THE STRUCTURES OF FOUR NEW DITERPENOID ALKALOIDS

Antonio G. Gonzále $z^{a)}$, Gabriel de la Fuente $^{*b)}$, Matías Reina $^{b)}$, and Rafael Díaz Acosta $^{a)}$

- a) Instituto Universitario de Química Orgánica, Universidad de La Laguna, Tenerife, Canary Islands, Spain
- b) Instituto de Prodoutos Naturales Orgánicos, CSIC, La Laguna, Tenerife, Canary Islands, Spain

Abstract - Together with karakoline, dihydrogadesine and 14-acetyldihydrogadesine, the new alkaloids 14-benzoylgadesine and 14-benzoyldihydrogadesine were isolated from Delphinium cardio-petalum. The new bases gadeline and 14-acetylgadesine were also isolated from Delphinium pentagynum. The structures of the new compounds were determined with the aid of ¹H and ¹³C-nmr spectroscopy and chemical correlation to known alkaloids. The ¹³C-nmr chemical shifts for gadesine, dihydrogadesine and 14-acetyldihydrogadesine are also presented.

Further studies on plants of <u>Delphinium cardiopetalum DC</u> and <u>D. pentagynum Lam</u> led to the isolation of the new alkaloids 14-benzoylgadesine (2) and 14-benzoylgadesine (7) from the former, and gadeline (4) and 14-acetylgadesine (3) from the latter.

14-Benzoylgadesine (2), $C_{30}H_{39}NO_7$, was isolated as a resin; ir (KBr), 3490 (OH), 1725, 1280 and 715 (benzoate), 1000 and 850 cm⁻¹; ms, 525 (1%) M⁺, 510 (68%) M⁺-CH₃, 492 (100%) $|M^+-CH_3|-H_2O$, and 469 (13%) M⁺-C₃H₄O. The ir absorptions at 1000 and 850 cm⁻¹, and the loss of acrolein in the ms pointed out the existence of a carbinolamine inner ether in the Molecule. The lambda of H-nmr spectrum (200 MHz, CDCl₃) showed signals at 6 1.01 (3H, s, CH₃), 1.10 (3H, t, J = 7 Hz, N-CH₂-CH₃), 3.32 and 3.34 (3H each, s, two OCH₃), 3.77 (1H, m, W¹/₂ = 8 Hz, C-1βH), 3.87 (2H, s, C-6GH and C-19H), 5.12 (1H, t, J = 4.5 Hz, C-14βH), 7.46 and 7.84 (3H and 2H, m, aromatic protons).

1 R = R1=H

2 R = H; R1=Bz

3 R = H; R1= Ac

4 R = OH; Rt=Bz

5 R = R1 = H; R2 = OCH2

6 R = R1 = R2=H

7 R = R2= H; R1 =Bz

8 R = R2 = H: R1 = Ac

9 R = OH; R1=Bz; R2=H

14-Acetylgadesine (3), $C_{25}H_{37}NO_7$, was obtained as a resin; ir (KBr), 3450 (OH), 1730 and 1240 (acetate), 1090 (C-O), 990 and 890 cm⁻¹ (inner ether)²; ms, 463 (1%) M⁺, 448 (57%) M⁺-CH₃, 430 (100%) $|M^+$ -CH₃ $|-H_2O$, and 407 (14%) M⁺-C₃H₄O³; the 1 H-nmr (CDCl₃) gave signals at δ 0.94 (3H, s, CH₃), 1.04 (3H, t, J = 7 Hz, N-CH₂-CH₃), 2.03 (3H, s, acetate), 3.29 (6H, s, two OCH₃), 3.69 (2H, m, W_2^1 = 8 Hz, C-16H), 3.79 (2H, s, C-6GH and C-19H), and 4.76 (1H, t, J = 4.5 Hz, C-146H).

