SYNTHESIS OF 4,5-DIHYDRO-1H-IMIDAZOLES FROM 1,5-DIHYDRO-2H-IMIDAZOLES USING 'NICKEL BORIDE'

Melvin R. Euerby, a Amanda C. Oldroyd, b and Roger D. Waigh

- a Department of Pharmaceutical Chemistry, School of Pharmacy, University of London, 29-39 Brunwick Square, London, WC1N 1AX, England
- b Department of Pharmacy, University of Manchester, Manchester, M13 9PL, England

Abstract - In situ prepared 'nickel boride' generated from sodium borohydride and nickel (II) chloride cleanly transforms 1,5-dihydro-2H-imidazoles into 4,5-dihydro-1H-imidazoles in high yields by a double bond migration.

Research into the use of methylthic substituents as removable activating groups in the synthesis of N-heterocycles 1,2 prompted their application to the synthesis of 1,5-dihydro-2H-imidazoles $(\underline{2})$ by the cyclisation of the methylthic activated benzylaminonitriles $(\underline{1})^3$ (Scheme 1). In the absence of the methylthic activating group, cyclisation fails to occur, 3 but it was anticipated that the unsubstituted 4-phenyl-1,5-dihydro-2H-imidazole $(\underline{3})$ could be obtained by removal of the methylthic group from $(\underline{2})$. This could be effected by reductive desulphurisation using 'nickel boride' generated by the action of sodium borohydride on nickel (II) chloride in situ, a method which we have shown to be superior in many respects to Raney nickel.

(Scheme 1, R = MeS)

As expected, the methylthic substituted 1,5-dihydro-2H-imidazoles ($\underline{2a}$ and \underline{b}), when treated with 'nickel boride', underwent reductive desulphurisation of the thioether bond; unexpectedly, migration of the dihydroimidazole double bond occurred yielding the corresponding 4,5-dihydro-1H-imidazoles ($\underline{4a}$ and \underline{b}) which are of potential pharmacological interest. 5 As a corollary the

analogous methoxy substituted 1,5-dihydro-2H-imidazoles (2c and d) were treated with 'nickel boride'. In these reactions double bond migration occurred yielding the corresponding methoxy substituted 4,5-dihydro-1H-imidazoles (4c and d). (Scheme 2).

R 4'
$$\frac{3}{3}$$
' $\frac{2}{2}$ ' $\frac{1}{1}$ ' $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{8}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{8}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{8}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{8}$ $\frac{1}{8$

The structure of the 4,5-dihydro-1H-imidazoles (4) was unambiguously confirmed by the use of 1H and 13 C n.m.r. and mass spectroscopy. The H n.m.r. spectra of the 4,5-dihydro-1H-imidazoles (4) exhibited characteristic features including resonances in the region of $\,\delta_{
m H}$ 7.22 - 6.97 and 4.82 -4.49 for the amidine and methine protons at positions 2 and 4 respectively; in comparison, the 1,5dihydro-2H-imidazoles ($\underline{2}$) possessed resonances in the region of $\delta_{_{\rm H}}$ 4.79 ~ 4.58 for the methylene protons at position 2.3,6 Off resonance 13C n.m.r. spectroscopy easily distinguished between the 1,5-dihydro-2H-imidazoles ($\underline{2}$) and the 4,5-dihydro-1H-imidazoles ($\underline{4}$) (Table 1): the former exhibited singlets and triplets in the region of $\delta_{\rm C}$ 176.5 - 175.7 and 82.1 - 73.9 for the carbons in positions 4 and 2 respectively, whereas the latter possessed two doublets in the region of δ $_{
m C}$ 78.5 -73.5 and 156.7 - 152.2 for the carbons in the same positions. Carbon assignments (Table 1) were completed using the D.E.P.T. technique.

The plane of symmetry in the 1,5-dihydro-2H-imidazoles (2) is absent in the 4,5-dihydro-1H-imidazoles (4) and as a consequence the R^{1} and R^{2} substituents in the latter are non-equivalent. This difference in symmetry is observable in both the ¹H and ¹³C n.m.r. spectra.

