SYNTHESIS OF d1-VERMICULINE VIA CONTROL OF OLEFIN FORMATION

Takeshı Wakamatsu,* Satoshi Yamada, and Yoshio Ban Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

 $\underline{\mathbf{Abstract}}$ - The Synthesis of the macrodiolide antibiotic vermiculine $\underline{\mathbf{1}}$ has been achieved starting from the enediol(trimethylsilyl) enol ether via the macrocyclization of hydroxycarboxylic acids followed by the formation of the requisite trans double bonds.

A great deal of effort has been devoted 1 toward the synthesis of vermiculine $\underline{1}$, a macrocyclic dilactone antibiotic isolated from penicillum vermiculatum Dangeard. 2 This compound was characterized by a 16-membered ring derived by head to tail lactonization of two identical C-10 α , β -unsaturated hydroxycarboxylic acid subunit $\underline{2}$. The preparation of $\underline{2}$ in a suitably protected form followed by lactonization was most of the synthetic approaches to the target macrodiolide $\underline{1}$. But lactonization process with the activation of carboxyl group was not neccessarily efficient. $\underline{3}$ Recently, we communicated a new method for the construction of macrodiolides. $\underline{4}$ We herein describe the further application of this process to the synthesis of d1-vermiculine 1.

The silyl enol ether $\underline{3}^5$ was hydrolyzed (aqueous THF, reflux) to the hydroxy-ketone $\underline{4}$ and this was transformed to the vicinal glycol $\underline{5}$ (CH₂=CHCH₂MgBr, THF, 84% from $\underline{3}$). Oxidative cleavage of $\underline{5}$ (Pb(OAc)₄, C₆H₆, rt) followed by Jones oxidation gave the keto acid $\underline{6}$ which was subjected to reduction (NaBH₄, CH₃OH, -10°C) to afford the hydroxycarboxylic acis $\underline{7}$ (90% from $\underline{5}$).

Lactonization 6,7 of 7 (ClPO(OEt)2, Et3N, CH3CN, -20°C, then DMAP, CH3CN, reflux, 3.5 mmol/L) smoothly occurred to give diolide 8 in 75% yield. Selenenylation of enolate anion (LDA, THF, PhSeBr, -78°C) derived from 8 produced a mixture of selenide 9 (14%) and alcohol 10 (46%), respectively. Oxidation of selenide $\underline{9}$ (30% $\mathrm{H}_2\mathrm{O}_2$, pyridine, $\mathrm{CH}_2\mathrm{Cl}_2$, 0°C) furnished the cis diolide $\underline{11}$ as the only observed product in 86% yield. These results were completely different from those of trans stereoselection observed in the case of pyrenophorin synthesis. 4 These facts also demonstrated that the selectivity of double bond formation depends on the bulkiness of the substituents at C-7 or C-7' (methyl or allyl Many attempts for the isomerization of cis double bond of 11 to the trans olefin 26 resulted in failure. Subsequently, attention was turned to the α -phenylthrocarboxylic acid derivatives as a potential intermediate to introduce double bond. Compounds 13, 14, 9 and 15 were subjected to lactonization in a similar manner as described above to give rise to the respective diolides 16 (94%), 17 (93%), and 18 (80%) in excellent yields. However, oxidation 10 of 16 or 17 (NaIO₄, CH₃OH, rt) followed by reflux in toluene resulted in the formation of the cis diolides 12 (75%) and 11 (91%).

On the other hand, oxidative elimination of compound $\underline{18}$ not having ethylene acetal moiety under the same conditions afforded a mixture of the desired trans diolide $\underline{19}$ (17%) and the cis diolide $\underline{20}$ (78%), respectively. Diolide $\underline{19}$ obtained in this way was converted to dl-vermiculine $\underline{1}$ and meso-vermiculine in two steps (i. PdCl₂/CuCl, O₂, DMF, 11 62%. ii. CrO₃, HOAc/Ac₂O, C₆H₆, 12 32%).