On the other hand, the alkaloids (2) and (3) proved to be identical (ir, $^{1}\text{H-nmr}$, and ms) with the products obtained by treatment of gadesine (1) 4 with BzOCl and Ac₂O in pyridine, respectively, and therefore their structures were definitively established.

14-Benzoyldihydrogadesine (7), $C_{30}H_{41}NO_7$, had mp 199-202°C and crystallized from ethyl acetate; ir (KBr), 3420 (OH), 1715, 1275 and 715 (benzoate), 1120 and 1085 cm⁻¹ (C-O); ms, 527 (20%) M⁺, 512 (80%) M⁺-CH₃, 510 (70%) M⁺-OH, 496 (80%) M⁺-OCH₃, and 494 (100%) $|M^+-CH_3|-H_2O$. Its ¹H-nmr spectrum (CDCl₃) displayed signals at δ 1.08 (3H, s, CH₃), 1.10 (3H, t, J = 7 Hz, N-CH₃-CH₃), 3.35 (6H, s, two OCH₃), 3.76 (1H, m, W_2^1 = 7 Hz, C-1 β H), 3.96 (1H, s, C-6 α H), 5.10 (1H, t, J = 5 Hz, C-1 β H), 7.42 and 8.12 (3H and 2H, m, aromatic protons).

The alkaline hydrolysis of (7) furnished dihydrogadesine (6) 5 and the KMnO $_4$ oxidation 6 yielded 14-benzoylgadesine (2) (mp, ir, ms and $^1{\rm H-nmr}$ identical); consequently its structure was elucidated.

Gadeline (4), $C_{30}H_{39}NO_8$, was also isolated as a resin; ir (KBr), 3430 (OH), 1705, 1280 and 713 (benzoate), 1090 (C-O), 990 and 890 cm⁻¹ (inner ether)²; ms, 541 (1%)

 $^{13}\mathrm{C}$ Chemical shifts and assignments

	9	8	7	6	5	3	2	1	Carbon
88.8	70.0	72.9	72.7	72.8	72.7	89.2	89.1	89.0	1
30.3	30.0	29.2	28.9	29.3	27.5	30.0	29.9	27.7	2
26.0	31,5	31.8	31.6	32.2	29.4	22.7	22.8	22.5	3
38.7	32.7	33.1	33.0	33.1	37.6	38.9	38.6	38.4	4
47.6	46.0	50.1	50.0	50.6	44.0	37.0	37.0	36.9	5
92.1	91.5	91.2	91.0	91.0	90.1	91.4	91.3	90.9	6
84.2	87.0	87.8	87.6	87.9	87.9	84.5	84.7	84.9	7
74.9	76.8	78.5	78.4	78.1	78.1	76.7	76.4	76.0	8
54.2	53.0	43.7	43,5	45.3	45.3	43.0	43.6	45.4	9
79.6	81.7	42.7	43.0	44.1	45.3	52.0	52.0	52.2	10
51.8	54.3	49.7	49.5	49.2	48.9	47.0	47.0	46.4	11
40.7	40.5	29.9	29.7	29.3	29.4	30.5	3.0.5	30.2	12
38.3	38.2	38.1	37.9	39.4	39.4	38.6	38.5	38.3	13
75.2	75.5	76.5	76.1	75.7	75.8	76.0	76.0	75.3	14
35.2	35.2	34.0	34.3	34.5	34.5	33.8	34.2	33.8	15
81,8	81.5	82.8	82.4	82,1	82.0	82.8	82.6	81.8	16
65.6	66.3	65.7	65.9	65.7	66.3	64.0	63.9	64.1	17
20.6	27.7	27.8	27.7	27.7	77.4	20.2	20.3	20.1	18
68,7	61.0	6.1.2	60.9	60.8	57.1	68.7	68.8	68.3	19
47.5	50.4	50.5	51.2	50.3	50.4	47.6	47.5	47.3	20
13,7	13.4	13.8	14.4	13.7	13.7	13.9	13.9	13.7	21
58.6	58.2	58.0	58.0	58.0	57.4	58.5	58.6	58.4	6 ~
56.2	56.2	56.4	56.4	56.3	56.4	56.4	56.3	56.4	16 -
					59.1				18-
167.0	166.6		166.5				166.9		CO
130.7	130.5		129.2				130.1		1
130.1	130.0		129.8				130.1		
128.4	128.4		129.4	•			128.5		⊌ "
132.8	132.8		132.7				132.8		~
		171.8				171.8			ço
		21.6				21.6			со Сн ₃

