THE DITERPENOID ALKALOIDS FROM ACONTTUM SCAPOSUM VAR. VAGINATUM

Qing Ping Jiang and Wei Liang Sung*
Institute of Materia Medica, Chinese Academy of Medical Sciences
1 Xiannongtan Street, Beijing, China

Abstract - The structure determinations of vaginatine (1), vaginaline (2) and vaginadine (3), diterpenoid alkaloids from Aconitum scaposum var. vaginatum, are reported.

We wish to report three new C₁₉-diterpenoid alkaloids isolated from the methanol extract of the root of <u>Aconitum scaposum</u> var. <u>vaginatum</u>². Vaginatine (1), vaginaline (2) and vaginadine (3) were demonstrated to possess the structures shown below.

1
$$R^1 = \alpha H$$
, OH ; $R^2 = \alpha OH$, H
2 $R^1 = \alpha H$, OH ; $R^2 = O$
3 $R^1 = R^2 = O$
4 $R^1 = \alpha H$, OAC ; $R^2 = \alpha OAC$, H
5 $R^1 = \alpha H$, OCH_3 ; $R^2 = \alpha OH$, H

Vaginatine, $C_{2\mu}H_{39}NO_7$ (M⁺ 453.2706, calc. 453.2726), colorless crystals, mp 86-88°C, $[\alpha]_0^{28}+25.3^{\circ}$ (c 0.1, CHCl₃), showed spectral absorptions characteristic to diterpenoid alkaloids. IR spectrum indicated OH absorption (3400 cm⁻¹, br). 1H -NMR ($_{\rm J}$) exhibited the presence of an NCH₂CH₃ (1.07, 3H. J = 7.2 Hz) and three OCH₃ (3.27, 3.37, 3.39, 3H each,s); the broad singlet at 4.35 and triplet (J = 5.0 Hz) centered at 4.15, attributable to C(6)- $_{\rm A}$ H and C(14)- $_{\rm A}$ H respectively, would indicate the presence of C(6)- $_{\rm A}$ OH and C(14)- $_{\rm A}$ OH³. Acetylation (Ac₂O/pyr.) of the base yielded a diacetate ($_{\rm A}$) (M⁺ 537), whose IR showed OH absorption (3590, 3540 cm⁻¹) in addition to esters (1730 and 1220 cm⁻¹, br). $_{\rm C}$ H-NMR showed the appearance of $_{\rm A}$ 5.37 and 4.84 while devoid of those signals assigned to C(6)- $_{\rm A}$ H

Table 1. 13 C-NMR of vaginatine (1), vaginaline (2), vaginadine (3) and brownine (5)

Carbons	ı, ↓	2~	3.	5~
1	85.0	85.5	84.7	85.2
2	25.1	25+2	24.8	25.0
3	32.1	32.3 ^b	32.3	32.5
ц	38.8	38.8	39.2	38.4
5	45.0b	46.4	46.1	45.1
6	80.2	79.8	211.6	90.1
?	88.0	88.2	83.6	89.1
8	76.9	85.3	85.6	76.3
9	45.0	53.6°	56.0	49.6
10	37.4	44.1	43.9	36.4
11	47.9	48.6	45.4	48.2
12	27.7	25.2	25.8	27.5
13	46.0 ^b	53•3°	52.8	46.1
14	75.4	217.0	218.6	75.3
15	34.1	32.9 ^b	29.7	33.1
16	82.1	85.5	84.5	81.7
17	65.9	66.1	64.4	65.4
18	78.9	78.9	76.5	78.0
19	54.0	54.5	55.3	52.7
N-CH ₂	51.6	51.3	50.9	51.3
сн ₃	14.4	14.3	14.0	14.3
1'	55.8	55.7	56.2	56.0
6'	-	_	-	57.5
16'	56.4	56.1	57.7	56.5
18'	59.5	59•5	59.2	59.1

a. Chemical shifts in ppm are given downfield from TMS; solvent - CDCl3.

