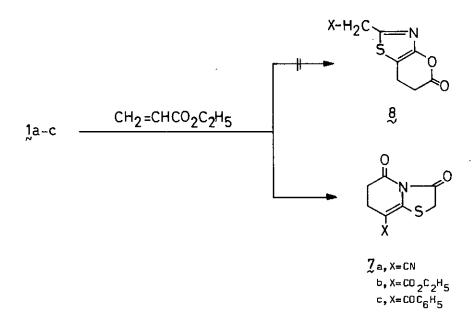
SYNTHESIS OF FUSED AZOLES: SYNTHESIS OF SEVERAL NEW PYRROLO-[2,3:4',5'] PYRROLO [2,1-b] THIAZOLES AND THIAZOLO [2,3-a] PYRIDINE DERIVATIVES

Fathy A. Khalifa, Bahia Y. Riad and Fathia H. Hafez


Department of Chemistry, Faculty of Science, Cairo University,

Giza, A.R. Egypt

Abstract - The reactions of the 2-functionally substituted methylthiazol-4-one derivatives (1a-c) with N-arylmaleimides (2a,b) and ethyl acrylate have resulted in the synthesis of several new pyrrolo [2,3:4',5']pyrrolo [2,1-b]thiazoles and thiazolo-[2,3-a]pyridine derivatives. The structures of the synthesised compounds were assigned based on analytical and spectral data.

As a part of the program aiming to develop new efficient procedures for the synthesis of azoles¹, azines² and azoloazines^{3,4} we have recently reported a novel synthesis of thiazolo[2,3-a]pyridine derivatives via the addition of 2-functionally substituted methylthiazoles to cinnamonitrile derivatives⁵. We have been interested to see if reactions of this type can be extended to constitute a new general approach for the synthesis of azolothiazoles and thiazoloazine derivatives. The work has resulted in development of a new route for synthesis of pyrrolo-[2,3: 4',5']pyrrolo[2,1-b]thiazoles and thiazolo[2,3-a]pyridines bearing functional substituents that make them interesting for further chemical transformations.

Thus, it has been found that the 2-functionally substituted 2-thiazolin-4-one derivatives (1a,b; 0.01 mol) reacted with N-erylmaleimides (2a,b; 0.01 mol; heating under reflux in dioxane for 5 h)to yield products resulting from addition of 1a,b to the maleimide and elimination of water. Two theoretically possible structures were considered (cf. structures 3 and 4). Structure 4 was readily ruled out based on IR spectra of these products which revealed strong absorption for the ring C=0 group as well as ¹H NMR spectra which showed resonance for thiazole H-5 protons. Compound 1c reacted also with 2a,b to yield also products from addition and elim-

ination of water. Here in addition to structures 6 or 4 (X=COPh) the furo [2,3-b]-pyrrole structure 5 seemed possible. However, structure 6 was readily established for the reaction products based on IR spectra which revealed three different C=O groups. Moreover, the reaction products proved very stable to acid and alkaline treatment, and conditions that are expected to effect cleavage of the furan or pyrone derivatives.

Compounds 1a-c reacted with ethyl acrylate to yield the thiazolo [2,3-a] pyridine derivatives 7a-c formed via addition of the acrylate to the exocyclic active methylene group and cyclisation by elimination of ethanol. The other possible structure 8 was ruled out based on IR spectra which revealed absorption pattern different from that expected for such compounds.

It is clear from the above results that the reaction of 1,a-c with activated double bonds opens a new general approach for synthesis of differently substituted fused thiszole derivatives.

