MESOIONIC SIX-MEMBERED HETEROCYCLES, XVII¹. CYCLOADDITION OF BENZYNE TO MESOIONIC PYRIMIDINES

Thomas Kappe* and Dietmar Pocivalnik

Institut für Organische Chemie, Karl-Franzens-Universität,

Heinrichstr. 28, A-8010 Graz, Austria

Abstract — Benzyne (1) reacts with mesoionic pyrimidines (2a-e) yielding below 40°C the primary cycloadducts 3a-e. At higher temperatures the isoquinolin-3-ones 4a-e are formed under the loss of phenyl isocyanate. Further addition of 1 to 4e yields the adduct 5, which is converted at 200°C into the anthracene derivative 6.

Mesoionic six-membered heterocycles of the pyrimidine, 1,3-oxazine and 1,3-thiazine series may be envisaged as 1,4-dipolar systems $^{2-4}$. In such a light they appear to be suitable candidates for 1,4-dipolar cycloadditions. This presumption has been verified in a number of cases: Mesoionic pyrimidines have been shown to react with dimethyl acetylenedicarboxylate to yield 2-pyridones 3,4

We now report the 1,4-dipolar cycloaddition of benzyne (1) to mesoionic pyrimidines (2a-e). When 2a-e were allowed to react with diazotized anthranilic acid 11-13 under conditions which generate benzyne 12 the adducts 3a-e were obtained in 42-62% yields. If heated to higher temperatures ($70^{\circ}-210^{\circ}$ C, depending on the nature of the substituents, Method A, see Table 1) the "diazabarrelenc-diones" 3 lose phenyl isocyanate to form isoquinolin-3(2H)-ones (4a-e). It is of interest to note that upon heating above 70° C the N-benzyl-N'-phenyl compound 3d expels preferentially phenyl isocyanate yielding the isoquinolone 4d and traces only of 4e (resulting from the loss of benzyl isocyanate).

Table 1. R-Key of 2 - 4 and Yields and M.p.'s of 3 and 4

	_	_		<u>3</u>			<u>4</u>		
<u>2-4</u>	R ¹	R ²	R ³	yield	dec.°C	(recryst.)	yield ^a	m.p.℃	(recryst.)
<u>a</u>	Ph	CH3	CH ₂ Ph	62%	210°	(xylene)	A 100%	145°	(xylene)
<u>b</u>	Ph	Ph	С ₂ Н ₅	44%	100°	(acetone)	A 100% B 57%	208°	(xylene)
<u>c</u>	Ph	Ph	n-C ₄ H ₉	46%	120°	(ether) ^b	A 100% B 59%	142°	(cyclohexane)
<u>d</u>	CH ₂ Ph	Ph	CH ₂ Ph	42%	70°	(acetone) ^C	A 95%	110°	(cyclohexane)
<u>e</u>	Ph	Ph	CH ₂ Ph	46%	82°	(ether) ^d	A 100%	185°	(cyclohexane)

^a A: by thermal decomp. of $\underline{3}$; B: by the reaction of $\underline{1}$ with $\underline{2}$ without isolation and purifification of $\underline{3}$. ^b partial decomp. if recryst. from acetone. ^c cryst. with 1/2 molecule of acetone. ^d cryst. with 1/2 molecule of ether according to elemental analysis and ¹H-NMR.

The highly substituted isoquinolones $\underline{4}$ are yellow colored and show a greenish yellow fluorescence under UV-light. They are stable compounds if compared with the unsubstituted 14 or N-methyl-isoquinolin-3-one 14,15 , which are readily oxidized by air, give photo-dimers 14 and Diels-Alder additions 14,15 . However, the latter reaction can lead to complications if the generation of benzyne from 2-diazonium anthranilate in the presence of $\underline{2}$ is conducted at temperatures above 45° C. As shown in the synthesis of $\underline{3e}$ at 48° C (see Experimental), the Diels-Alder compound $\underline{5}$, resulting from the addition of benzyne to $\underline{4e}$, is formed in 30% yield (besides 46% of $\underline{3e}$). Since the reaction takes place below the decomposition temperature of crystalline $\underline{3e}$, an equilibrium between $\underline{3e}$ on one side and $\underline{4e}$ and phenyl isocyanate on the other side can be assumed in solution.

