to pyrazole $C-\beta-D-ribofuranoside$ when methyl $3-(2,3-o-isopropylidene-5-o-trityl-\beta-D-ribofuranosyl)$ propiolate $(\frac{8}{6})^{10}$ was used in place of methyl propiolate $(\frac{6}{6})$. Accordingly, compound $\frac{5}{6}$ was allowed to react with $\frac{8}{6}$ in refluxing benzene until TLC showed the appearance of a new product. After the reaction had run for over 200 h, repeated loose layer chromatography of the reaction mixture afforded the expected methyl $(4S,7R)-3-(2,3-o-isopropylidene-5-o-trityl-\beta-D-ribofuranosyl)-7,10,10-trimethyl-8-oxo-4,5,6,7-tetrahydro-4,7-methano-8<math>\beta$ -pyrazolo[1,5- α]azepine-2-carboxylate $(\frac{11}{10})^{11}$ in 60 % yield along with the recovery of the starting materials. However, the spectral data of $\frac{11}{10}$ were not sufficient to determine whether the product was intermediate spiropyrazole $\frac{9}{10}$ or compound $\frac{11}{10}$. Chemical proof of the product was then made as follows; prolonged

irradiation $^{12)}$ of the product resulted in recovery of the starting material, and spirocyclopentene (10) was not detected. Therefore, the structure was confirmed

as the assigned structure $\frac{11}{\sqrt{5}}$ but not as the spiropyrazole $\frac{9}{5}$. The binding position of the β -D-ribofuranosyl group was also assumed as structure $\frac{11}{\sqrt{5}}$, since the 1,3-cycloaddition took place obviously in such a manner that the diazo compound $\frac{5}{\sqrt{5}}$ added with its nitrogen to the α position of ribofuranosyl propiolate ($\frac{8}{5}$) and with its carbon atom to the β position. This assumption was confirmed by the $\frac{1}{5}$ H-NMR spectrum, in which the C-4 bridge head proton appeared at δ 3.15. This value was quite the same as the bridge head proton of compound $\frac{7}{5}$, while the bridge head proton of compound $\frac{7}{5}$ appeared at δ 3.76 due to the deshielding effect of the adjacent methoxy carbonyl group. The β -D-ribofuranosyl structure of $\frac{11}{5}$ was also strongly supported by the $\frac{1}{5}$ H-NMR spectrum because the anomeric proton was observed at δ 5.51 as a doublet with $J_{1,2}$, 3.0 Hz.

Removal of the isopropylidene and trityl groups in compound $\frac{11}{200}$ with methanolic HCl

afforded a good yield of methyl (4S,7R)-7,10,10-trimethyl-8-oxo-3- $(\beta$ -D-ribo-furanosyl)-4,5,6,7-tetrahydro-4,7-methano-8#-pyrazolo[1,5- α]azepine-2-carboxylate $\binom{12}{\sqrt{12}}$ in a crystalline form. The spectral data were consistent with the assigned structure.

To the best of our knowledge, this synthetic method is a novel example for $C-\beta-D-$ ribofuranosyl pyrazole preparation.

Attempted 1,3-cycloaddition of compound $\frac{8}{5}$ with (1S,4R,6S)-3-diazo-6,8-dibromobornan-2-one¹⁴⁾ which was an analogous compound to $\frac{5}{5}$ and newly synthesized by two steps starting from (1S,4R,6S)-6,8-dibromobornane-2,3-dione, however, resulted in formation of (1S,3S,4R,7S)-3-bromo-7-bromomethyl-4,7-dimethyltricyclo-[2.2.1.0^{2,6}]hept-5-one¹⁵⁾ in a quantitative yield, presumably via a ketocarbene.

REFERENCES AND NOTES

- 1) S. Nagai, N. Oda, I. Ito and Y. Kudo, Chem. Pharm. Bull., 1979, 27, 1764.
- 2) S. Nagai, N. Oda, I. Ito and Y. Kudo, Chem. Pharm. Bull., 1979, 27, 1771.
- 3) S. Nagai, N. Oda and I. Ito, Yakugaku Zasshi, 1979, 99, 699.
- 4) R. R. Schmidt, J. Karg and W. Guilliard, Chem. Ber., 1977, 110, 2433.
- 5) J. Zemlicka and J. Owens, J. Org. Chem., 1977, 42, 517.
- 6) $3a: C_{19}H_{28}N_{2}O_{4}$, light yellow syrup, $\{\alpha\}_{D}^{24}$ -74.1° (c=0.37, CHCl $_{3}$) [1 H-NMR (CDCl $_{3}$) $\delta: 1.38$ and 1.60 (6H, 2s, CMe $_{2}$), 2.78 (1H, d, J=3.6 Hz, H-4), 5.90 (1H, s, H-1'), 7.20 (1H, s, H-3). MS m/z: 348 (M $^{+}$)].
- 7) $^{3b}_{\sim}$: $^{C}_{20}^{H}_{28}^{N}_{2}^{O}_{6}$, light yellow amorphous powder, mp 105-107° (MeOH-Et₂O), $^{[\alpha]}_{D}^{24}$ -8° ($^{c}_{2}$ =0.2, CHCl₃) $^{[1}_{H}$ -NMR(CDCl₃) 6 : 1.38 and 1.61 (6H, 2s, CMe₂), 3.13 (1H, d, $^{J}_{2}$ =3.5 Hz, H-4), 5.91 (1H, s, H-1'). MS $^{m/z}$: 392 (M⁺)].
- 8) 4: $C_{16}^{H}_{24}^{N}_{20}^{O}_{4}$, light yellow amorphous powder, mp 127° (MeOH-Et₂O), [α] $_{D}^{26}$ ~17.8° (c=0.37, CHCl₃) [1 H-NMR(CDCl₃) δ : 2.68 (1H, d, J=3.0 Hz, H-4), 5.66 (1H, d, J=2.0 Hz, H-1'), 7.03 (1H, s, H-3). MS m/z (relative intensity): 308(16, M⁺), 176 (100, B+1), 133 (78, ribofuranosyl)].
- 9) S. Nagai, N. Oda and I. Ito, Yakugaku Zasshi, 1979, 99, 705.
- 10) F. G. De Las Heras, S. Y. K. Tam, R. S. Klein and J. J. Fox, J. Org. Chem., 1976, 41, 84.
- ll) ll: $C_{41}^{H}_{44}^{N}_{2}^{O}_{7}$, light yellow powder, mp 88° (dec) (Et₂O-petroleum ether), [α] $_{D}^{25}$ +34.8° (c=1.046, CHCl $_{3}$) [IR(CHCl $_{3}$) cm $^{-1}$: 1755 (CO $_{2}^{M}$ e), 1725 (C=O).

