THE FORMATION AND FACILE CONVERSION OF TRITYL PHENYLCYANOMETHANE NITRONATE

Joseph H. Boyer* and Thanikavelu Manimaran

Chemistry Department, University of New Orleans, New Orleans, La. 70148, U.S.A.

<u>Abstract</u> - Trityl chloride and silver phenylcyanomethane nitronate in toluene at -20°C gave trityl phenylcyanomethane nitronate $\underline{1}$, an unstable ester that rearranged and fragmented at 5-10°C to 1-triphenylmethoxy-4,5-diphenyl-1,2,3-triazole $\underline{6}$ with coproducts carbon dioxide, α,α' -bis(triphenylmethaneazo)stilbene $\underline{3}$, benzonitrile-N-oxide $\underline{4}$, and trityl isocyanate 5.

A product $C_{33}H_{25}N_{30}$ obtained from an unexplained reaction between silver phenylcyanomethane nitronate and trityl chloride in toluene at 0°C has been identified by X-ray crystallographic analysis as 1-triphenylmethoxy-4,5-diphenyl-1,2,3-triazole $\underline{6^2}$. Coproducts included carbon dioxide $\underline{2}$, α,α' -bis(triphenylmethaneazo)stilbene $\underline{3}$, benzonitrile-N-oxide $\underline{4}$, and trityl isocyanate $\underline{5}$, eq(1) 1 . Trityl phenylcyanomethane nitronate $\underline{1}$ has now been identified as the initial product of the reaction at -20°C by comparative infra-red spectroscopic analysis (-20°C) of the ester $\underline{1}$ and the related benzyl 3 and benzhydryl 4 phenylcyanomethane nitronates (decomposition at 25°C) 5 . The conversion, eq(1), is important as a rare example of a transfer at low temperature of the oxygen atoms in a nitronate group to a carbon atom and is pertinent to explosive reactions of nitro compounds in which carbon dioxide may be similarly produced.

Product analysis revealed two fragmentation modes for the ester 1: one afforded benzonitrile-N-oxide $\underline{4}$ and trityl isocyanate $\underline{5}$, while the other differed by an interchange of oxo and tritylimino substituents (X, Y) to afford carbon dioxide $\underline{2}$ and benzonitrile-N-tritylimine $\underline{7}$, eq(2)^{6,7}. The

intermediacy of the nitrilimine $\underline{7}$ accounted for the formation of the bisazostilbene $\underline{3}$ (18%) by dimerization 1,6,7 and the triazole $\underline{6}$ (24%) by a dipolar addition with benzonitrile oxide $\underline{4}$ to give 2-trity1-4,5-dipheny1-1,2,3-triazole-1-oxide $\underline{8}$ (unisolated) followed by migration of a trityl group from a nitrogen to an oxygen atom, eq(3)8,9.

In a rationale for the dual fragmentation an initial isomerization of the ester $\underline{1}$ to the N-tritylimine $\underline{9}$ of phenylnitroketene, 10,11 ring-closure to the N-tritylimine $\underline{10}$ of $\underline{4H}$ -3-phenyl-1,2-oxazet-4-one-2-oxide, 12,13 and ring opening by cleavage of a weak NO bond provided a model $\underline{11}$ as a precursor to compounds $\underline{4}$ and $\underline{5}$ by one fragmentation and to compounds $\underline{2}$ and $\underline{7}$ by another, eq(4). Further treatment of this complicated reaction will be dealt with in a longer report.

$$\begin{array}{c} \underline{1} \longrightarrow c_6 H_5 C = C = NC(C_6 H_5)_3 \longrightarrow c_6 H_5 C \longrightarrow C = N(C_6 H_5)_3 \longrightarrow \\ NO_2 \qquad \qquad 0 \longrightarrow N \longrightarrow 0 \\ \underline{9} \qquad \qquad \underline{10} \end{array}$$

$$c_{6}H_{5}C \xrightarrow{0} c_{6}E_{5}C \xrightarrow{0} c_{6}H_{5}C \xrightarrow{0} c_{6}H_{5}C \xrightarrow{0} c_{6}E_{5}C \xrightarrow{0} c_{6$$

eq(4)

ACKNOWLEDGMENT

Financial support was received from ONR.