The fragmentation pattern in the mass spectra is also diagnostic in that the base peaks from the 1,5-dihydro-2H-imidazoles (2) correspond to the aziridinium ion (5), 3,6 whereas the base peaks for the 4,5-dihydro-1H-imidazoles (4) correspond to the iminium ion (6).

Table 1: $(\frac{3}{5}$ N.m.r. spectra of the dihydroimidazoles $(\frac{2a-d}{2}$ and $\frac{4a-d}{6})$, (Solvent CDCl₃).

. Þ−D	C-3:	C-2,	1 L-D	G-5	p- 0	2-0	ξ _A	$\mathtt{s}_{_{\overline{\mathtt{A}}}}$	۲ _A	Я	punodwo
140.2	T.T21	124.9	129.6	0.17	0.971			S5.0	32.5	5°71	Sa
(s)	(9)	(P)	(8)	(s)	(8)	(1)		(3 x £)	0.55	(p)	
2,0 1 1	⊅. 721	125.0	1.921	0.79	1.971	4.67	7.05	2.02	S.os	7.41	SP
(8)	(P)	(P)	(8)	(8)	(8)	(4)	(p)	(p)	(b)	(p)	
160.0	7.821	0.511	125.4	8.1T	T.271	6.8T	_	2.25	0.88	8 . 42	20
(8)	(P)	(P)	(s)	(5)	(a)	(+)		(3 x ₹)	9.22	(p)	
1091	129.2	713.5	0.721	0.47	6.971	1.58	9.62	25.5	r.85	0.27	24
(s)	(9)	(P)	(s)	(8)	(g)	(1)	(p)	(1 x ₹)	7.52	(p)	
F.YS!	5.721	6.721	S.851	0.89	₹.₹٢	153.5	-	₹.₹₹	4.68	-	48
(P)	(P)	(P)	(8)	(a)	(P)	(P)		22,6	เ∙≥ะ		
								(1 × ≤)	22.6		
1.85.1	8.7S1	127.0	0.681	۶.39	₹.87	7.66.T	2.82	8,61	0.62	_	q p
(p)	(P)	(P)	(8)	(8)	(P)	(g)	(b)	(b)	(b)		
129°0	128.5	113.5	2.181	89°۶	₹ . 87	152.2	-	8.25	4.68	1.68	94
(8)	(P)	(P)	(8)	(8)	(P)	(P)		23.0	52.5	(b)	
								(1 × 5)	T.SS		
8.871	7.9S1	113.2	9.181	L.23	9.77	7.33 r	8.7S	29.3	32.6	1.88	49
(s)	(P)	(p)	(8)	(8)	(p)	(P)	(b)	52.9	1.6S	(b)	
								(1 x 5)	8.12		

$$\begin{array}{c|c}
R^1 & R^2 \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Double bond migration involving conversion of a 1,5-dihydro-2H-imidazole to a 4,5-dihydro-1H-imidazole was observed when the 1,5-dihydro-1H-imidazole (7) was treated with base (Scheme 3).

(Scheme 3)

However, in our hands the 1,5-dihydro-2H-imidazole (2a) was inert to the effects of base treatment and also to nickel (II) chloride alone. In contrast, exposure of the 1,5-dihydro-2H-imidazole (2c) to sodium borohydride yielded the corresponding 1,3,4,5-tetrahydro-2H-imidazole (8) via reduction of the imine, suggesting that it is 'nickel boride' which is responsible for the double bond migration of 1,5-dihydro-2H-imidazoles (2) yielding 4,5-dihydro-1H-imidazoles (4).

Research is currently being undertaken to elucidate the mechanism, applicability and scope of this reaction.

