2(s), 5(s) -BIS(HYDROXYMETHYL)-3(R), 4(R) -DIHYDROXYPYRROLIDINE. OBTENTION, SYMMETRY AND LIQUID STATE CONFORMATION

Marie-Thérèse Martin and Christophe Morin*

Laboratoire de Chimie Appliquée aux Corps Organisés Muséum National d'Histoire Naturelle 63, rue de Buffon, 75231 Paris Cedex 05, France

<u>Abstract</u> - A chiral polyhydroxylated pyrrolidine bearing a C_2 -axis of symmetry has been obtained. Full $^1{\rm H}$ nmr assignments could be made allowing determination of $^4{\rm T}$ as the liquid state conformation.

Optically active hydroxylated pyrrolidines are of current interest as chiral inducers 1,2 or glycosidase inhibitors $^{3-9}$. The recent announcement by two teams 10,11 of the synthesis of an isomer of the title compound promts us to disclose hereby our results in that area.

It had been shown earlier that a tricyclic pyrrolidine could be obtained in four steps 12 from a bis-acetal of D-glucito1 13 . It was then realized that removal (formic acid-90°C-150 min) of both acetaIs would lead to a symmetry-bearing chiral polyhydroxylated pyrrolidine, namely 1, which was isolated in 97% yield as its formate salt: m.p.114°C (softens), 145°C (fully melts); $[\alpha]_D = -10.1^\circ$ (c = 0.64, H₂0).

Although the synthetic design from D-glucosamine 12 , 13 secures a built-in symmetry, a detailed nmr work was undertaken to shed light in particular on the conformational features of $\underline{1}$. A C_2 -axis of symmetry (on the time-averaged nmr scale) was quickly revealed by the off-resonance 20 MHz ^{13}C spectrum which showed only three types of carbon (D_2O, δ) ppm: 74.9 (C_3, C_4) , 65.0 (C_2, C_5) , 57.5 (CR_2OD) . The symmetry was confirmed by observation of a single resonance for H_3 and H_4 , and a single coupling (with neighbouring H_2 and H_5) in the 1H nmr spectrum. So as to get the lacking J_{3-4} , an analysis of ^{13}C satellites was carried out: the H_3 - ^{12}C - ^{13}C - H_4 array leads to non-equivalence of H_3 and H_4 which allows direct observation (Fig.1) of J_{3-4} . Thus a complete set of values (δ, J) for all protons of $\underline{1}$ was obtained (see Table 1), using PANIC (Program for Iterative Simulation, Bruker Software) to solve the ABCX system.

Table 1 δ ppm $H_2 \& H_5$: 3.94; $H_3 \& H_4$: 4.32; H_2 , $\& H_5$: 3.87; $H_{2''} \& H_{5''}$: 3.97 J Hz J_{2-2} := J_{5-5} : 8.8; $J_{2-2''}$ = $J_{5-5''}$ = 5.0; J_{2-3} = J_{4-5} = 2.9; $J_{2'}$: $J_{2'}$: $J_{5'}$: $J_{5'}$: $J_{5''}$: $J_{$

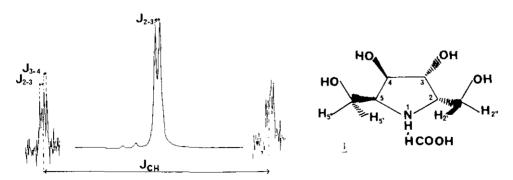


Figure 1 - $^{13}\mathrm{C}$ satellite bands observed for $\mathrm{H_3}$ and $\mathrm{H_4}$

There is a key point of interest: when compared with literature values 3,4 , J_{3-4} is unexpectedly low. This discrepancy has to be explained as this might reflect a conformational effect. In fact, theoretical calculations in proline series clearly demonstrated that substituent effects on the coupling constants were mainly due to their action on conformation 15 . This was exemplified in 4-hydroxyproline and furthermore with cyclo-(Pro) $_3$ in which differing geometries for each pyrrolidine ring were reduced thus yielding two ranges (1-3 and 8-11 Hz) for J_{3-4} coupling constants $^{16-18}$; these ranges were thus reflective of individual ring geometries.

