SYNTHESIS OF N-CARBOXYDEHYDROTYROSINE ANHYDRIDE AND ITS TRANSFORMATION TO USEFUL DEHYDROTYROSINE DERIVATIVES

Chung-gi Shin, * Yasuchika Yonezawa, and Takumi Obara
Laboratory of Organic Chemistry, Kanagawa University, Kanagawa-ku,
Yokohama 221, Japan

<u>Abstract</u>— N-Carboxydehydrotyrosine anhydride ($\Delta Tyr \cdot NCA$) was first synthesized from p-methoxymethoxybenzaldehyde and 2-azidoacetate <u>via</u> N-benzyloxycarbonyl-O-methoxymethoxydehydrotyrosine by five steps. The facile stepwise protections of $\Delta Tyr \cdot NCA$ gave many useful dehydrotyrosine derivatives.

In the course of the study on the synthesis of α -dehydroamino acid (DHA) and its dehydropeptide (DHP), which have been focused on their structure and bioactivity, 1,2 we already pointed out the usefulness of N-carboxy- α dehydroamino acid anhydride (ANCA) for the synthesis of DHA and DHP. 3,4 In fact, recently, N-carboxydehydrophenylalanine anhydride was applied to the facile synthesis of tentoxin.⁵ (ANCA) So far, we reported the synthesis of several kinds of DHA and ANCA which corresponds to neutral α -amino acid having no functional groups in their side chains, besides dehydroglutamic acid derivatives. 6 Here, we succeeded in synthesizing dehydrotyrosine (Δ Tyr) and its Δ NCA derivatives, the latter of which was subjected to the ring cleavage reaction to other useful ATyr derivatives. According to the Hemetsberger method, p-methoxymethoxybenzaldehyde (200 mmol), derived from p-hydroxybenzaldehyde and methoxymethyl (MOM) chloride, was condensed with ethyl 2-azidoacetate (400 mmol) in the presence of EtONa (400 mmol) in EtOH (200 ml) at 0 °C for 4 h to give ethyl 2-azido-(p-methoxymethoxy)cinnamate [1: 57%, syrup. IR (KBr): 2150 (N₃), 1630 (C=C) cm⁻¹. NMR (CDCl₃): δ 6.86 (s, -CH=)]. The selective hydrogenolysis of azido group of 1 (32.5 mmol) with aluminum-amalgam [made from Al (14.9 g) and $HgCl_2$ (14.9 g)] in Et_2O (200 ml) gave O-MOM- ΔTyr -

Scheme 1

OEt (2) almost quantitatively, according to the procedure reported previously. 8 While the usual acylation of 2 was found to be difficult, the reaction of 2 (40 mmol) with benzyloxycarbonyl (Cbz) chloride (80 mmol) in CH₂Cl₂ (80 ml) for 24 h proceeded ultimately in the presence of NaOH (10 mmol) and [CH₃(CH₂)₃]₄N·HSO₄ (0.4 mmol) as a phase transfer catalyst to give N-Cbz-O-MOM-ATyr-OEt (3). Furthermore, the ester 3 (11.4 mmol) was hydrolyzed with 1 M-LiOH (13.7 mmol) in dioxane (8 ml) to give N-Cbz-O-MOM-ATyr-OH (4). As shown in Scheme 1, the intended cyclization of 4 (0.56 mmol) with SOCl₂ (27.56 mmol) in CH₂Cl₂ (2 ml) for 1.5 h readily took place to give ATyr·NCA (5) along with a small amount of O-MOM-ATyr·NCA. From the result, it seems that the MOM group is effective for the protection of phenolic OH group.

In the IR and NMR spectra of $\underline{2-5}$ summarized in Table 1, the appearance of the absorption at about 1650 cm⁻¹ (>C=C<) and that of the chemical shift at about 8 6.50 (-CH=C-) show clearly that the olefinic structure remain unchanged during the consecutive reactions.

On the other hand, to be utilized in a wide variety of the peptide synthesis, both the OH and NH_2 groups of $\Delta \mathrm{Tyr}$ derivatives must be easily and selectively protected with an useful protecting group such as Cbz and t-butoxycarbonyl (Boc) groups. In addition, we were also interested not only in the above protection but also in the reactivity of the $\Delta \mathrm{NCA}$ ring itself newly obtained.

