1,3-ANIONIC CYCLOADDITION OF 1,3-DIPHENYL-2-AZAALLYL LITHIUM TO THIOKETENES AND THIOKETENE S-OXIDES

Ernst Schaumann^{•a}, Helmut Behr^a, and Gunadi Adiwidjaja^b
Institut für Organische Chemie, Universität Hamburg, MartinLuther-King-Platz 6, D-2000 Hamburg 13^a, W. Germany
Mineralogisch-Petrographisches Institut, Universität Hamburg,
Grindelallee 48, D-2000 Hamburg 13^b, W. Germany

Abstract - Cycloaddition of 1,3-diphenyl-2-azaallyl lithium (4) to the thicketenes 5a,b leads to thiazolidines 7a,b. Evidence for an open-chain anionic intermediate 8 is obtained by trapping with methyl iodide and through the stereochemistry of 7a as revealed in an X-ray crystallographic study. With thicketene S-oxides 10a,b, 4 yields thiazoles 15 via a 'second-generation' Pummerer reaction.

The work of Kauffmann has established 1,3-anionic cycloaddition as an important method for synthesis of five-membered heterocyclic rings 1 . Among the possible reagents, 2-azaallyl anions, e. g. $\underline{4}$, have proven to be particularly reactive toward electrophilic π -electron systems. The generation of $\underline{4}$ via ring-opening of the aziridine anion $\underline{2}$ and isomerization of the short-lived intermediate $\underline{3}^2$ in the absence of an additional base allows cycloadditions with substrates which would react with amines or amides. Thus, $\underline{4}$ can be added to heterocumulenes such as phenyl iso(thio)cyanate or carbon disulfide to give heterocycles $\underline{3}$. As part of our investigation of thicketene chemistry, we now report on 1,3-anionic cycloaddition of 4 to thicketenes $\underline{5}$ and their S-oxides $\underline{10}$.

Electrocyclic ring-opening of $\underline{2}$ was achieved in THF as previously described and the reaction mixture refluxed for 2 h to achieve complete conversion into the trans, trans anion $\underline{4}$. Then thicketene $\underline{5a}^4$ was added at -60° C and the mixture allowed to warm to room temperature. Workup by hydrolysis and chromatography (silica gel; eluent petroleum ether) to remove some unreacted $\underline{5a}$ and benzyl(benzylidene)amine afforded a 1:1 adduct in 83% yield [mp 154°C; IR(KBr): 1545, 1595,

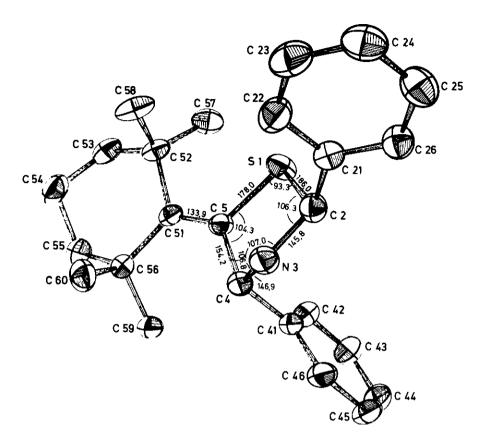


Figure 1. Computer-generated ORTEP drawing of 7a with important bond lengths [pm] and angles [°].

1640 cm⁻¹; ¹H NMR (CDCl₃): \int 0.98, 1.28, 1.42, 1.55 (each s, 3H), 1.53 (m, 6H), 2.02 (broad, 1H, exchanges with D₂O), 5.02, 5.91 (each broad s, 1H), 7.15-7.77 ppm (m, 1OH)] as a single diastereomer. The ¹³C NMR spectrum of the product lacks a signal at low field which might be due to a thiocarbonyl carbon. On the other hand, peaks at \int 142.2, 140.5, 139.1, 139.0, 128.5, 128.3, 127.7, 127.3, 127.0 can be assigned to the carbons of the phenyl rings and of the exocyclic C=C moiety in 7a, which results from cycloaddition of $\underline{4}$ across the C=S bond of $\underline{5a}$ apparently via $\underline{6}$. However, these data provide no evidence for the stereochemistry of the product and even some doubt as to the constitution $\underline{7a}$ is raised by the magnetic equivalence of C2 and C4 (\int 69.6 ppm) and by the lack of an unambiguous NH absorption in the IR spectrum (KBr or 0.0017 M in CCl₄). Therefore, the structure $\underline{7a}$ was finally confirmed by an X-ray structure analysis (Figure 1)⁶.