Chemical shifts in ppm downfield from TMS. Solvent deuterochloroform.

 M^+ , 526 (100%) M^+ -CH₃, 508 (75%) $|M^+$ -CH₃|-H₂O, 485 (33%) M^+ -C₃H₄O, M^+ and 454 (10%) $|M^+$ -C₃H₄O|-OCH₃. The M^+ -CH₃H₄O|-OCH₃ are M^+ -CH₃H₄O|-OCH₃. The M^+ -CH₂-CH₃), 3.25 and 3.31 (3H each, s, two OCH₃), 3.82 and 3.86 (1H each, s, ether C-6 M^+ -OH), 3.95 (1H, m, M^+ = 8 Hz), 5.55 (1H, t, J = 5 Hz, C-14 M^+ -Hz, 7.38 and 8.10 (3H and 2H, m, aromatic protons). The M^+ -nmr signal for the C-14 M^+ -Was shifted downfield by 0.43 ppm as compared with that of 14-benzoylgadesine (2), suggesting the existence of a tertiary hydroxyl group placed at C-10 in the molecule.

The ${\rm KMnO}_4$ oxidation⁶ of gadenine (9) ⁷ in aqueous acetone gave gadeline (4) in 66% yield (ir, ms and $^1{\rm E-nmr}$ identical), thus allowing the structure to be established. The structures of the new alkaloids were also inferred from $^{13}{\rm C-nmr}$ spectroscopy. The assignments reported in the Table were made taking into account known substituent effects, the spectra of gadenine ⁷ and delcosine (5) ⁸ and other published $^{13}{\rm C-nmr}$ data for related diterpenoid alkaloids.

We have also isolated from <u>Delphinium cardiopetalum</u> karakoline, ⁹ dihydrogadesine ⁵ and 14-acetyldihydrogadesine, ⁵ identified by comparison with authentic samples.

ACKNOWLEDGEMENT

This work has been partially financed by a grant from the Comisión Asesora de Investigación Científica y Técnica.

REFERENCES AND NOTES

- The elemental composition of the new compounds was established by highresolution mass measurement of the molecular ion peak.
- 2. R. Auct, D. Clayton, and I. Marion, Can. J. Chem., 1957, 35, 397.
- S. W. Pelletier and S. W. Page, "Chemistry of Diterpene Alkaloids" in "The Alkaloids", ed. by J. E. Saxon, The Chem. Soc., London, 1073, vol. 3, p. 235.
- 4. A. G. González, G. de la Fuente, R. Díaz, J. Fayos, and M. Martínez-Ripoll, Tetrahedron Letters, 1979, 79.
- 5. A. G. González, G. de la Fuente, and R. Dfaz, Phytochemistry, 1982, 21, 1781.
- 6. O. Achmatowicz, T. Tsuda, and L. Marion, Can. J. Chem., 1965, 43, 2336.
- 7. A. G. González, G. de la Fuente, and R. Díaz, Heterocycles, 1984, 22, 17.
- 8. B. S. Joshi, J. A. Glinski, H. P. Chokski, S. Chen, S. K. Srivastava, and S. W. Pelletier, Heterocycles, 1984, 22, 2037.
- 9. M. N. Sultankhodzhaev, M. S. Yunusov, and S. Yu. Yunusov, Khim. Prir. Soedin., 1972, 8, 399.

Received, 15th November, 1985