 1 H-NMR(CDCl $_{3}$) δ : 0.77, 1.07 and 1.29 (9H, 3s, 3xMe), 1.37 and 1.59 (6H, 2s, CMe $_{2}$), 3.15 (1H, d, J=6.0 Hz, H-4), 3.83 (3H, s, OMe), 5.51 (1H, d, J=3.0 Hz, H-1'), 7.18-7.41 (15H, m, trityl). MS m/s: 676 (M⁺), 243 (trityl)].

- 12) 100W high pressure mercury lamp, Pyrex.
- 13) $^{12}_{\sim \sim}$: $C_{19}^{H}_{26}^{N}_{2}^{O}_{7}$, colorless plates, mp 114-116° (dec) (MeOH-Et₂O), [α]²⁵_D +21.0° (c=0.2, CHCl₃) [IR(CHCl₃) cm⁻¹: 3340 (OH), 1755 (CO₂Me), 1715 (C=O). 1 H-NMR (CDCl₃-CD₃OD) δ : 0.80, 1.16 and 1.31 (9H, 3s, 3xMe), 2.88 (3H, br s, 3xOH), 3.91 (3H, s, OCH₃), 5.42 (1H, d, J=3.0 Hz, H-1'). MS m/z (relative intensity): 394 (1, M⁺), 305 (100, B+44), 291 (16, B+30)].
- 14) (1s, 4R, 6s) -3-diazo-6,8-dibromobornan-2-one [(iii), $C_{10}H_{12}N_{2}OBr_{2}$, colorless needles, mp 218° (dec) (Et₂O). IR(KBr) cm⁻¹: 2080 (C=N₂), 1685 (C=O). ^{1}H -NMR(CDCl₃) δ : 1.10 and 1.28 (6H, 2s, 2xMe), 3.22 and 3.38 (2H, ABq, H-8_{AB}), 4.27 (1H, dd, J_{6-5exo} =12.0 Hz, J_{6-5end} =3.0 Hz, H-6). MS m/z:338 (M⁺+4), 336 (M⁺+2), 334 (M⁺), 255 (M⁺-Br)] was prepared from (1s,4R,6s)-6,8-dibromobornane-2,3-dione (i) 16) via (1s,4R,6s)-6,8-dibromo-3-tosylhydrazonobornan-2-one [(ii), $C_{17}H_{20}N_{2}O_{3}Br_{2}S$, colorless needles, mp 168° (MeOH). IR(KBr) cm⁻¹: 3200 (NH), 1750 (C=O). ^{1}H -NMR(CDCl₃) δ : 2.44 (3H, s, tosyl Me), 7.33 and 7.81 (4H, dd, J=8.0 Hz, tosyl protons). MS m/z: 494 (M+4), 492 (M+2), 490 (M+)].

$$0 \longrightarrow Br$$

a: TsNHNH2(CHCl3), 20°, 48h, b: basic Al203(CHCl3)

- 15) C₁₀H₁₂OBr₂, colorless needles, mp 97-99° (petroleum ether). IR(nujol) cm⁻¹: 1770 (C=0). ¹H-NMR(CDCl₃) δ: 0.97 and 1.14 (6H, 2s, 2xMe), 1.89 (1H, t, J=6.0 Hz, H-1), 3.32 and 3.47 (2H, ABq, J=10.0 Hz, H-8_{AB}), 4.56 (1H, d, J=1.6 Hz, H-3). MS m/z: 310 (M⁺+4), 308 (M⁺+2), 306 (M⁺), 291 (M⁺-Me), 227 (M⁺-Br).
- 16) M. Nishikawa, Yakugaku Zasshi, 1952, 72, 646; S. Nagai, N. Oda and I. Ito, Heterocycles, 1979, 12, 1275.

Received, 24th January, 1983