Ph for 2 Ph
$$\frac{1}{2}$$
: R = H $\frac{1}{2}$: R = Li

$$R_{2}C = C = S (5)$$

$$R_{2}C = \frac{1}{2}$$

The X-ray investigation of <u>7a</u> reveals a half-chair conformation of the heterocyclic ring with C4 being tilted out of the approximate plane formed by C5, S1, C2, N3 (dihedral angle 9.6°). The phenyl residues on C2, C4 are <u>trans</u>-oriented. The bond lengths are in the expected range based on van-der-Waals radii and, for the heterocyclic ring, roughly match those reported for the thiazolidine unit in a 2-alkylidene penam derivative⁷.

Not unexpectedly, starting from the sterically more hindered thicketene $\underline{5b}^4$ and following the same procedure, cycloadduct $\underline{7b}^5$ (oil, IR: 3200, 1675 cm⁻¹) is formed in only 18% yield.

In a modification of the workup procedure, instead of water methyl iodide was added to the reaction mixture from $\underline{4}$ and $\underline{5a}$. Interestingly, no indication for N-methylation of $\underline{6a}$ was found, but S-methyl derivative $\underline{9}^5$ (19%, mp 74°C) was isolated. The structure assignment is based on the spectroscopic evidence IR (KBr): 1610 (C=C), 1540 cm⁻¹ (C=N); ¹H NMR (CDCl₃): $\underline{6}$ = 1.28, 1.46, 1.53, 1.58 (each s, 3H; CCH₃), 1.0-1.95 (m, 6H; CH₂), 2.12 (s, 3H; SCH₃), 6.16 (s, 1H, CHN),

7.25-7.95 (m, 10H; aryl H), 8.45 ppm (s, 1H, CH=N)]. In an independent experiment, thiazolidine 7a was deprotonated by the action of sodium hydride or butyl lithium in THF and then methyl iodide added. Again, the 1 H NMR spectrum of the resulting product mixture showed no N-methyl signal, but the presence of 9, which was isolated in 9% yield.

Previous evidence on 1,3-anionic cycloadditions of $\underline{4}$ to C=C systems had corroborated a concerted pathway⁸. However, formation of $\underline{9}$ on methylation of the reaction mixture from $\underline{4}$ and $\underline{5a}$ proves the presence of anion $\underline{8}$, which would be the expected intermediate in a two-step 1,3-anionic cycloaddition. Moreover, the trans arrangement of the phenyl residues in $\underline{7a}$ (Figure 1) can only be understood in terms of an acyclic intermediate $\underline{8}$ of the cycloaddition between the trans, trans anion $\underline{4}$ and $\underline{5}$. However, this evidence does not necessarily exclude a mechanism in which anion $\underline{6}$ with \underline{cis} oriented phenyl rings is formed in a concerted fashion and then isomerizes via an equilibrium with the acylic anion $\underline{8}$. In a third, though less likely reaction pathway, only $\underline{8}$ would be formed, and $\underline{7}$ would result from 5-endotrig⁹ cyclization of protonated 8.

Following the same procedure as with 5a, b, addition of 4 to thicketene S-oxides 10a, b¹⁰ yields complex reaction mixtures from which a defined product could be isolated in low yield only after chromatography (silica gel; eluent ethyl acetate/ petroleum ether 1:50). According to the elemental analyses, no 1:1 adduct such as the S-oxide of 7 is formed, but a product resulting from the loss of water. Based on the spectroscopic evidence, the thiazole structures 15a yield 18%, mp 117°C, IR (KBr): 1595 cm⁻¹; 1 H NMR (CDCl₂): \int 0.75, 1.17, (s, 6H each; CCH₃), 1.45 (mc, 6H; CH_2), 2.98 (s, 1H; CH), 7.36-8.18 ppm (m, 10H; aryl H) and $\frac{15b}{9}$ [yield 11%, m. p. 139°C; IR (KBr): 1600, 1575 cm $^{-1}$; 1 H NMR (CDCL $_{3}$): \checkmark 1.10 (s, 18H, tBu), 3.43 (s, 1H, CH), 7.33-8.17 ppm (m, 10H; aryl H)] are suggested for the product from 10a and b, respectively. Particularly informative is the 13C NMR spectrum of 15a in which signals at \mathcal{E} 164.0 (C2), 155.8 (C4), 137.0, 133.9, 132.8, 129.9, 129.5, 128.8, 128.1, 127.6, 126.4 (C5, aryl C) can be assigned to the (het)arene carbons in 15^{11} . Furthermore, C1 of the cyclohexane ring gives rise to a peak at $\epsilon = 54.5$ excluding structures like 14 in which this carbon is ${\rm sp}^2$ hybridized; in the offresonance spectrum, this peak is split into a doublet as expected based on structure 15.