$$\frac{18}{19}$$

A more efficient route to the synthesis of vermiculine $\underline{1}$ has been explored. Treatment of alcohol $\underline{21}$ and carboxylic acid $\underline{22}$ with diethyl phosphorochloridate containing triethylamine in the presence of DMAP in benezene gave ester $\underline{23}$ in 97% yield. This was deprotected (n-Bu₄NF, THF, 91%) and a derived alcohol was selectively hydrolyzed to the hydroxycarboxylic acid $\underline{24}$ (LiOH, aqueous t-BuOH, 100%). Lactonization $\underline{13}$ of $\underline{24}$ gave cleanly diolide $\underline{25}$ in 68% yield after purification by chromatography. A crucial oxidative elimination of $\underline{25}$ (i. NaIO₄, CH₃OH. ii. toluene, reflux) afforded the desired trans diolide $\underline{26}$ in 85% yield. Finally, $\underline{26}$ was converted into dl-vermiculine 1 and meso-vermiculine (i. PdCl₂/CuCl, O₂, DMF, 97%. ii. excess CF₃COOH, wet CH₂Cl₂, 0°C, then rt,1h,98%). Spectral properties of the synthetic vermiculine 1 were identical with those of reported data. $\underline{1a}$

ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for the Special Project Research "Biomimetic Chemistry" and Scientific Research (No. 56570705) from the Ministry of Education, Science and Culture, Japan, which are gratefully acknowledged.

REFERENCES AND NOTES

- (a) E. J. Corey, K. C. Nicolaou, and T. Toru, <u>J. Am. Chem. Soc., 97</u>, 2287 (1975). (b) Y. Fukuyama, C. L. Kirkemo, and J. D. White, <u>J. Am. Chem. Soc., 99</u>, 646 (1977). (c) D. Seebach, B. Seuring, H. O. Kalinowski, W. Lubosch, and B. Renger, <u>Angew. Chem. Int. Ed., 16</u>, 264 (1977). (d) K. F. Burri, R. A. Cardone, W. Y. Chen, and P. Rosen, <u>J. Am. Chem. Soc., 100</u>, 7069 (1978). (e) T. A. Hase, A. Ourila, and C. Holmberg, <u>J. Org. Chem., 46</u>, 3137 (1981). (f) K. Steliou and M.-A. Poupart, <u>J. Am. Chem. Soc., 105</u>, 7130 (1983) (g) P. G. Baraldi, A. Barco, S. Benetti, F. Moroder, G. P. Pollini, and D. Simoni, J. Org. Chem., 48, 1297 (1983).
- R. K. Boeckmann, Jr., J. Fayos, and J. Clardy, <u>J. Am. Chem. Soc.</u>, <u>96</u>, 5954 (1974).
- 3. (a) H. Gerlach, K. Oertle, and A. Thalmann, <u>Helv. Chim. Acta</u>, <u>60</u>, 2860 (1977). (b) P. Schnurrenbergur, E. Hungerbuhler, and D. Seebach, <u>Tetrahedron</u> Lett., 2209 (1984). (c) see ref. 1(e).
- 4. T. Wakamatsu, S. Yamada, Y. Ozaki, and Y. Ban, <u>Tetrahedron Lett.</u>, 1989 (1985).
- 5. J. J. Bloomfield, Tetrahedron Lett., 591 (1968).
- 6. T. Kaiho, S. Masamune, and T. Toyoda, J. Org. Chem., 47, 1612 (1982).
- 7. For our previous results of lactonization or esterification, see ref. 4.
- (a) H. J. Reich, I. L. Reich, and J.M. Rehga, <u>J. Am. Chem. Soc.</u>, <u>95</u>,
 5813 (1973). (b) K. B. Sharpless, R. F. Lauer, and A. Y. Teranishi, <u>ibid.</u>,
 6137 (1973).
- 9. Hydroxycarboxylic acid 14 was obtained from 6 (1) esterification of 6 (ClPO(OEt)₂, Et₃N, CH₃OH, DMAP in benzene, rt) followed by reduction (NaBH₄, CH₃OH, O°C), 78%. (2) treatment of hydroxyester (LDA, PhSSPh, THF, -78°C—-40°C) followed by hydrolysis (2N-KOH, CH₃OH, rt), 85%.
- 10. N. J. Leonard and C. R. Johnson, <u>J. Org. Chem.</u>, <u>27</u>, 282 (1962).
- 11. J. Tsuji, I. Shimizu, and K. Yamamoto, Tetrahedron Lett., 2975 (1976).
- 12. R. S. Mali, M. Pohmakotr, B. Weidmann, and D. Seebach, <u>Liebigs Ann. Chem.</u>, 2272 (1981).
- 13. Lactonization of compound (i) under the same conditions gave 19 in 30% yield.

Received, 7th October, 1985