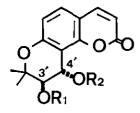
JUNOSMARIN, A NEW KHELLACTONE ESTER FROM CITRUS JUNOS TANAKA

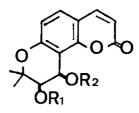
Motoharu Ju-ichi, Mami Inoue, Rika Tsuda, and Naomi Shibukawa Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo 663, Japan

Hiroshi Furukawa

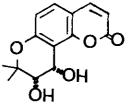
Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468, Japan


Abstract — A new (-)-trans-khellactone ester, junosmarin, was isolated from the root bark of <u>Citrus junos</u> (Rutaceae) and the structure was assigned as <u>1</u> on the basis of spectral data and synthesis of its acetate 5.

Many angular type dihydropyranocoumarins having two chiral centers at C-3' and C-4' are known and the great majority of these compounds are derivatives of (+)-cis-khellactone (2) or (-)-cis-khellactone (3). Though epimeric (-)-trans-khellactone (4) was isolated from a few plants, 3,4 natural esters of this diol were unknown. In continuing our studies on the constituents of <u>Citrus</u> plants, we isolated a new (-)-trans-khellactone ester, junosmarin (1), from the root bark of <u>Citrus</u> junos Tanaka (Rutaceae). In this paper we wish to report the isolation and structure elucidation of this new compound.


Junosmarin (1) was obtained as an oily compound, $[\alpha]_D$ -16.4° (CHCl₃), from the acetone extract of the plant by repeated column, centrifugal chromatography and PTLC on silica gel. The mass spectrum of $\underline{1}$ showed the molecular ion peak at m/z 346, and the $^{13}\text{C-NMR}$ spectrum⁵ indicated the presence of nineteen carbons. From these results the molecular formula of $\underline{1}$ was established to $C_{19}\text{H}_{22}\text{O}_6$. The IR spectrum (CHCl₃) showed absorption at 3400, 1720, 1610 cm⁻¹ and the UV spectrum $[\lambda_{\text{max}}^{\text{EtOH}} \text{ nm} (\log \varepsilon): 221(\text{sh}, 3.73), 260(3.66), 278(3.71), 328(3.61)]$ indicated typical absorption of 7-oxyganated coumarin moiety. The $^{1}\text{H-NMR}$ spectrum (CDCl₃) revealed the signals at δ 7.66, 6.26 (each 1H, d, J=9.53), 7.35, 6.82 (each 1H, d, J=8.55), 5.21, 5.02 (each 1H, d, J=3.66), 1.48, 1.38 (each 3H, s), 3.50 (1H, br s), 2.22 (2H, d, J=6.34), 2.1 (1H, m) and 0.94 (6H, d, J=6.59) suggesting that 1 was a

isovalerylkhellactone. The isovaleryloxy group was assumed to locate at C-3' on the basis of the chemical shifts of C_3 :-H (δ 5.21) and C_4 :-H (δ 5.02). Acetylation of $\underline{1}$ afforded monoacetate (5), $C_{21}H_{24}O_7$, m/z 388(M⁺). The 1H -NMR spectrum (CDCl₃) of $\underline{5}$ showed signals at δ 7.61, 6.25 (each 1H, d, J=9.52), 7.36, 6.81 (each 1H, d, J=8.54), 6.23, 5.31 (each 1H, d, J=4.39), 2.24 (2H, d, J=6.10), 2.13 (3H, s), 2.1 (1H, m), 1.44, 1.36 (each 3H, s) and 0.96 (6H, d, J=6.59). These data were not in accord with those of dihydrosamidin (6) which has ciskhellactone skeleton. It is well established that the relative configuration of C-3' and C-4' of khellactone derivatives could be assigned by $^{1}\mathrm{H-NMR}$ spectrum. 8 The coupling constant of $J_{3^{1},4^{1}}$ appears in the range of 3.0-6.9 Hz for the trans compounds and about 5.0 Hz for the cis compounds. The methyl signals of 1,1dimethylchromane ring generally resonate as discrete singlets by a difference 0.08-0.20 ppm in trans, and as a broad singlet or two singlets with little difference in cis compounds. On the basis of these spectral data, the structure of junosmarin was proposed as trans-3'-isovalerylkhellactone. Hydrolysis of 1 with 1N KOH was undertaken for obtaining information on the stereochemistry. Two isomeric diols (2) and (4) were formed in the ratio 2:7. The minor diol (2), $C_{14}H_{14}O_{5}$, $[\alpha]_{D}$ +53.1° (CHCl₃), ^{1}H -NMR (CDCl₃, δ): 5.22, 3.85 (each 1H, d, J=4.88, C_4 :-H and C_3 :-H), 1.47, 1.40 (each 3H, s) and the major diol (4), $C_{14}H_{14}O_5$, mp 191-193°C, $[\alpha]_D$ -23.26° (CHCl₃), ¹H-NMR (CDCl₃, δ): 5.00, 3.85 (each 1H, d, J=6.84, C_4 '-H and C_3 '-H), 1.53, 1.31 (each 3H, s) corresponded to (+)-cis-khellactone and (-)-trans-khellactone, respectively. 9 Formation of mixture of diols was considered as a result of epimerization at the benzylic C-4' position during the alkaline hydrolysis and this epimerization is usually observed on khellactone esters. 10 From these results, the structure of junosmarin was established as (1). Assignment of the trans configuration was further confirmed by the synthesis of junosmarin acetate (5). Reaction of trans-4'-acetylkhellactone (7) 11 with isovaleryl chloride in benzene afforded trans-3'-isovalery1-4'-acetylkhellactone which was found to be identical with (5) by comparisons of ¹H-NMR, IR and mass spectra and TLC behaviors. Thus the structure of new coumarin was concluded as (-)-trans-3'-isovalerylkhellactone. To the authors' knowledge, junosmarin is the first example of transkhellactone ester from natural sources. Isolation of trans-khellactone is usually considered to the result of epimerization at C-4' during the isolation process or the basic treatment because cis-khellactone ester have been isolated together. In our experiments, however, we could not detect any cis-khellactone derivatives,


