PYRIDAZINES XXXI.^{1,2} A FACILE SYNTHESIS OF 3-PYRIDAZINECARBONITRILES <u>VIA</u>
2-(4-TOLUENESULFONYL)-2,3-DIHYDRO-3-PYRIDAZINECARBONITRILES

Dedicated to Prof.K.Komarek on the occasion of his $60^{ ext{th}}$ anniversary

Wolfgang Dostal and Gottfried Heinisch*
Institute of Pharmaceutical Chemistry, University of Vienna
Währingerstraße 10, A-1090 Vienna, Austria

<u>Abstract</u> - Pyridazines <u>1a-c</u> react with trimethylsilyl cyanide/4-toluenesulfonyl chloride to give 2-(4-toluenesulfonyl)-2,3-dihydro-3-pyridazinecarbonitriles (<u>2a-c</u>) in satisfactory yields. Conversion of compounds <u>2a-c</u> into 3-pyridazinecarbonitriles 3a-c is conveniently accomplished by action of 1,8-diazabicyclo[5.4.0]undec-7-ene.

In the course of a program directed to the preparation of aza analogs of bio-active pyridine derivatives, straightforward syntheses for 3-pyridazinecarbonitrile and C-alkylated derivatives thereof were required. The preparation methods so far described are characterized by multi-step procedures and/or moderate yields. We now wish to report on the facile synthesis of 3-cyano-pyridazines via sulfonyl Reissert compounds.

Pyridazine (<u>1a</u>) and 3-methylpyridazine (<u>1b</u>) on action of trimethylsilyl cyanide (tmsc)/benzoyl chloride give Reissert compounds in 24% and 41% yield, respectively. 4,5 Likewise, 4-methylpyridazine (<u>1c</u>) under similar conditions affords 2-benzoyl-4-methyl-2,3-dihydro-3-pyridazinecarbonitrile (<u>4</u>) in only 39% yield. In contrast, we now observed the formation of 2-(4-toluenesulfonyl)-2,3-dihydro-3-pyridazinecarbonitriles <u>2a-c</u> in up to 84% yield, when <u>1a-c</u> were reacted with tmsc/4-toluene-sulfonyl chloride according to a procedure reported by Veeraraghavan and Popp. The novel compounds can be isolated conveniently from the reaction mixtures; assignment of structures <u>2a-c</u> rests on elemental analyses and spectroscopic data together with conversions into compounds 3a, as 3b and 3c, respectively, described below.

Interestingly, as shown by the formation of $\underline{2c}$, 4-methylpyridazine ($\underline{1c}$) is attacked by 4-toluenesulfonyl chloride at N-2. In accordance, also in the reaction with tmsc/benzoyl chloride no indication of an attack at N-1 is observed. Like the Reissert compounds derived from $\underline{1a}$ and $\underline{1b}$, $\underline{5}$ compound $\underline{4}$ shows a remarkable tendency to isomerize on silica gel surface, affording compound $\underline{5}$. $\underline{8}$ Compound $\underline{2a}$ was found to be stable under these conditions, whereas NMR spectra revealed that compounds $\underline{2b}$ and $\underline{2c}$ are partially transformed into the pyridazine-carbonitriles $\underline{3b}$ and $\underline{3c}$.

a:
$$R^1 = R^2 = H$$
; b: $R^1 = CH_3$, $R^2 = H$; c: $R^1 = H$, $R^2 = CH_3$

 $R = C_6 H_5 CO$

It is well documented in the literature 9 that N-alkylsulfonyl or N-arylsulfonyl Reissert analogs on action of a base afford aromatic carbonitriles in absence of a suitable electrophile. We now found that 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU),recently employed in the preparation of 1-cyano-isoquinolines and 2-cyanoquinolines, 10 represents a suitable base for high yield conversions of 2-(4-toluenesulfony1)-2,3-dihydro-3-pyridazinecarbonitriles into 3-pyridazinecarbonitriles. 11 Thus, the proposed reaction sequence permits the convenient preparation of compounds 3a and 3b (overall yield >75%), starting with commercially available materials. Furthermore, it offers an easy access to so far unknown 4-alkyl-3-pyridazinecarbonitriles as shown by the conversion of compound 1c into 4-methyl-3-pyridazinecarbonitrile (3c).

