SURPRISING ABSENCE OF REACTIVITY TOWARDS BORANE OF A CYCLIC PHENYLAMINE IN TWO HETEROCYCLES 1,3-DIOXA-2-PHOSPHA^{III}-6-AZA-2-R-6-PHENYLOCTANE

Apolonia Murillo[†], Rosalinda Contreras^{†*}, Alain Klaébé^{#*} and Robert Wolf[#]

†Centro de Investigación y de Estudios Avanzados del I.P.N. Departamento de Química. Apartado Postal 14-740. 07000-México, D.F.

#E.R.A. au CNRS No. 926, Université Paul Sabatier, 31062 Toulouse Cedex, France

<u>Abstract.</u>- The title compound was reacted with an excess of $BH_3.SMe_2$ and only one BH_3 molecule was added. This phenomenon is discussed.

In a recent article¹, we have reported the reaction of BH_3 .DMS with a bicyclic phosphorane $\underline{1}$ by the reaction A. A compound of structure $\underline{2}$ was isolated from the reaction. Addition of only one equivalent of BH_4 .DMS to $\underline{1}$ gave a mixture of $\underline{1}$ and $\underline{2}$.

$$\begin{array}{c|c} C_{e}H_{5} & O \\ \hline & P-N \\ \hline & & \\ & &$$

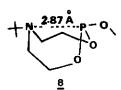
Trying to synthesize some diadducts of similar structure we have prepared compounds $\underline{3}$ and $\underline{4}$. The synthesis of the new compounds $\underline{3}$ and $\underline{4}$ was done according to reaction B and a crystalline compound was obtained in each case.

$$R'P[N(CH_3)_2]_2 + N-C_6H_5 - \frac{C_6H_6}{reflux} - R \\ N-C_6H_5 - \frac{C_6H_6}{reflux} - R \\ N-C_6H_5 - \frac{R}{R} \\ N-$$

- 3: ${}^{1}\text{H NMR} \ (C_{6}D_{6}) \ \delta \ 2.60 \ (d, 6H, {}^{3}\text{J}_{\text{H-P}} = 10.5 \ \text{Hz}); \ \delta \ 2.36-4.36 \ (m, 8H); \ \delta \ 6.36-7.4 \ \text{ppm} \ (m, 5H).$ ${}^{31}\text{P NMR} \ (C_{6}D_{6}) \ (\text{H decoupled}) \ \delta \ +153 \ \text{ppm}. \ \text{Mass spectrum:} \ \text{M}^{+} = 254 \ (12.9); \ 211 \ (10.6); \ 210 \ (100); \ 145 \ (5.9). \ \text{IR} \ (\text{CHCl}_{3}) \ \nu_{\text{PMC}} \ 1054; \ \nu_{\text{PM}} \ 972 \ \text{cm}^{-1}. \ \text{Mp} \ 94^{\circ}\text{C}.$
- 4: 1 H NMR (DMSO) & 3.2-3.7 (m, 4H); 3.8-4.4 (m, 4H) 6.6-6.8 (m, 3H); 7.0-7.35 (m, 2H) 7.36-7.7 (m, 5H). 31 P NMR (2 H₆SO) & +171.9 ppm. Mass spectrum: 4 = 287 (35); 146.2 (62.4); 145.2 (100); 105.1 (52.6); 104.1 (55.6). IR (KBr) 4 V_{POC}1050 cm⁻¹. Mp 105-107°C.

Compounds $\underline{3}$ and $\underline{4}$ react with one mole of BH $_3$.DMS according to the reaction C. Each reaction gave one microcrystalline stable compound. ^{11}B NMR shows that the structures correspond to the monoadducts $\underline{5}$ and $\underline{6}$, respectively. The addition of a second molecule of BH $_3$.DMS did not give the diadducts even in a strong excess of BH $_3$.DMS.