Table 2. Spectroscopic Data of Compounds $\underline{3}$ and $\underline{4}$

	IR (KBr) cm ⁻¹	¹ H-NMR (CDC1 ₃), & in ppm	MS (70eV), m/e (%)
<u>3a</u>	1730s, 1695sh, 1690s, 1610m	1.37(s, CH ₃), 3.92(s, CH ₂), 6.5-7.65(m, 19 aromat. H)	444(M ⁺ , 4%), 325(M-PhNCO, <u>100</u>), 297 (325-CO, 36), 220(325-PhCO, 27)
<u>3b</u>	1740~1720s, 1690s 1605m	1.52(t, J=7Hz, CH ₃), 2.53(q, J=7Hz, CH ₂), 6.6-7.9(m, 19 aromat. H)	325(M ⁺ -PhNCO, 95%), 297(325-CO, 30), 283(39), 282(100), 204(17), 178(10), 119(PhNCO, 29), 91(16)
<u>3c</u>	1735s, 1695s, 1605m	1.00(t, J=7Hz, CH ₃), 1.20-2.65(m, 6 aliph. H), 6.5-7.75(m, 19 aromat. H)	353(M ⁺ -PhNCO, <u>100</u>), 311(60), 310 (61), 282(41), 119(5), 91(5)
<u>3d</u>	1725s, 1680s, 1595m	2.22(s, 3H of 1/2 acetone), 4.00(s, CH_2), 4.32(s, NCH_2), 6.4-7.7(m, 24 H)	401(M ⁺ -PhNCO, 20%), 310(40), 119 (18), 91(<u>100</u>), 77(20)
<u>3e</u>	1730s, 1690s, 1600m	1.16(t, J=7Hz, 3H of 1/2 ether), 3.45 (q, J=7Hz, 2H of ether), 3.97(s, CH ₂), 6.7-7.9(m, 24 aromat. H)	387(M ⁺ -PhNCO, 84%), 360(48), 359(96), 283(50), 282(<u>100</u>), 119(11), 70(40)
<u>4a</u>	1650s, 1630sh, 1615m	2.37(s, CH ₃), 4.25(s, CH ₂), 6.6-7.7 (m, 14 aromat. H)	325(M ⁺ , 76%), 297(61), 220(<u>100</u>), 204 (15), 162(14), 123(15), 119(5), 115 (13), 91(25), 77(46)
<u>4b</u>	1640sh, 1625s, 1610sh, 1600sh	1.27(t, $J=7Hz$, CH_3), 3.04(q, $J=7Hz$, CH_2), 6.5-7.45(m, 13 aromat. H), 7.62 (dd, $J=9+1Hz$, H-8)	
<u>4c</u>	1650sh, 1630s 1610sh	0.8-1.9(m, 7 aliph. H), 2.7-3.2(m, CH2), 6.5-7.5 (m, 13 arom. H), 7.62 (dd, J=9+1Hz, H-8)	353(M ⁺ , 100%),324(16), 311(71), 310 (70), 203(14), 119(14), 105(10), 91 (10), 77(30)
<u>4d</u>	1650sh, 1630s,	4.20(s, CH ₂), 4.30(s, CH ₂), 6.5-7.7 (m, 19 aromat. H)	
<u>4e</u>	1650sh, 1640sh 1630s, 1600sh	4.32(s, CH ₂), 6.5-7.7(m, 19 aromat. H)	

EXPERIMENTAL

General procedure for the preparation of 3a-e: Solid benzenediazonium-2-carboxylate¹³ (prepared from 2.74 g anthranilic acid, 0.04 ml CF_3CO_2H and 5 ml isoamyl nitrite in 50 ml tetrahydrofuran according to the literature¹¹) was added to a solution of $\underline{2}$ (10 mmole) in 50-60 ml chlorobenzene. The stirred reaction mixture was kept 12 hours at 40°C, filtered, the filtrate taken to dryness in vacuo and the residue crystallized from the appropriate solvent, see Table 1.

<u>4a-e</u>; <u>Method A</u>: Compounds <u>3</u> were heated without solvent <u>in vacuo</u> to their decomposition temperature (see table 1), yields are 100%.

4b,c; Method B: The crude products 3b,c (obtained by the general procedure and already contaminated with 4b,c) are heated in xylene for 4 hours.