$$R_{2}C = C = S$$

$$= S$$

A plausible mechanism for the formation of $\underline{15}$ assumes an initial one- or two-step 1,3-anionic cycloaddition of $\underline{4}$ to $\underline{10}$ to give anion $\underline{11}$. Protonation on nitrogen and oxygen provides intermediate $\underline{12}$ which triggers a 'second-generation' Pummerer reaction¹². The resulting thiazolidine $\underline{14}$ should aromatize to yield thiazole $\underline{15}$.

In conclusion, the reactions of thicketenes $\underline{5}$ and their S-oxides $\underline{10}$ with anion $\underline{4}$ yield quite different products. However, branching occurs after the addition step and the difference is not due to a change in site selectivity of the cycloaddition as is the case in the reaction of $\underline{5}^{13}$ and $\underline{10}^{14}$ with diazo compounds.

ACKNOWLEDGEMENT

We thank the 'Fonds der Chemischen Industrie', Frankfurt, for financial support of this work and Mr. Torsten Marr for experimental assistance.

REFERENCES

- Th. Kauffmann, <u>Angew. Chem.</u>, 1974, 86, 715; <u>Angew. Chem. Int. Ed. Engl.</u>, 1974, 13, 627.
- Th. Kauffmann, K. Habersaat, and E. Köppelmann, <u>Angew. Chem.</u>, 1972, 84,
 262; <u>Angew. Chem. Int. Ed. Engl.</u>, 1972, 11, 291; <u>Chem. Ber.</u>, 1977, 110, 638.
- 3. Th. Kauffmann and R. Eidenschink, Chem. Ber., 1977, 110, 651.
- 4. E. Schaumann, Chem. Ber., 1982, 115, 2755.
- 5. Satisfactory microanalytical results were obtained for the new compounds.
- 6. Crystal data: triclinic, $P\bar{1}$, a=863.4(1) pm, b=866.5(1) pm, c=1469.5(1) pm, $\alpha=92.43(2)^{\circ}$, $\beta=100.02(2)^{\circ}$, $\gamma=90.41(1)^{\circ}$, $V=1.082\cdot 10^9$ pm³, $d_{\rm calc}=1.16$ g cm⁻³, Z=2; Cu K, radiation, 3313 reflections ($\sqrt[4]{5} \le 65^{\circ}$, $F_0 > 3\sigma$). The structure was solved by MULTAN and Fourier methods; R=0.046, $R_W=0.043$. Details of the crystal structure have been deposited with the Cambridge Crystallographic Data Centre.
- 7. P. C. Cherry, D. N. Evans, C. E. Newall, N. S. Watson, P. Murray-Rust, and J. Murray-Rust, Tetrahedron Lett., 1980, 21, 561.
- 8. Th. Kauffmann and E. Köppelmann, Angew. Chem., 1972, 84, 261; Angew. Chem. Int. Ed. Engl., 1972, 11, 290. L. Vo-Quang and Y. Vo-Quang, J. Heterocyclic Chem., 1982, 19, 145.
- 9. Though disfavored following Baldwin's rules, this cyclization is possible: P. Auvray, P. Knochel, and J. F. Normant, <u>Tetrahedron Lett.</u>, 1985, 26, 4455.
- 10. E. Schaumann and W.-R. Klein, Tetrahedron Lett., 1977, 3457.
- 11. For ¹³C NMR data on thiazoles cf. W. Bremser, L. Ernst, B. Franke, R. Gerhards, and A. Hardt, 'Carbon-13 NMR Spectral Data', Verlag Chemie, Weinheim, 1981.
- 12. S. Warren, Chem. Ind. (London), 1980, 824.
- 13. E. Schaumann, H. Behr, and J. Lindstaedt, Chem. Ber., 1983, 116, 66.
- 14. E. Schaumann, H. Behr, G. Adiwidjaja, A. Tangerman, B. H. M. Lammerink, and B. Zwanenburg, <u>Tetrahedron</u>, 1981, <u>37</u>, 219.

Received, 27th January, 1986