CONCURRENT FORMATION OF TWO ISOMERIC DIPYRIDAZINO[4,5-<u>b</u>:4',5'-<u>e</u>][1,4]THIAZINES ATTENDED WITH OCCURRENCE OF A UNIQUE DIPYRIDAZINO[4,5-b:4',5'-<u>d</u>]PYRROLE

Kenji Kaji, Hiromu Nagashima, Katsushi Yamaguchi
and Hirohisa Oda *
Gifu College of Pharmacy, 5-6-1 Mitahora-higashi, Gifu 502, Japan

Abstract — Interaction of 4-amino-5-mercapto-2-methyl-3(2H)-pyridazinone (1) and 4,5-dichloro-2-methyl-3(2H)-pyridazinone (2) in a basic medium, followed by benzylation, yielded concurrently 10-benzyl-2,7-dimethyl-dipyridazino[4,5-b:4',5'-e][1,4]thiazine-1,6(2H,7H)-dione (1) and the 2,8-dimethyl-1,9-dione isomer (11). An analogous result leading to a mixture of products, (1) and the alternative 3,7-dimethyl-4,6-dione isomer (11), was also observed in the case of reaction between the 4,5-substituents of counterpart of 1, (2) and (3). Under somewhat more vigorous condition, the condensation reaction of either combination of the reactants added a consecutive formation of a unique 9-benzyl-2,6-dimethyl-dipyridazino[4,5-b:4',5'-d]pyrrole-1,5(2H,6H)-dione (11) to that of the mixtures of the respective dipyridazino[1,4]thiazine products (1+11 or 1+11).

Two modes of ring closure to the polyazaphenothiazines, including Ullmann type of direct cyclisation and indirect one through Smiles rearrangement, have been increasingly developed by several groups of investigators. $^{1-5}$ We would now like to report the concurrent formation of the two isomeric dipyridazino $[4,5-\underline{b}:4',5'-\underline{e}][1,4]$ -thiazine derivatives ([4,5]) or [4,4]) with subsequent occurrence of the unique dipyridazino $[4,5-\underline{b}:4',5'-\underline{d}]$ pyrrole derivative ([4,5]), observed during the course of our study on the synthesis of pyridazine derivatives. [4,5]0 Condensation of 4-amino-5-mercapto-2-methyl-3([4,5]1 -pyridazinone ([4,5]2 and 4,5-dichloro-2-methyl-3([4,5]2 -pyridazinone ([4,5]3 by refluxing in dilute sodium hydroxide solution for

30 min with subsequent benzylation by heating at 80°C for 3 h with benzyl chloride and K_2CO_3 in DMF and chromatographic separation, afforded concurrently 10-benzyl-2,7-dimethyl-dipyridazino[4,5- \underline{b} :4',5'- \underline{e}][1,4]thiazine-1,6(2 \underline{H} ,7 \underline{H})-dione (\underline{I}) (41% yield) and the 2,8-dimethyl-1,9-dione isomer (\underline{I} \underline{I}) (22% yield). An analogous result to yield simultaneously (\underline{I}) (11% yield) and the alternative isomer, 3,7-dimethyl-4,6-dione derivatives (\underline{I} \underline{I}) (42% yield) was found in the similar reaction between 5-amino-4-mercapto-2-methyl-3(2 \underline{H})-pyridazinone (\underline{I}) and (\underline{I}) (Chart 1). The subsequent benzylation in these reaction was performed for the separation of the condensation products; 2,7-dimethyl-10 \underline{H} -dipyridazino[4,5- \underline{b} :4',5'- \underline{e}][1,4]thiazine-1,6(2 \underline{H} ,7 \underline{H})-dione (\underline{I} 0), the 2,8-dimethyl-1,9-dione isomer (\underline{I} 0) and 3,7-dimethyl-4,6-dione isomer (\underline{I} 0). Any of these products was feasibly derived from (\underline{I} 1), (\underline{I} 1) and (\underline{I} 2) respectively, by debenzylation with AlCl3 in toluene at 60°C for 5 h, in good yield (Chart 2).

Under somewhat more vigorous conditions, <u>e.g.</u> prolonged reaction time (over 3 h) at elevated temperature (exceeded <u>ca.</u> 110°C), the condensation reaction of either combination of the reactants ($\frac{1}{2}+\frac{3}{2}$ or $\frac{2}{2}+\frac{3}{2}$) added a consecutive formation of a unique 9-benzyl-2,6-dimethyl-dipyridazino[4,5- $\frac{1}{2}$:4',5'- $\frac{1}{2}$]pyrrole-1,5(2 $\frac{1}{2}$,6 $\frac{1}{2}$)-dione ($\frac{1}{2}$) (5-7% yield) without contamination of any other isomer, to the production of mixtures of the respective dipyridazino[4,5- $\frac{1}{2}$:4',5'- $\frac{1}{2}$][1,4]thiazine derivatives ($\frac{1}{2}$ + $\frac{1}{2}$] or $\frac{1}{2}$ + $\frac{1}{2}$]. The formation of the compound ($\frac{1}{2}$) might be reasonably ascribed to the sulphur

