REGIOSELECTIVE THIO-CLAISEN REARRANGEMENT <u>VIA</u> S-ALLYL KETENE-S,N-ACETALS GENERATED FROM CYCLIC S-ALLYLMONOTHIODICARBOXIMIDE SALTS¹

Hiroki Takahata, Yasunori Banba, Mayumi Mozumi, and Takao Yamazaki*

Faculty of Pharmaceutical Sciences, Toyama Medical & Pharmaceutical

University, 2630 Sugitani, Toyama 930-01, Japan

<u>Abstract</u> - Thio-Claisen rearrangement \underline{via} S-allyl ketene-S,N-acetals generated from cyclic S-allylmonothiodicarboximide salts with a base furnished the S \rightarrow C allylic rearranged products exclusively.

The [3,3]-sigmatropic rearrangements are one of the most important transformations in the arsenal of modern synthetic organic chemistry. Although thio-Claisen rearrangement of S-allylthioimidates has been well investigated, no report has dealt with a study of the rearrangement in S-allyl-N-acylthioamide system. In connection with our research on organic synthesis using thioamide functions, we wish to communicate herein the regionselective thio-Claisen rearrangement via S-allyl ketene-S,N-acetals generated from cyclic S-allylmonothiodicarboximide salts with a base.

The formation of cyclic S-allylmonothiodicarboximide salts (4a-f) and 5a-f by the reaction of cyclic monothiodicarboximides (1) and (2) with allyl halides (3a-f), followed by dehydrohalogenation with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) underwent the selective $S\rightarrow C$ allylic rearrangement to yield cyclic allylmonothiodicarboximides (8a-f) and (8a-f), respectively (8a-f). The reaction of (8a-f) figure bicyclic compound (10), which would be obtained by the intramolecular Michael reaction of (8a-f). No traces of (8a-f) allylic rearranged products were detected. Accordingly, the thermal rearrangement of the S-allyl ketene-S,N-acetal tautomer (6a-f) to the (8a-f) to (8a-f)

of cyclic S-allylthioimidates produced the S \rightarrow N allylic rearranged products exclusively due to the further coordination of Pd (II) to the nitrogen atom after the coordination of Pd (II) to the allylic double bond, 3c,e the reaction using 4a and 5a in the presence of Pd (II) as a catalyst gave no S \rightarrow N allylic rearranged products. Because of a conjugation between the adjacent carbonyl and imine, the nitrogen might be unable to coordinate Pd (II).

In order to demonstrate the synthetic utility of allylmonothiodicarboximides thus prepared, proton-induced imino thiolactonization⁵ was carried out. The imino thiolactonizations of 8a and 9a with H_2SO_4 in HCOOH followed by hydrolysis produced the thiolactone-3-carboxylic acids (11 and 12), 6 respectively (Scheme 2).

Table 1. The $S \rightarrow C$ rearranged allylic products $(8a-f, 9a-e, and 10)^{a}$

\mathbb{R}^1	\mathbb{R}^2	R^3	Yield (%)	Mp (°C)	¹ H-NMR (NH)/ppm
Н	Н	Н	67	174-177	10.1
CH3	сн3	Н	34	89-91	9.73
с ₆ н ₅	H	Н	35 ^{c,d)}	oil	9.97 10.2
Н	Н	Br	37	65-68	10.5
H	Н	CH ₃	40	56-60	9.93
Н	Н	соос ₂ н ₅	66	oil	10.6
H	H	Н	72	71-73	9.73
CH ₃	СН3	Н	52	77-79	9.56
с ₆ н ₅	Н	Н	49 ^{d,e)}	102-107	9.94
Н	H	Br	54	106-108	9.91
Н	Н	CH3	43	77-78	9.47
Н	Н	соос ₂ н ₅	54	111-114	8.73
	н Сн ₃ С ₆ н ₅ н н н ссн ₃ С ₆ н ₅	H H CH ₃ CH ₃ C ₆ H ₅ H H H H H CH ₃ CH ₃ C ₆ H ₅ H	H H H H CH_3 CH_3 H	H H H 67 CH_3 CH_3 H 34 C_6H_5 H H 35°,d) H H Br 37 H H CH_3 40 H H $COOC_2H_5$ 66 H H H 72 CH_3 H 52 C_6H_5 H H $49^{d,e}$ H H 54 H H 43	H H H H $\frac{1}{1}$ H H H $\frac{1}{1}$ H H H H H H H H H H H H H H H H H H H