EXPERIMENTAL

Melting points (uncorrected) were determined with a Kofler hot-stage apparatus. IR spectra were recorded on a Jasco IRA-1 spectrometer (KBr disks; \tilde{v}_{max} in cm⁻¹). ¹H-NMR spectra were recorded with a Varian EM-390 (90 MHz, CDCl₃ as solvent); chemical shifts (J in Hz) are reported in ppm downfield from internal TMS. Mass spectra were obtained on a Varian MAT CH-7. Light petroleum refers to the fraction with bp 50-70°C.Microanalyses were performed by the "Institut für Physikalische Chemie" (University of Vienna, Dr.Zak).

2-(4-Toluenesulfonyl)-2,3-dihydro-3-pyridazinecarbonitriles 2a-c

A mixture of $\underline{1a}$ (25 mmol,2.00 g), $\underline{1b}$ or $\underline{1c}^{13}$ (25 mmol,2.35 g), respectively, AlCl₃ (10 mg) and tmsc (45 mmol,4.46 g) in anhydrous $\mathrm{CH_2Cl_2}$ (30 ml) was stirred under dry nitrogen for 20 min. Then a solution of 4-toluenesulfonyl chloride (43 mmol,8.20 g) in anhydrous $\mathrm{CH_2Cl_2}$ (60 ml) was added dropwise during 3 h. Stirring was continued for 5 h, then the solvent was removed in vacuo and the residue was treated with EtOH (50 ml) to give $\underline{2a}$ (5.50 g, 84%), $\underline{2b}$ (5.50 g, 80 %) or $\underline{2c}$ (4.30 g, 63%), respectively, as crystalline solids; analytically pure samples were obtained by recrystallisation from ethyl acetate/ light petroleum ($\underline{2a},\underline{2c}$) or EtOH/H₂0 ($\underline{2b}$).

Compound <u>2a</u>: colourless crystals, mp 113-118°C. IR: 1360,1170 (SO₂N); NMR: 8.00 (part of an AA'BB'-system, $J \approx 8,2 H, C_6 H_4$ -H), 7.60-7.30 (m,3H, $C_6 H_4$ -H,H-6), 6.30-6.10 (m,2H,H-5,H-4), 5.90-5.70 (m,1H,H-3), 2.40 (s,3H,CH₃); MS: M⁺ at m/z 261 (3%), 91 (100%). Anal.calcd.for $C_{12}H_{11}N_3O_2S$: C, 55.16; H, 4.24; N, 16.08. Found: C, 55.23; H, 4.32; N, 16.13.

Compound <u>2b</u>: colourless crystals, mp 118-120°C.IR:1360,1175 (SO₂N); NMR: 8.10-7.40 (AA'BB'-system, $J \simeq 8.4 H$, $C_6 H_4$ -H), 6.40-6.00 (m,2H,H-5,H-4), 5.70 (d,J=6,1H,H-3), 2.40 (s,3H, $C_6 H_4$ -CH₃), 2.10 (s,3H,CH₃); MS: M⁺ at m/z 275 (1%), 105 (100%). Anal.calcd.for $C_{13}H_{13}N_3O_2S$: C,56.71; H, 4.76; N, 15.26. Found: C, 56.68; H, 4.84; N, 15.10.

Compound $\underline{2c}$: colourless crystals, mp 112-114°C (dec). IR: 1350,1165 (SO₂N); NMR: 8.00 (part of an AA'BB'-system,J \approx 8,2H,C $_6$ H $_4$ -H), 7.50-7.30 (m,3H,C $_6$ H $_4$ -H,H-6), 6.00-5.80 (m,1H,H-5), 5.60 (s,1H,H-3), 2.40 (s,3H,C $_6$ H $_4$ -CH $_3$), 2.00 (d,J=1,3H,CH $_3$); MS: M $^+$ at m/z 275 (9%),43 (100%). Anal.calcd.for C $_{13}$ H $_{13}$ N $_3$ O $_2$ S: C, 56.71; H, 4.76; N, 15.26. Found: C, 56.72; H, 4.82; N, 15.21.

