PYRIMIDINIUM N-DICYANOMETHYLIDE. SYNTHESIS AND REACTIVITY TOWARDS DIMETHYL ACETYLENEDICARBOXYLATE

Antonio de la Hoz^a, José Luis G. de Paz^b, Enrique Diez-Barra^C, José Elguero^d, and Carmen Pardo^a

- a) Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
- b) Departamento de Química Física, Facultad de Ciencias, Universidad Autónoma, 28049 Madrid, Spain
- c) Facultad de Química, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- d) Instituto de Química Médica, C.S.I.C., Juan de la Cierva 3, 28006 Madrid, Spain

<u>Abstract</u>- The titled compound ($\underline{1a}$) has been prepared by reaction of pyrimidine with tetracyanoethyleneoxide (TCNEO). Reaction of $\underline{1a}$ with DMAD yielded two regionsomer pyrrolopyrimidines ($\underline{2a}$ and $\underline{3a}$), \underline{via} a 1,3-dipolar cycloaddition. Concerning the regionelectivity of the reaction, experimental results are in agreement with theoretical calculations.

Kobayashi 1 and Zugravescu 2 reported the preparation of 4-methoxy- and 4-phenyl-pyrimidinium N-dicyanomethylides, respectively, by reaction of the corresponding pyrimidines with TCNEO, however synthesis of the unsubstituted dicyanomethylide $\underline{1a}$ failed 1 .

$$R = \underline{a}: H; \underline{b}: OCH_3; \underline{c}: Ph$$

$$R = \underline{a}: H; \underline{b}: OCH_3; \underline{c}: Ph$$

Since we had predicted³ that pyrimidine is basic enough to react with TCNEO, we decided to carry out the reaction in etyl ether for 24 h at room temperature

(ref. 3, method B). With this procedure $\underline{1a}$ is formed in 17% yield. Subsequently the yield was improved till 60% using more concentrated solutions of the reactants. Structure of ylide $\underline{1a}$ has been established on the basis of the analytical and spectroscopic data. The i.r. spectrum shows the typical strong doublet due the cyano groups 3 at 2140 and 2180 cm $^{-1}$. 1 H-NMR and 13 C-NMR spectra of $\underline{1a}$ are summarized in Tables 1 and 2.

Table 1 1 H-NMR spectrum of $\underline{1a}$ in DMSO-d $_6$ (internal standard TMS)

_									
6(ppm)				J(Hz)					
H-2	H-3	H-4	H-5	^J 2,4	J _{2,5}	^J 2,6	^J 4,5	^J 4,6	^J 5,6
9.15	8.57	7.77	8.72	0.0	1.4	2.2	5.0	1.6	6.5

H-4 and H-6 have been differentiated by the $J_{2,4}$ and $J_{4,6}$ values. This assignement is in agreement with that of $\underline{1b}^1$ and pyrimidinium N-oxide data⁴.

. Table 2 $$^{13}\text{C-NMR}$$ spectrum of $\underline{\text{1a}}$ in DMSO-d $_6$ (internal standard TMS)

			· ·	
	δ(ppm)	1 _{JCH} (Hz)	qπ a)	Δδ ^{b)}
C-2	142.4	209	0.19	-16.0
C -4	151.9	187	0.20	-4.5
C-5	122.8	179	-0.09	+1.4
C-6	139.2	197	0.13	-17.2
c-	55.8 ^{c)}	-	-0.57	-
CN	117.4	-	0.20	-

a) MINDO/2 calculation

 13 C-chemical shifts of ring atoms have been assigned on the basis of 1 J_{CH} values. Distinction between C-4 and C-6 has been made by comparison of π -charge density 8 and 4 0 values from pyrimidine 5 .

Reactions of ylides $\underline{1b}^1$ and $\underline{1c}^2$ with DMAD yielded pyrrolo [1,2-a] pyrimidines $\underline{2b}$ and $\underline{2c}$ by a (3+2) cycloaddition reaction followed by loss of HCN. The regioisomer $\underline{3}$, resulting from cycloaddition to C-6, was not detected. However, theoretical

b) $\Delta \delta = \delta_{\underline{1}\underline{a}} - \delta_{pyrimidine} (CDC1_3)^5$

c) in agreement with other N-dicyanomethylides 6,7 .