- a) All reactions were carried out as follows. Allylation of 1 and 2 was carried out in t-BuOH for 15 h at room temperature and subsequent dehydrohalogenation was in situ done for 4 h under reflux.
- b) All new compounds were fully characterized spectroscopically (IR, 1H-NMR, and MS spectral) and by combustion.
- c) A mixture of erythro:threo (5:6).
- d) Stereoisomer ratios determined by 1H-NMR spectroscopy.
- e) A mixture of erythro:threo (1:3).

In summary, this rearrangement proceeded regionselectively with a milder condition compared with that of S-allylthioimidates, providing the $S \rightarrow C$ rearranged products, which may be used for the further elaboration.

ACKNOWLEDGMENT

We are very grateful to Toyama Prefecture Centennial Foundation for research grant.

REFERENCES AND NOTES

- 1. This work was presented at the 65th Meeting of the Hokuriku Branch of the Pharmaceutical Society of Japan, Toyama, June 1985.
- 2. a) R. P. Lutz, <u>Chem. Rev.</u>, 1984, **84**, 205. b) L. E. Overman, <u>Angew. Chem. Int.</u> Engl., 1984, **23**, 579.
- a) P. J. W. Schuijl and L. Brandsma, Rec. Trav. Chim., 1968, 87, 929. b) D. S.
 C. Black, F. W. Eastwood, R. Okragrik, A. J. Poynton, A. M. Wade, and C. H. Welker, Aust. J. Chem., 1972, 25, 1483. c) Y. Tamaru, M. Kagotani, and Z. Yoshida, J. Org. Chem., 1980, 45, 5223. d) R. Gompper and B. Kohl, Tetrahedron Lett., 1980, 21, 907. e) Y. Tamaru, M. Kagotani, and Z. Yoshida, ibid., 1981, 22, 4245. f) H. Takahata, Y. Banba, M. Mozumi, and T. Yamazaki, Heterocycles, 1986, 24, 947.
- 4. a) H. Takahata, A. Anazawa, K. Moriyama, and T. Yamazaki, Chem. Lett., 1986,
 5. b) H. Takahata, K. Yamabe, T. Suzuki, and T. Yamazaki, Heterocycles, 1986,
 24, 37. c) H. Takahata, T. Suzuki, and T. Yamazaki, ibid., 1986, 24, 1247.
- 5. a) P. A. Bartlett, "Asymmetric Synthesis", J. D. Morrison, Ed., Chapter 6, Vol. 3, Academic Press, 1984. b) M. Mizutani, Y. Sanemitsu, Y. Tamaru, and Z. Yoshida, J. Org. Chem., 1983, 48, 4585.
- 6. Compound 11: amorphous; ${}^{1}H$ NMR (CDCl₃) δ : 1.48 (3H, d, \underline{J} =6 Hz, Me), 9.29 (1H, br s, COOH); IR (CHCl₃) v: 1720, 1700 cm⁻¹; Mass 155 (M⁺). Compound 12: mp 65-67 ${}^{\circ}C$; ${}^{1}H$ NMR (CDCl₃) δ : 1.47 (3H, d, \underline{J} =6.5 Hz, Me), 9.20 (1H, br s, COOH); IR (CHCl₃) v: 1700, 1690 cm⁻¹; Mass 169 (M⁺).

Received, 10th July, 1986