<u>Isolation of 5 and 3e</u>: The general procedure for the preparation of $\underline{3}$ was followed with the exception that the temperature was 48° C and the reaction time 6 hours. Recrystallization from acetone gave a 30% yield of $\underline{5}$. The mother liquor was evaporated and digested with petroleum ether. Crystallization with ether afforded a 46% yield of 3e.

5: Decomposition at about 180° C. - IR (KBr): 1705s, 1600m, 1495m, 1450m cm⁻¹. - 1 H-NMR (CDC1₃): 5 = 4.27 (s, CH₂), 6.9 - 7.5 (m, 23 aromat. H). - MS: m/e = 344 (M⁺-PhNCO, 100%), 268 (25), 267 (48), 266 (28), 265 (53), 252 (43), 199 (22), 178 (25), 177 (35), 149 (32), 119 (49), 115 (25), 91 (43).

6: Compound $\underline{5}$ is heated 5-6 min. at 180-200°C; yield 100%, prisms from acetic acid, m.p. 156°C, (lit. m.p. 151° C¹⁶, 155° C¹⁷). - IR (KBr): 1600m, 1490m, 1440m, 1380m cm⁻¹. - 1 H-NMR (CDCl₃): $\S = 5.02$ (s, CH₂), 7.0-7.8 (m. 18 H), 8.05-8.35 (m. 2 H).

Satisfactory analytical results have been obtained for all new compounds 18.

REFERENCES

- XVI: W. Stadlbauer, Y. Ravai, H. Sterk and Th. Kappe, Monatsh. Chem. 114 (1983), in the press.
 XV: Th. Kappe, Y. Ravai and W. Stadlbauer, Monatsh. Chem. 114, 227 (1983).
- 2. Review: W. Friedrichsen, A. Böttcher and Th. Kappe, Heterocycles 16, 1083 (1982).
- 3. Th. Kappe and W. Lube, Angew. Chem. 83, 967 (1971); Angew. Chem., Int. Ed. Engl. 10, 925 (1971).
- 4. K.T. Potts and M. Sorm, J. Org. Chem. 36, 8 (1971); 37, 1422 (1972).
- 5. W. Lube, Dissertation Universität Graz, 1972.
- 6. K. Thonhofer, Dissertation Universität Graz, 1977.

- 7. M. Bauer, D. Martin and R. Szargan, Z. Chem. 22, 377 (1982).
- 8. Th. Kappe, W. Golser, M. Hariri and W. Stadlbauer, Chem. Ber. 112, 1585 (1979).
- 9. Th. Kappe and W. Golser, Chem. Ber. 109, 3668 (1976).
- W. Friedrichsen, C. Krüger, E. Kujath, G. Liebezeit and S. Mohr, <u>Tetrahedron Lett.</u> 1979, 237;
 W. Friedrichsen, E. Kujath and G. Liebezeit, <u>Z. Naturforsch.</u> 37b, 222 (1981); W. Friedrichsen,
 R. Schmidt, G.J. van Hummel and D.M.W. van den Ham, <u>Liebigs Ann. Chem.</u> 1981, 521.
- 11. F.M. Logullo, A.H. Seitz and L. Friedman, Org. Synth., Coll. Vol. V, 54 (1973).
- 12. L. Friedman and F.M. Logullo, J. Amer. Chem. Soc. 85, 1549 (1963).
- 13. Solid diazotized anthranilic acid¹¹ was used to prevent the formation of acridone and N-phe-nylanthranilic acid; c.f. L. Bauer, C.L. Bell and G.E. Wright, <u>J. Heterocycl. Chem. 3</u>, 393 (1966); 6, 869 (1968).
- 14. D.W. Jones, J. Chem. Soc. (C), 1969, 1729.
- 15. N.J. Mruck and H. Tueckelmann, Tetrahedron Lett. 1970, 1209.
- 16. W. Schlenk, E. Bergmann, Liebigs Ann. Chem. 463, 279 (1928).
- 17. E. De Barry Barnett, J.W. Cook and J.L. Wiltshire, J. Chem. Soc. 1927, 1730.
- 18. D. Pocivalnik, Dissertation Universität Graz, 1983.

Received, 23rd March, 1983