3-Pyridazinecarbonitriles 3a-c

A mixture of $\underline{2a}$ (8 mmol,2.09 g), $\underline{2b}$ or $\underline{2c}$ (8 mmol,2.20 g), respectively, and DBU (10 mmol,1.52 g) in dry THF (20 ml) was stirred under dry nitrogen for 1 h. Then a saturated aqueous solution of NH₄Cl (20 ml) was added and the mixture poured into water (20 ml). The solution was extracted with ethyl acetate and the combined organic layers were filtered over silica gel, yielding $\underline{3a}$ (771 mg, 92 %), $\underline{3b}$ (942 mg,99%) or $\underline{3c}$ (675 mg,71%), respectively, as crystalline solids; analytically pure samples were obtained by recrystallisation from toluene/light petroleum.

Compound 3a: colourless crystals, mp 43-44°C (Lit. 3a : mp 43-44°C). IR: 2250 (C=N); NMR: 9.45 (dd, $J_{5,6}$ =4, $J_{4,6}$ =1, 1H,H-6), 8.10-7.60 (m,2H,H-5,H-4); MS: M⁺ at m/z 105 (63%), 50 (100%). Compound 3b: colourless crystals, mp 86-87°C (Lit. 3c :mp 90-91°C). IR: 2250 (C=N); NMR: 7.90-7.40 (AB-system, $J \simeq 8$, 2H,H-5,H-4), 2.80 (s,3H,CH₃); MS: M⁺ at m/z 119 (50%), 64 (100%).

Compound $\underline{3c}$: colourless crystals, mp 43-44°C. IR: 2260 (C=N); NMR: 9.30 (d,J=5,1H,H-6), 7.50 (d,J=5,1H,H-5), 2.60 (s,3H,CH $_3$); MS: M $^+$ at m/z 119 (50%), 63 (100%). Anal.calcd.for $^{\rm C}_6{\rm H}_5{\rm N}_3$:C, 60.50; H, 4.23; N, 35.27. Found: C, 60.33; H, 4.39; N,35.30.

Reaction of 2a with Sodium Borohydride

A mixture of $\underline{2a}$ (1 mmol,261 mg), EtOH (5 ml) and NaBH₄ (1 mmol,38 mg) was stirred for 10 h. After addition of H₂O (15 ml), EtOH was removed in vacuo; the remaining mixture was extracted with $\mathrm{CH_2Cl_2}$, the combined organic layers were dried and evaporated. The resulting oil then was subjected to medium pressure column chromatography (silica gel, ethyl acetate/light petroleum 1:3). Fraction I yielded 2-(4-toluenesulfonyl)-2,3,4,5-tetrahydro-3-pyridazinecarbonitrile (85 mg,32%) as colourless crystals, mp 159-160°C. IR: 1360,1170 (SO₂N); NMR: 8.00-7.40 (AA'BB'-system, J≈8,4H,C₆H₄-H), 7.20-7.10 (m,1H,H-6), 5.40-5.20 (m,1H,H-3), 2.50 (s,3H,CH₃), 2.40-2.20 (m,4H,H-5,H-4); MS: M[†] at m/z 263 (3%), 91 (100%). Anal.calcd.for $\mathrm{C_{12}H_{13}N_3O_2S}$: C, 54.75; H, 4.98; N, 15.96. Found: C, 54.87; H, 5.02; N, 16.06.

Fraction II yielded 3a (30 mg,29%), shown to be identical with 3a prepared as described above by tlc (silica gel, ethyl acetate/light petroleum 1:1) and 1 H-NMR data.

2-Benzoyl-4-methyl-2,3-dihydro-3-pyridazinecarbonitrile (4)

A solution of $\underline{\text{1c}}^{13}$ (25 mmol,2.35 g) in anhydrous CH_2Cl_2 (40 ml) was treated with tmsc (37 mmol, 3.66 g) and benzoyl chloride (37 mmol,5.20 g) in the presence of AlCl_3 (10 mg) according to a described procedure, 5 yielding $\underline{\textbf{4}}$ (2.20 g,39%) as a brown solid. An analytical sample was prepared by recrystallisation from ethyl acetate/light petroleum: yellow needles, mp 104-110°C. IR: 1660 (C=0); NMR: 7.90-7.40 (m,5H,C₆H₅-H), 7.20 (d,J=4,1H,H-6), 6.05 (d,J=4,1H,H-5), 5.90 (s,1H,H-3), 2.10 (s,3H,CH₃); MS: M⁺ at m/z 225 (1%), 107 (100%). Anal.calcd.for $\text{C}_{13}\text{H}_{11}\text{N}_3\text{O}$: C, 69.32; H, 4.92; N, 18.65. Found: C, 69.14; H, 5.15; N, 18.37.