REFERENCES

- 1. D. Y. Curtin, R. J. Crawford, and D. K. Wedegaertner, J. Org. Chem., 1962, 27, 4300.
- 2. We are indebted to Dr. E. D. Stevens and Dr. C. L. Stevens for the X-ray analysis. The data will be published elsewhere.

- 3. J. T. Thurston and R. L. Shriner, J. Org. Chem., 1937, 2, 183.
- 4. R. L. Shriner and G. B. Brown, J. Org. Chem., 1938, 2, 561.
- 5. Since dual absorption bands near 1550 and 1350 ${\rm cm}^{-1}(-{\rm NO}_2)$ were absent at -20°C the formation of the nitronate esters predominated over the formation of the isomeric nitro compounds to be derived from C- and N-alkylation.
- 6. The nitrilimine $\underline{7}$ was previously abandoned as a precursor to the bisazostilbene $\underline{3}$ when benzon-itrile-N-oxide $\underline{4}$ and trityl isocyanate $\underline{5}$ failed to give an adduct that might have fragmented to the nitrilimine $\underline{7}$ and carbon dioxide⁷.
- 7. N. E. Alexandrou, J. Org. Chem., 1965, 30, 1335.
- 8. Attempts to realize independently a dipolar addition between benzonitrile-N-tritylimine $\underline{7}$ and benzonitrile-N-oxide $\underline{4}$ were abandoned when (a) tritylhydrazine and benzaldehyde failed to convert to the expected hydrazone (to be oxidized to the imine $\underline{7}$) and (b) N-tritylbenzohydrazidoyl chloride ($C_6H_5C(C1)=NNHC(C_6H_5)_3$), to be dehydrochlorinated to the imine $\underline{7}$, was not obtained from β -N-tritylbenzohydrazide ($C_6H_5CONHNHC(C_6H_5)_3$) upon treatment with either thionyl chloride or phosphorus pentachloride.
- 9. The combined yield (42%) of compounds $\underline{3}$ and $\underline{6}$ is in good qualitative agreement with the yield (50%) reported for carbon dioxide¹.
- 10. The 1-5 sigmatropic isomerization $\underline{1} \rightarrow \underline{8}$ represented a formal change from 0- to N-tritylation of a cyanomethane nitronate anion.
- 11. Attempts to prepare compound $\underline{8}$ by a reaction between trityl isocyanide and the sodium salt of phenylchloronitromethane were unsuccessful.
- 12. The formation of 4,4-di-t-butyl-3-methyl- $\frac{4}{4}$ -1,2-oxazete-2-oxide from 3-t-butyl-4,4-dimethyl-2-nitro-2-pentene on standing at 25°C was the first recognized example of an isomerization of an α , β -unsaturated nitro compound to a four-membered heterocycle. It underwent facile dissociation to give di-t-butyl ketone and an oil 13 .

$$\begin{array}{c} (\text{CH}_3)_3 \hat{\text{C}})_2 \text{C=CCH(R)}_1 \text{NO}_2 & \xrightarrow{0^{\circ} \hat{\text{C}}} & (\text{CH}_3)_3 \hat{\text{C}})_2 \hat{\text{C}} - \text{CCH(R)}_1 \text{NO}_2 & \longrightarrow & (\text{CH}_3)_3 \hat{\text{C}})_2 \text{CO} & + \text{ oil} \\ \text{R = H,Cl,Br} & \text{O} - \text{N}^{+} - \text{O} & & \end{array}$$

13. A. Berndt, Angew. Chem. Int. Ed. Eng., 1968, 7, 637; K. Wieser and A. Berndt, ibid., 1975, 14, 69, 70.

Received, 15th May, 1986