and C(14)-\$\textit{B}\$H for the base itself. Periodate oxidation of \$\frac{4}{2}\$ offered a product (M* 535) showing multiple carbonyl (1755-1713 cm^-1) and the absence of hydroxyl absorption in IR spectrum; this demonstrated the glycol structure in \$\frac{4}{2}\$. Vaginatine gave in MS m/z 422 (M*-31) as the base peak which suggested the presence of C(1)-OCH_3^4. \$^{13}\text{C-NMR}\$ (Table 1) 78.9 ppm (t) was assigned to \$\text{H}_2\text{C}(18)-OCH_3\$, and 82.1 ppm (d) ascribed to

b, c. These assignments may be interchanged in any vertical column.

 $\underline{C}(16)$ -\$CCH₃ on the biogenetic considerations of diterpenoid alkaloids. Thus structure 1 was assigned to vaginatine. The 13 C-NMR chemical shift values of vaginatine (1) and that of brownline (5) were compared and listed in Table 1. Vaginaline, $C_{24}H_{37}NO_{7}$ (M* 451.2532, calc. 451.2570), colorless crystals, mp 209-213°C (decomp.), [α] $_{D}^{18.5}$ +28.6° (c 0.1, £tCH). The presence of a ketone group was evidenced by IR (1745 cm⁻¹, cyclopentanone) and 13 C-NMR (217.0 ppm) spectra. 14 H-NMR (4) showed 1.06 (3H, t, J = 7.2 Hz, NCH₂CH₃), 3.30, 3.35, 3.35 (3H each, s 3 X OCH₃) and 4.45 (1H, d, turned to a singlet upon addition of D₂O; and shifted to 5.28 (s) in the 14 H-NMR spectrum of vaginaline monoacetate (M* 493)) (HO-C(6)- α H). In 13 C-NMR, 88.2 and 85.3 ppm, both singlet, indicated two tertiary alcohol groups, and 78.5 ppm (t) CH₂-OCH₃. The data cited above strongly suggested that vaginaline was the C(14)-keto analogue of its coexisting congener vaginatine (1). Reduction (NaBH₄) of the former indeed yielded a product which was shown (R_f, mp, IR, MS) to be identical with the latter. As the result, vaginaline was shown to possess the structure 2.

Vaginadine, $C_{24}H_{35}NO_{7}$ (M* 449.2354, calc. 449.2414), colorless needles, mp 147-149°C, [α] $_{D}^{18.5}$ -49.4° (c 0.1, EtOH). IR and 13 C-NMR (1750, 1740 cm⁻¹ and 211.9, 218.6 ppm) revealed two cyclopentanone moieties. H-NMR (d) showed the presence of NCH $_{2}$ CH $_{3}$ (1.14, 3H, t, J = 7.2 Hz), three OCH $_{3}$ (3.40, 3.39, 3.39, 3H each, s), but devoid of the broad singlet for C(6)- α H as those found in the spectra of 1 and 2. Considering that vaginadine has a molecular weight 2 (m/z) less than that of vaginaline (2) and one more keto group than the latter, vaginadine could very well be the C(6)-keto analogue of 2. This postulation was confirmed by the identity (MS. R_{f} , mp,IR) exhibited between vaginadine and the oxidation product of vaginaline (2). It was thus demonstrated that the structure of vaginadine was 3.

REFERENCES AND NOTES

- 1. Preliminary report was presented at the China-Japan Symposium on the Naturally Occuring Drugs, Beijing, November 1984 (Abstr., p. 12).
- W.T. Wang in Flora Reipublicae Popularis Sinicae, Science Publishing House, Beijing, 1979, Vol. 27, p. 164, collected in southern Sichuan Province, August 1982.
- 3. N.V. Aiyar, P.W. Codding, K.N. Kerr and M.H. Benn, <u>Tetrahedron Lett.</u>, 1981, 22, 483.
- 4. S.W. Pelletier, N.V. Mody and R.S. Sawhney, Can. J. Chem., 1979, 57, 1652.

Received, 28th October, 1985