so we consider that junosmarin exists as a natural product.

- (1) $R_1 = COCH_2CH(CH_3)_2$, $R_2 = H$
- (4) $R_1 = R_2 = H$
- (5) $R_1 = COCH_2CH(CH_3)_2$, $R_2 = COCH_3$
- (7) $R_1 = H$, $R_2 = COCH_3$

- (2) $R_1 = R_2 = H$
- (6) $R_1 = COCH_2CH(CH_3)_2$ $R_2 = COCH_3$

- (3)

REFERENCES AND NOTES

- 1. Part IV on "Constituents of Domestic Citrus Plant". Part III: M. Ju-ichi, M. Inoue, K. Aoki, and H. Furukawa, Heterocycles, 1986, 24, 1595.
- 2. R. D. Murray, J. Mendez, and S. A. Brown, "The Natural Coumarins", John-Wiley and Sons Ltd., 1982.
- 3. H.-J. Chi, Yakhak Hoeji, 1967, 11, 36 [Chem. Abstr., 1969, 71, 36408].
- 4. A. G. Gonzalez, J. T. Barroso, H. L. Lopez-Dorta, J. R. Luis, and F. Rodriguez-Luis, Phytochemistry, 1979, 18, 1021.
- 5. ¹³C-NMR spectrum of junosmarin (1): δ 22.34 (q), 22.40 (q), 23.56 (q), 24.00 (g), 25.67 (d), 43.30 (t), 63.25 (d), 73.90 (d), 77.29 (s), 110.58 (s), 112.45 (s), 112.59 (d), 114.75 (d), 128.53 (d), 143.92 (d), 154.52 (s), 155.95 (s), 160.60 (s), 171.98 (s).
- 6. R. H. Goodwin and B. M. Polleck, Arch. Biochem. Biophys., 1954, 49, 1.
- 7. E. Smith, N. Hosansky, W. G. Bywater, and E. E. van Tamelen, J. Am. Chem. Soc., 1957, 79, 3534; J. Lemmich, P. A. Pedersen, and B. E. Nielsen, Tetrahedron Lett., 1969, 3365; S. N. Shanbhag, C. K. Mesta, M. L. Maheshwari, and S. C. Bhattacharyya, Tetrahedron, 1965, 21, 3591.
- 8. J. Lemmich, E. Lemmich, and B. E. Nielsen, Acta Chem. Scand., 1966, 20, 2497; F. Bohlmann, V. S. Bhaskar Rao, and M. Grenz, Tetrahedron Lett., 1968, 3947.
- 9. Y. Yamada, C.-S. Hsu, K. Iguchi, M. Suzuki, H.-Y. Hsu, and Y.-P. Chen, Tetrahedron Lett., 1974, 2513.
- 10. R. E. Willette and T. O. Soine, <u>J. Pharm. Sci.</u>, 1962, <u>51</u>, 149.
- 11. H. D. Schroeder, W. Bencze, O. Halpern, and H. Schmid, Chem. Ber., 1959, 92, 2338.

Received, 13th June, 1986