EXPERIMENTAL

Melting points were determined on a Reichert hot stage apparatus and are corrected. I.r. spectra were recorded with a Pye-Unicam SP3-100 instrument for potassium bromide discs or liquid films. ¹H and ¹³C n.m.r. spectra, unless otherwise stated, were recorded on a Bruker WP80 spectrometer operating at 80 and 20.1 MHz respectively. M.s. data were obtained using an A.E.I. M530 spectrometer using electron ionisation unless otherwise stated. Microanalysis was carried out on a Perkin-Elmer 240 CHN analyser. The methylthic and methoxy substituted 1,5-dihydro-2H-imidazoles (2a - d) were

prepared as described in the literature. 3,6

General Reaction

The 1,5-dihydro-2H-imidazole (2, 2mmol) and nickel (II) chloride hexahydrate (12mmol) were dissolved in methanol (20ml) and sodium borohydride (60mmol) added portionwise over a period of 30 min to the ice-cold mixture. Evolution of hydrogen and a black precipitate were observed on addition of sodium borohydride. When the addition was complete, the ice-bath was removed and stirring continued for 16 - 18 h at room temperature. To the ice-cooled reaction mixture was added hydrochloric acid (32% W/w, 40ml) and stirring continued for 10 min. Then ammonia solution (s.g. 0.88, 60ml) was added slowly to basify the mixture. The reaction mixture was filtered through a bed of 'celite', the filter cake washed with chloroform (3 x 25ml) and this chloroform used to extract the product from the aqueous filtrate. The combined chloroform extracts were washed with brine (1 x 25ml), dried with magnesium sulphate and evaporated to yield the 4,5-dihydro-1H-imidazoles (4a - d). The 4,5-dihydro-1H-imidazoles could be purified by column chromatography using basic (grade 1) alumina eluting with varying proportions of chloroform and methanol or by crystallisation from chloroform - petroleum (60-80°C).

Table 2: Analytical data for the 4,5-dihydro-1H-imidazoles $(4a - \underline{d})$.

Compound	Yield ¹	mp	Solvent	Found %			Required %		
		°C		C	H	N	C	H	N
4a	92(57)	152-155	CHC1 ₃ -petroleum 60-80°C	78.2	8.4	13.0	78.5	8.5	13.1
4b	93(60)	125-127 ²	EtOH-di-iso- propyl ether	60.5	6.7	10.0	60.4	6.5	10.1
4c	96(75)	142-144	CHCl ₃ -petroleum 60-80°C	73.8	8.2	11.2	73.8	8.2	11.5
4d	85(67)	oil ³							

¹ Crude yields calculated from n.m.r. data, values in parenthesis are purified non-optimised yields

² Hemioxalate salt

³ Salt forms too hygroscopic for analysis

Table 3: ¹H N.m.r. and i.r. data for the 4,5-dihydro-1H-imidazoles (4a - d).

Compound	<pre>V max/cm⁻¹ C = N</pre>	1 H N.m.r. (δ values in p.p.m. Solvent CDCl $_{3}$)					
4 a	1590	¹ 7.27(5H,s,ArH), 7.21(1H,s,N=CH-N), 4.49(1H,s,ArCHN), 4.28(1H,s, NH exchangeable), 1.84-0.40(10H,m,5xCH ₂).					
4b	1590	¹ 7.27(5H,s,ArH), 7.11(1H,d,J=2Hz,N=CH-N), 4.76(1H,d,J=2Hz,ArCHN), 2.78(3H,s,CH ₃ N), 1.37(3H,s,CH ₃ C), 0.62(3H,s,CH ₃ C).					
4e	1585	7.33(1H,s,N=CH-N), 7.16(2H,d,J=8.5Hz,ArH), 6.85(2H,d,J=8.5Hz,ArH), 4.44(1H,s,ArCHN), 3.80(3H,s,CH ₃ 0), 2.86(1H,s,NH exchangeable), 1.92-0.67(10H,m,5xCH ₂).					
4 d	1590	7.13(2H,d,J=8.5Hz,ArH), 6.97(1H,s,N=CH-N), 6.81(2H,d,J=8.5Hz, ArH), 4.82(1H,s,ArCHN), 3.80(3H,s,CH30), 2.78(3H,s,CH3N), 1.89-0.65(10H,m,5xCH2).					