Table 1: List of the pyrrolo [2,3:4',5'] pyrrolo [2,1-b] thiazoles (3,and6) and thiazolo [2,3-a] pyridines (7)

Product [#]	Solvent of cryst.	Colour	M.p. (°C)	Yield (%)	Mol. formula
За	DMF/H ₂ O	pale yellow	250-252	70	C ₁₅ H ₉ N ₃ O ₂ S
3,ь	methanol	yellow	280-281	62	C ₁₆ H ₁₁ N ₃ O ₂ S
3 <u>,</u> c	DMF/H ₂ O	pale yellow	264-266	68	^C 17 ^H 14 ^N 2 ^O 4 ^S
3 , d	acetic acid	yellow	190	71	^C 18 ^H 16 ^N 2 ^O 4 ^S
6a	acetic acid	yellow	240-241	65	^C 21 ^H 14 ^N 2 ⁰ 3 ^S
6b	DMF/H ₂ O	yellow	225	55	C ₂₂ H ₁₆ N ₂ O ₃ S
?a	methanol	colourless	195	65	^C 8 ^H 6 ^N 2 ^O 2 ^S
7b ~	methanol	colourless	143	70	C ₁₀ H ₁₁ NO ₄ S
7 c	methanol	colourless	172	66	C ₁₄ H ₁₁ NO ₃ S

^{*}Satisfactory elemental analyses for all the compounds were obtained.

Table 2: IR and 1 H NMR data of compounds 3, 5 and 7

Comp.	IR(KBr), cm ⁻¹	¹ H NMR(DMSD), 8 ppm.
3a	3010, 2990(saturated CH ₂); 2220 (CN); 1700, 1680(two ring C=0) and 1650(C=C).	2.2(m, 2H, CH ₂); 4.56(m, 2H, thiazole CH ₂) and 7.25(m, 5H, aromatic protons).
3 _b	3000, 2980(saturated CH ₂); 2230 (CN); 1710, 1690(two ring C=0) and 1650(C=C).	2.2(m, 4H, two CH_2); 4.0(m, 3H, CH_3) and 7.2(m, 4H, aromatic protons).
3c	30 20, 2990(saturated CH ₂); 1730 (ester C=0); 1690, 1670(two ring C=0) and 1650(C=C).	
3 d	30 20, 2980 (saturated CH ₂); 1740 (ester C=0); 1700, 1680 (two ring C=0) and 1630 (C=C).	1.3(t, 3H, CH_3); 2.0(s, 3H, CH_3); 2.2 (m, 2H, CH_2); 4.16(q, 2H, CH_2); 4.66 (m, 2H, $ring CH_2$) and 7.3(m. 4H, aromatic protons).
6a ~	3500(OH); 2990(saturated CH ₂); 1740(exocyclic C=D); 1680(ring C=O) and 1640(C=C).	
6b ~	3450(BH); 2980(saturated CH ₂); 1730(exocyclic C=O); 1690(ring C=O) and 1650(C=C).	3.9(m, 2H, CH ₂); 6.85(s, 1H, thiazole- CH); 7.3~8.0(m, 10H, aromatic prot- ons) and 12.1(s, br, 1H, DH).
7,a	3100, 3000(saturated CH ₂); 2220 (CN); 1690, 1670(two ring C=D) and 1640(C=C).	
7b ~	3000, 2985(saturated CH ₂); 1740 (ester C=0); 1685, 1670(two ring C=0) and 1650(C=C).	
7,c	2990, 2980(saturated CH ₂); 1730 (exocyclic C=0); 1690, 1670(two ring C=0) and 1640(C=C).	

ACKNOWLEDGEMENT

Thanks are due to Prof. Dr. M. H. Elnagdi and Prof. Dr. S. E. Abdou, Department of Chemistry, Faculty of Science, Cairo University for their valuable discussions.

REFERENCES

- 8. Y. Riad, F. A. Khalifa, F. M. Abdel-Galil and M. H. Elnagdi, <u>Heterocycles</u>, 1982, 19, 1637.
- 2. S. M. Fahmy, N. M. Abed, R. M. Mohareb and M. H. Elnagdi, Synthesis, 1982, 490.
- 3. M. H. Elnagdi and H. Wamhoff, J. Heterocyclic Chem., 1981, 18, 1287.
- M. H. Elnagdi, M. R. H. Elmoghayar, D. H. Fleita, E. A. A. Hafez and S. M. Fahmy, J. Org. Chem., 1976, 41, 3781.
- 5. M. R. H. Elmoghayar, M. K. A. Ibraheim, A. H. H. Elghandour and M. H. Elnagdi, Synthesis, 1981, 635.

Received, 26th February, 1983