calculations obtained from a second order perturbational treatment 9 predicted that in the case of the unsubstituted pyrimidinium methylide $\underline{4}$, the cycloaddition of DMAD to C-6 is more favoured than that to C-2. Ylide $\underline{1a}$ was allowed to react with DMAD in acetonitrile at room temperature for 9 h, and thus a mixture of both pyrrolopyrimidine regioisomers $\underline{2a}$ and $\underline{3a}$ was obtained in a 3:7 ratio in isolated product. Structures $\underline{2a}$ and $\underline{3a}$ were established on the basis of analytical and

Table 3 1 H-NMR of pyrrolopyrimidines $\underline{2a}$ and $\underline{3a}$ in CDCl $_{3}$ (internal standard TMS) H-1H-2 H-3H = 4CH3 J_{1,3} J_{2,3} J_{2,4} 3.82,3.90 8.63 7.27 8.87 3a 9.27 7.90 8.05 3.80,3.90 1.4 6.5

A second order perturbational treatment 10 , using molecular energies and atom orbital coefficients obtained from molecular wave functions calculated by the MINDO/2 method, which is known to be more useful than the CNDO/2 used before 11 , gave similar results: $\Delta E(a.u.x~10^3)$ for 2a is -7.11 and -8.70 for 3a.

EXPERIMENTAL

spectroscopic data.

Melting points were determined on a Buchi 510 D apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 257 spectrometer. Proton NMR spectra were recorded at 60 MHz on a Varian T-60A spectrometer. 13-Carbon NMR spectra were recorded at 20 MHz in a Varian FT-80A spectrometer.

Pyrimidinium N-Dicyanomethylide (1a) by Improved Method.

A solution of TCNEO (0.01 mol) in 50 ml of dry ethyl ether was added to a solution of pyrimidine (0.01 mol) in 5 ml of dry ether. After stirring at room temperature for 24 h, the precipitate was filtered off. A second fraction could be obtained

by stirring the mother liquor for 24 h more. Total yield: 60%, m.p.: 187-189°C (from ethanol).

Reaction of la with DMAD.

DMAD (0.011 mol) was added to a suspension of $\underline{1a}$ (0.01 mol) in 50 ml of dry acetonitrile. After stirring at room temperature for 9 h, the solvent was removed in vacuum and the residue was chromatographed on a column of 80 g of silica gel (60-300 mesh) and eluted with a mixture of toluene-ethyl acetate (9:1) to give 7-cyano-5,6-diethoxycarbonylpyrrolo [1,2-c] pyrimidine $\underline{3a}$ (yield: 30%, m.p.: $\underline{112-113^{\circ}C}$ (methanol), IR: ν_{max} (KBr): ν_{CN} 2230; ν_{CO} 1725 and 1705 cm⁻¹) and 6-cyano-7,8-diethoxycarbonylpyrrolo [1,2-a] pyrimidine $\underline{2a}$ (yield: 12%, m.p.: $\underline{190-191^{\circ}C}$ (from methanol); IR: ν_{max} (KBr): ν_{CN} 2220; ν_{CO} 1725 and 1710 cm⁻¹).

REFERENCES

- Y. Kobayashi, T. Kutsuma and K. Morinaga, <u>Chem. Pharm. Bull. (Tokyo)</u>, 1971, <u>19</u>, 2106
- F. Georgescu, E.I. Georgescu, F. Chiraleu and I. Zugravescu, <u>Rev. Roum. Chim.</u>, 1982, 27, 635
- E. Díez-Barra, J. Elguero and C. Pardo, J._Org. Chem., 1982, 47, 4409
- 4. W.W. Paudler and S.A. Humphrey, Org. Magn. Reson., 1970, 3, 217
- 5. E. Breitmeier and W. Voelter, '¹³C-NMR Spectroscopy: Methods and Applications in Organic Chemistry', 2nd Ed., Verlag Chemie, New York, 1978. J. Riand, M. Th. Chenon and N. Lumbroso-Bader, <u>J. Am.</u> Chem. Soc., 1977, 99, 6838
- 6. K. Matsumoto, T. Uchida and C. Uno, Heterocycles, 1982, 19, 1849
- 7. M. Begtrup, J. Elguero, E. Diez-Barra and C. Pardo, Magn. Reson., 1985, 23, 111
- 8. K.A. Ostoja Stanzewski and H. Bock, J. Am. Chem. Soc., 1976, 98, 8486
- 9. J. Arriau, C. Maury and G. Maury, J. Heterocycl. Chem., 1979, 16, 1551
- 10. R. Sustmann, Pure Appl. Chem., 1974, 40, 569
- E. Diez-Barra, C. Pardo, J. Elguero and J. Arriau, <u>J. Chem. Soc. Perkin Trans. II</u>, 1983, 1317

Received, 4th August, 1986