Conversion of Compound 4 into the 2,5-Dihydropyridazine derivative 5

a) Compound $\underline{4}$ (1 mmol,225 mg) was repeatedly subjected to chromatography on silica gel, using ethyl accetate/ light petroleum (1:4) as the eluent. Evaporation of the solvent, followed by recrystallisation from ethyl acetate/light petroleum yielded $\underline{5}$ (50 mg,22%) as orange crystals, mp 125-127°C (dec). IR: 2240 (C \equiv N), 1660 (C \equiv O); NMR: 7.90-7.30 (m,5H,C $_{6}$ H $_{5}$ -H), 7.00-6.90 (X-part of an ABX-system,1H,H-6), 3.10-2.90 (AB-part of an ABX-system,2H,H-5), 2.15 (s,3H,CH $_{3}$); MS: M $^{+}$ at m/z 225 (5%), 105 (100%). Anal.calcd.for C $_{13}$ H $_{11}$ N $_{3}$ O: C, 69.32; H, 4.92; N, 18.65. Found: C, 69.22; H, 5.10; N, 18.60. b) A mixture of $\underline{4}$ (1 mmol,225 mg) and DBU (1.4 mmol,214 mg) in CH $_{2}$ Cl $_{2}$ (10 ml) was stirred for 10 h. The solvent was distilled off in vacuo and the residue was chromatographed on silica gel (ethyl acetate/CH $_{2}$ Cl $_{2}$ 1:4). The so obtained oil was crystallized from ethyl acetate/light petroleum, yielding 90 mg of $\underline{5}$ (40%).

REFERENCES AND NOTES

- 1) Pyridazines XXX: N.Haider and G.Heinisch, Synthesis, in press.
- Presented in part at the 10th International Congress of Heterocyclic Chemistry, Waterloo, Ontario. Canada 1985.
- 3) a) R.Delaby, R.Damiens and M.Robba, Compt.Rend., 1958, 247, 1739.
 - b) M.Robba, Ann.Chim.(Paris), 1960, 5,351.
 - c) M.Ogata, Chem.Pharm.Bull., 1963, 11, 1522.
 - d) C.Kaneko, T.Tsuchiya and H.Igeta, Tetrahedron Lett., 1973, 26, 2347.
 - e) H.Igeta, C.Kaneko and T.Tsuchiya, Chem.Pharm.Bull., 1975, 23, 2798.
- 4) S. Veeraraghavan, D. Bhattacharjee and F.D. Popp, J. Heterocyclic Chem., 1981, 18, 443.
- 5) W.Dostal and G.Heinisch, J.Heterocyclic Chem., in press.
- 6) S. Veeraraghavan and F.D. Popp, J. Heterocyclic Chem., 1981, 18, 775.
- 7) Since compounds <u>2a-c</u> are of low stability at ambient temperature, it is recommended to employ the crude products without further purification in the preparation of compounds 3a-c.
- 8) This 2,5-dihydropyridazine derivative is formed also on treatment of $\underline{4}$ with 1,8-diazabicyclo-[5.4.0]undec-7-ene (see experimental).
- 9) For a recent review see: J.V.Cooney, J.Heterocyclic Chem., 1983, 20, 823.
- 10) D.L.Boger, C.E.Brotherton, J.S.Panek and D.Yohannes, J.Org.Chem., 1984, 49, 4056.
- 11) Initial attempts to convert compounds 2 into carbonitriles 3 by employment of NaBH₄ as a base ¹² met with limited success, since in the reactions with N-(4-toluenesulfony1)-2,3-dihydro-3-pyridazinecarbonitriles the reducing properties of this reagent leeds to formation of substantial amounts of tetrahydropyridazines as shown by the isolation of 2-(4-toluenesulfony1)-2,3,4,5-tetrahydro-3-pyridazinecarbonitrile in 32 % yield (see experimental). Accordingly, under these conditions, which were successfully used in a high yield synthesis of isoquinaldonitrile, ¹² the desired compounds 3a-c are obtained only in moderate yields.
- 12) I.Saito, Y.Kikugawa and S.I.Yamada, Chem.Pharm.Bull., 1974, 22, 740.
- 13) R.Mizzoni and P.Spoerri, J.Am.Chem.Soc., 1954, 76, 2201.

Received, 18th November, 1985