- $\frac{6}{5} \cdot {}^{1}\text{H NMR (C}_{2}\text{D}_{6}\text{SO}) \ \delta \ 3.4-4.6 \ (\text{m}, 8\text{H}); \ \delta \ 6.6-6.85 \ (\text{m}, 3\text{H}); \ \delta \ 7.1-7.35 \ (\text{m}, 2\text{H}); \ \delta \ 7.35-7.9 \ (\text{m}, 5\text{H}) } \\ {}^{31}\text{P NMR (C}_{2}\text{H}_{6}\text{SO}) \ \delta \ +133 \ \text{ppm}. } \quad {}^{11}\text{B NMR (C}_{2}\text{H}_{6}\text{SO}) \ \delta \ -42 \ \text{quintet}. \ \text{Mass spectrum:} \ \text{M}^{+} = 301 \ (45); \\ {}^{300.1} \ (64.1); \ 146.1 \ (89.7); \ 145.2 \ (100); \ 144.1 \ (53.4). \ \text{IR (KBr)} \ \nu_{\text{BH}} 2340, \ 2400, \ 2420, \\ {}^{\nu_{\text{POC}}1050} \ \nu_{\text{PoN}} 780 \ \text{cm}^{-1}. \ \text{Mp } 142^{\circ}\text{C}.$


DISCUSSION

Two points merit comment.

- 1. In compounds $\underline{3}$ and $\underline{5}$ the dimethylamino group directly bonded to phosphorus does not present any basic properties towards BH $_3$. This is easily explained as the effect of a back coordination $\pi(p\!\!\rightarrow\!\!d)$ N-P. 2
- 2. The anilinic cyclic nitrogen does not react with the BH_3 contrary to what happens in compound $\underline{2}$. This absence of reactivity is also anomalous compared to a model compound: diethylaniline reacts quantitatively in similar conditions.

The adduct $\underline{7}$ presents the following spectral characteristics 11 B NMR (THF) δ -11.8 (q, 2 J $_{B-H}$ = 98 Hz) 1 H NMR (CDCl $_3$) δ -1.1 (t, J $_{H-H}$ 9 Hz, 6H); 3.3 (q, J $_{H-H}$ 9 Hz, 4H); 7.2-7.8 (m, SH). IR(KBr) v_{B-H} ²²⁹⁶, 2359, 2411, v_{B-N} ¹¹⁷⁵, 1038 cm $^{-1}$.

It has been shown by X-ray diffraction analysis that the stable conformation of a cyclic phosphite $\underline{8}$ analogous to $\underline{3}$ and $\underline{4}$ is a boat/boat and that the P-N transannular distance is 2.87 Å in spite of the electrostatic repulsion between electronic pairs. ^{4,5} This important phenomenon (the interaction N-P) was cited in the literature in the study of hydrolysis of 2-oxo-2-(p-nitrophenoxy)-1,3-dioxa-2-phospha-6-methyl-6-azacyclooctane ⁶.

It is possible to assume that the $\underline{5}$ and $\underline{6}$ have the same conformation as $\underline{8}$. This was confirmed by observation of Dreiding models which show that the least hindered conformation brings together the nitrogen and the phosphorus.

The above results indicate that the absence of reactivity of the cyclic anilinic nitrogen atom can be attributed to:

- a) Steric hindrance of the nitrogen by the P-BH, group.
- b) A bonding transammular interaction between nitrogen and phosphorus, facilitated by BH_3 coordination, that decreases the electronic density at phosphorus. Transammular interaction could not be detected by ^{31}P NMR, since compound $\underline{6}$ has the same δ as $\underline{2}$ (+133 and +132 ppm, respectively). In order to clarify this point an X-Ray study will be undertaken.

ACKNOWLEDGMENT

One of us (A.M.) thanks Avon Co. for a scholarship. A.K. is grateful to Conacyt Mexico for financial support. The authors thank L. Velasco and H. Bojórquez from the Instituto de Química de la Universidad Autónoma de México for Mass Spectra.

REFERENCES

- 1. R. Contreras, D. Houalla, A. Klaébé et R. Wolf, Tetrahedron Lett., 22 (40) 3953 (1981).
- 2. D. Grec, L.G. Hubert-Pfalzgraf, J.G. Riess et A. Grand, J. Amer. Chem. Soc., 102, 7143 (1980).
- 3. Our results.
- 4. J. Devillers, D. Houalla, J.J. Bonnet et R. Wolf, Nouveau J. Chim., 4, 179 (1980).
- 5. R. Wolf, Pure & Appl. Chem., 52, 1141 (1980).
- 6. R.K. Sharma and R. Vaidyanathaswamy, J. Org. Chem., 47, 1741 (1982).

Received, 18th March, 1983