^{1 60} MHz Perkin-Elmer R12B

Table 4: Mass spectral fragmentation of the 4,5-dihydro-1H-imidazoles (4a - d).

Compound	Principal fragments, m/z (rel. intensity %)						
4a	m/z	214(M ⁺ ,44%), 132(12), 120(18), 106(68), 98(92), 83(100), 79(11), 67(10) 47(14), 30(5).					
4b	m/z	188(M ⁺ ,20%), 173(2), 117(7), 90(8), 72(100), 56(5), 45(14), 29(3).					
4c	m/z	244(M ⁺ ,33%), 136(60), 121(17), 109(57), 98(72), 67(56), 40(100).					
4d	m/z	258(M ⁺ ,45%), 136(11), 121(24), 112(100), 91(16), 86(30), 81(22), 77(20), 68(25), 55(28), 44(100), 40(93).					

Sodium borohydride reduction of 1,5-dihydro-2H-imidazole (1c)

The general method was followed with the exception that nickel (II) chloride hexahydrate was omitted. 1,3,4,5-Tetrahydro-2H-imidazole (§) was formed as a mobile brown oil which, after purification by column chromatography on silica gel 60 (Merck 70-230 mesh) eluting with varying proportions of methanol in ethyl acetate, gave a golden oil (79%), $\boldsymbol{\delta}_{\rm H}$ (CDCl₃) 7.16 and 6.84(2 x 2H, 2 x d, J=8.5Hz, AA'XX', ArH), 4.18 and 3.97(2H, 2 x d, J=9Hz, NCH₂N), 3.82(4H, s, CH₃O and CHN), 1.82(2H, s, NH x 2 exchangeable), 1.85-0.47(10H, m, CH₂ x 5); $\boldsymbol{\delta}_{\rm C}$ (CDCl₃) 158.7(C-4',s), 133.0 (C-1',s), 128.6(C-3',d), 113.4(C-2',d), 70.8(C-4,d), 63.8(C-5,s), 62.2(C-2,t), 55.0(CH₃O,q), 36.2, 33.0, 25.8, 23.2, 22.5(CH₂x5); m/z (chemical ionisation, isobutane), 247(M⁺,14%), 235(28), 218

(60), 148(7), 136(8), 98(100), 94(17), 81(5), 57(7). The picrate had m.p. 217-220°C (decomp.) (From EtOH-diethyl ether) (Found: C,46.0; H,4.3; N,15.9. $^{\text{C}}_{27}^{\text{H}}_{28}^{\text{N}}_{8}^{\text{O}}_{15}^{\text{requires C,46.0; H,4.0;}}$ N,15.9%).

ACKNOWLEGEMENT

We thank H.L.Ball for experimental assistance.

REFERENCES

- 1 M.R.Euerby and R.D.Waigh, J.Chem.Soc., Chem.Commun., 1984, 127.
- 2 M.R.Euerby, R.D.Waigh, I.H.Hillier, and J.P.Huke, J.Chem.Soc., Perkin Trans. 2, 1985, 1151.
- 3 M.R.Euerby and R.D.Waigh, <u>J.Chem.Res.</u>, 1982, (S)240, (M)2417.
- 4 M.R.Euerby and R.D.Waigh, Syn.Commun., 1986, in the press.
- 5 K.Hoffman, 'The Chemistry of Heterocyclic Compounds. Imidazole and Derivatives. Part 1',
 Interscience Publishers Inc., New York, 1953, p.224.
- 6 D.N.Harcourt, N.Taylor, and R.D.Waigh, J.Chem.Res., 1978, (S)154, (M)1954.
- 7 J.N.Wells, O.R.Tarwater, and P.E.Mani, J.Org.Chem., 1972, 37, 2158.

Received, 17th June, 1986