extrusion from 2,7-dimethyl-10 \underline{H} -dipyridazino[4,5- \underline{b} :4',5'- \underline{e}][1,4]thiazine-1,6(2 \underline{H} , 7 \underline{H})-dione (\underline{I}_0), but not from the isomer (\underline{I}_0) or (\underline{H}_0), and was indeed ascertained by desulphurisation of (\underline{I}_0) in a basic condition, followed by benzylation. The desulphurisation proceeded by heating at 140°C in DMF for 3 h in the presence of potassium carbonate to give the ring contraction product (\underline{I}_0) in 71% yield, although it scarcely went forward in the absence of the base. The structure of (\underline{I}_0) was further established by an unambiguous synthesis by photo-cyclisation of the dipyridazinyl-benzylamine (\underline{V}), derived from (\underline{I}_0) by desulphurisation with Raney nickel in 74% yield. Irradiation was carried out in acetone with a 100 W high-pressure mercury lamp at room temperature for 1 h to afford (\underline{I}_0) in 86% yield (Chart 3).

Me-N-N-Me
$$K_2CO_3$$
 in DMF K_2CO_3 in DMF K_2CO_3 K_2CO_3

Table Melting Points and $^1\text{H-NMR}$ Data for Compounds ($\text{$\xi$-$\chi$V}$ and $\text{$\xi$}_{\circ}-\text{$\xi$V}_{\circ}$)

Compd ^a)	mp(°C)	¹ H-NMR ^{b)} (δ in ppm)			
		N-CH ₃	N-CH ₂ Ph	ring proton C ₆ H ₅	
¥	172-173	3.76(3H, s) 3.70(3H, s)	5.27(2H, s)	7.30(1H, s) 7.30-7.60(5H, 7.41(1H, s)	, m)
ŦŦ	202-203	3.27(3H×2, s)	5.63(2H, s)	7.30(1H×2, s) 7.20-7.62(5H	, m)
無	274-276	3.62(3H×2, s)	4.68(2H, s)	6.96(1H×2, s) 7.30-7.50(5H)	, m)
X	215-216	3.89(3H, s) 3.94(3H, s)	6.09(2H, s)	8.15(1H, s) 7.31(5H, s) 8.79(1H, s)	
Į.	>300	3.78(3H×2, s)		7.35(1H, s) 7.55(1H, s)	
ff.	>300	3.35(3H×2, s)		7.00(1H×2, s)	
Щ.	>300	3.79(3H×2, s)		7.58(1H×2, s)	
fχ°	>300	3.70(3H×2, s)		8.43(1H, s) 8.75(1H, s)	

a) All compounds gave satisfactory microanalytical data (C. H and N).

b) Solvent: χ - $\chi\chi$ (in CDCl₃), χ _o- $\chi\chi$ _o (in CF₃CO₂H)

To our knowledge, there has not yet been found such a desulphurisation reaction of the 1,4-thiazines to the pyrrole derivatives in a basic condition, but one report concerned with the thermal sulphur extrusion from the pyrimido[4,5- \underline{b}][1,4]thiazines to the corresponding pyrrolo[3,2- \underline{d}]pyrimidines. Examination of the crucial reaction conditions for the sulphur extrusion ([a,b]) and the exclusive synthesis of the individual dipyridazino[4,5- \underline{b} :4',5'- \underline{e}][1,4]thiazine derivatives ([a,b]) are now in progress and will be reported at a later date.

REFERENCES AND NOTES

- 1. J. Druey, Angew. Chem., 1958, 70, 5.
- 2. a) F. Yoneda, T. Ohtaka and Y. Nitta, Chem. Pharm. Bull., 1963, 11, 954;
 - b) <u>Idem</u>, <u>ibid</u>., 1965, 13, 580; c) <u>Idem</u>, <u>ibid</u>., 1966, 14, 698; d) F. Yoneda and T. Ohtaka, Yakugaku Zasshi, 1968, 88, 1638.
- 3. a) Y. Maki, M. Suzuki, O. Toyota and M. Takaya, <u>Chem. Pharm. Bull</u>., 1973, 21, 241; b) Y. Maki and M. Suzuki, <u>Yakugaku Zasshi</u>, 1973, 93, 171.
- 4. D. S. Wise, Jr., and R. N. Castle, J. Heterocyclic Chem., 1974, 11, 1001.
- F. Duro, F. Vittorio, F. Pappalardo and G. Ronsisvalle, <u>Farm. Ed. Sci.</u>, 1977,
 32, 106.
- 6. a) K. Kaji, M. Kuzuya and R. N. Castle, <u>Chem. Pharm. Bull</u>., 1970, 18, 174; b) K. Kaji and M. Kuzuya, <u>ibid</u>., 1970, 18, 970; c) M. Kuzuya and K. Kaji, <u>ibid</u>., 1970, 18, 2420.
- 7. χ : colourless needles; mp 204-206°C; ¹H-NMR (CDC1₃) δ : 3.37, 3.87 (each 3H, s) 5.00 (2H, s), 6.19, 7.43 (each 1H, d, J=4Hz), 7.08, 7.78(each 1H, d, J=6Hz), 7.34 (5H, s); MS m/e 323 (M⁺).
- 8. a) H. Fenner and H. Motschall, <u>Tetrahedron Lett.</u>, 1971, 4185; b) H. Fenner and A. Motschall, <u>Arch. Pharm.</u>, 1978, 311, 153.

Received, 5th April, 1983