Now if calculations, using the cyclo-(Pro) $_3$ -tailored Karplus equation 16 , are made for $\underline{1}$ a $85\pm7.5^\circ$ value is found for the $\mathrm{H}_3\mathrm{C}_3$ - $\mathrm{C}_4\mathrm{H}_4$ dihedral angle. Among all existing 5-membered ring conformations obtained with the pseudorotation concept 18 , only four of them incorporate the desired symmetry: $^{\mathrm{NE}}$ and $^{4}_3\mathrm{T}$ (and their mirror images). The former is excluded as this would yield a much higher coupling constant 3,4 . Therefore, $^{4}_3\mathrm{T}$ (or $^{4}_4\mathrm{T}$, its mirror image) is retained as the solution conformer for 1.

 $\frac{4}{3}$ T conformation of $\underline{1}$

Full assay of the biological activity should allow to know whether this is of significance 8,14.

ACKNOWLEDGMENTS

Drs O.Convert and D.Davoust (Université P.et M. Curie) are thanked for 500 MHz experiments.

REFERENCES AND NOTES

- 1. J.K.Whitesell and S.W.Felman, J.Org.Chem., 1977, 42, 1663.
- 2. Y.Ito, T.Katsuki, and M.Yamaguchi, Tetrahedron Lett., 1985, 26, 4643.
- 3. A.Welter, J.Jadot, G.Dardenne, M.Marlier, and J.Casimir, Phytochemistry, 1976, 15, 747.
- 4. R.Nash, E.A.Bell, G.W.J.Fleet, R.H.Jones, and J.M.Williams, J.Chem.Soc., Chem.Commun., 1985,738.
- 5. D.W.Jones, R.J.Nash, E.A.Bell, and J.M.Williams, Tetrahedron Lett., 1985, 26, 3125.
- 6. P.DeShong, D.R. Sidler, D.A. Kell, and N.N. Aronson Jr., Tetrahedron Lett., 1985, 26, 3747.
- 7. G.W.J.Fleet, S.J.Nicholas, P.W.Smith, S.V.Evans, L.E.Fellows, and R.J.Nash, <u>Tetrahedron Lett.</u>, 1985, 26, 3127.
- 8. G.W.J.Fleet, Tetrahedron Lett., 1985, 26, 5073.
- 9. C.J.Rule, B.A.Wurzburg, and G.Ganem, Tetrahedron Lett., 1985, 26, 5379.
- 10. P.J.Card and D.W.Hitz, J.Org.Chem., 1985, 50, 891.
- 11. G.W.J.Fleet and P.W.Smith, Tetrahedron Lett., 1985, 26, 1469.
- 12. C.Morin, Tetrahedron Lett., 1984, 25, 3205.
- 13. C.Morin, Carbohydr.Res., 1984, 128, 345.
- 14. Preliminary results (M.Baran-Marszak and R.Labia) indicated that $\underline{1}$ was inhibitor of Jack bean α -mannosidase (50% inhibition at 6.7.10⁻⁶M).
- 15. F.A.A.M. de Leeuw, A.A.Van Beuzekom, and C.Altona, J.Comput.Chem., 1983, 4, 458.
- 16. H.Kessler, A.Friedrich, and W.E.Hull, J.Org.Chem., 1981, 46, 3892.
- 17. H.Kessler, W.Bermel, A.Friedrich, G.Krack, and W.E.Hull., J.Am.Chem.Soc., 1982, 104, 6297.
- 18. C.Altona and M.Sundaralingam, J.Am.Chem.Soc., 1972, 94, 8205.

Received, 2nd December, 1985