SYNTHESIS OF NOVEL METHYL (2-0X0-3-MORPHOLINYLIDENE) ACETATES

George B. Mullen, Vassil St. Georgiev, and Christopher G. Acker Department of Organic Chemistry, Pennwalt Corporation, Pharmaceutical Division, Rochester, New York 14623, U.S.A.

<u>Abstract</u> - The synthesis of a series of novel (2-oxo-3-morpholinylidene)acetic acid methyl esters is described.

Previously, we have described the synthesis of spiro[3,4,5,6-tetrahydro-2,4-oxazin-2-one-6,2'-tricyclo[3.3.1.1^{3,7}]decane] (1), a novel adamantane-spiro-heterocyclic system 1,2 . When tested for anti-inflammatory activity, compound 1 at an oral dose of 50 mg/kg exerted a 27.9% (p<0.05) inhibition of the carrageenin-induced rat paw edema.

As an extension of our previous work 1,2 , we now wish to report the preparation of a series of novel (2-oxo-3-morpholinylidene)acetic acid methyl esters (4-13) (Table). Thus, condensation of an appropriate aminoalcohol precursor (2) with dimethyl acetylenedicarboxylate (3) furnished the desired methyl (2-oxo-3-morpholinylidene)acetate analog (4-13):

When tested in the disc diffusion assay at 500 μg per disc derivatives $\underline{\mu}_{1}$, $\underline{5}$ and $\underline{6}$ showed moderate to marked activity against Neisseria gonorrhoeae.

Table. Substituted Methyl (2-0xo-3-morpholinylidene)acetates

4-13

Compound	R ¹	R ²	_R 3	R ⁴	Mp ^o C	recrystn solvent	formula	analysis
<u>4</u>	CH ₃	CH ₃	Н	н	94-97	ethanol	^C 9 ^H 13 ^{NO} 4	C,H,N
<u>5</u>	H	Н	CH ₃	н	98-101	ethanol	^C 8 ^H 11 ^{NO} 4	C,H,N
<u>6</u>	Н	Н	Н	н	76-79	ethanol	C7H9NO4	C,H,N
7	Н	Н	сн ₂ он	Н	112-114	ethanol	^C 8 ^H 11 ^{NO} 5	C,H,N
<u>8</u>	CH ₃	Н	^C 6 ^H 5	H	117	ether	C14H15NO4	C,H,N
2	H	Н	^C 6 ^H 5	н	125-126	ethanol	C13 ^H 13 ^{NO} 4	C,H,N
<u>10</u>	CH ₂ OH	^{СН} 3	Н	н	62-63	hexane	^C 9 ^H 13 ^{NO} 5	C,H,N
<u>11</u>	^{CH} 2 ^C 6 ^H 5	Н	Н	Н	82-83	hexane	C14H15NO4	C,H,N
<u>12</u>	^C 2 ^H 5	Н	н	н	68-70	hexane- ethyl acetate	^C 9 ^H 13 ^{NO} 4	C,H,N
<u>13</u>	(CH ₃) ₂ CH	Н	Н	Н	oil	2 11,0 2 110001100	^C 10 ^H 15 ^{NO} 4	

REFERENCES

Received, 3rd February, 1986

^{1.} V. St. Georgiev and G. B. Mullen, U.S. Patent 4,549,014 (1985).

^{2.} V. St. Georgiev, G. B. Mullen, and C. G. Acker, Heterocycles, 1986, 24(3), in press.