Treatment of $\underline{5}$ (0.96 mmol) with di-t-butylcarbonate [(Boc)₂O; 1.06 mmol] in THF (2 ml) in the presence of a few drops of pyridine for 24 h, followed by the addition of MeOH (5 ml). The resulting solution was then made basic to pH 9 with N-methylmorpholine (NMM) and was stirred for 1 h to give O-Boc- Δ Tyr-OMe ($\underline{6}$).

Compound No.	Yield (%)	Mp ^O C	IR (KBr), cm^{-1}			1 _{H-NMR} , 6 (CDCl ₃)		
			NH	COO	C=C	-NH-		-СН=
<u>2</u>	95	syrup	3460 3375	1710	1645	4.16	(bs)a)	6.46 (s) ^b
3	60	syrup	3315	1725	1645	6.50	(bs)	7.26-7.40 (+Ph)
4	85	148-149	3270	1720	1640	9.84	(bs)	7.16-7.52 (+Ph)
<u>5</u>	83	196 (dec.)	3405	1825 1770	1660	10.14 [11.28	(bs) (bs)]	6.64 (s)

Table 1. Dehydrotyrosine Derivatives (2, 3, 4, and 5)

On the other hand, in the case of Cbz-Cl instead of $(Boc)_2^0$, the similar reaction gave O-Cbz- Δ Tyr-OMe (7) as shown in Scheme 2.

From the results and by comparison with the reactivity of two reaction positions of $\underline{5}$, the phenolic OH group was found to be acylated more preferentially than the ring imino group.

Furthermore, for the one pot synthesis of ΔTyr derivatives 0,N-diprotected with different groups, treatment of $\underline{5}$ (0.97 mmol) with $(Boc)_2O$ (1.06 mmol) was similarly carried out for 24 h. To the resulting solution was added successively triethylamine (1.55 mmol) and a solution of Cbz-Cl (1.45 mmol) in THF (1 ml) over 1.5 h. Finally, the reaction mixture was treated with MeOH (5 ml) and then NMM was added to make the mixture to pH 9 to give the expected O-Boc-N-Cbz- ΔTyr -OMe (8). Contrary to the above consecutive reactions, the similar successive treatments of $\underline{5}$ with Cbz-Cl, $(Boc)_2O$, and then MeOH gave N-Boc-O-Cbz- ΔTyr -OMe (9), as illustrated in Scheme 2 and summarized in Table 2. In addition, it was

Boc-O-
$$\bigcirc$$
-CH=C-COOCH₃

HO- \bigcirc -CH=C-COOCH₃
 $\stackrel{(\underline{6})}{\text{NH}_2}$

HO- \bigcirc -CH=C-COOCH₃
 $\stackrel{(\underline{5})}{\text{NH}_2}$

Cbz-O- \bigcirc -CH=C-COOCH₃
 $\stackrel{(\underline{5})}{\text{NH}_2}$
 $\stackrel{(\underline{5})}{\text{Cbz}}$
 $\stackrel{(\underline{5})}{\text{Cbz}}$
 $\stackrel{(\underline{9})}{\text{Ch}}$

Scheme 2

a) Broad singlet. b) Singlet.

Table 2.	0- and	O,N-Diprotected	ΔTyr	Derivatives	(6-9)
----------	--------	-----------------	--------------	-------------	-------

Compound Yield		Q_	IR (KBr), cm ⁻¹			¹ H-NMR, δ (CDCl ₃)		
No.	(8)	Mp ^O C	NH	C00	C=C	-NH- -NH ₂		-СН=
<u>6</u>	80	113-115	3455 3380	1760 1700	1630	4.24	(bs)	6.50 (s)
<u>7</u>	84	93-95	3480 3400	1755 1705	1630	4.24	(bs)	6.48 (s)
8	46	97-98	3325	1760 1725	1645	6.48	(bs)	7.12-7.52 (+Ph)
<u>9</u>	52	78-80	3350	1770 1710	1650	6.20	(bs)	7.32 (s)

found that when the above sequential operations were terminated by using water in place of MeOH, the C-free derivatives of $\underline{8}$ and $\underline{9}$ could be obtained in good yields. These results will be reported in detail elsewhere.

REFERENCES AND NOTE

- 1. U. Schmidt, J. Hausler, E. Ohler, and H. Poisel, Fortschritt. Chem. Org. Naturst., 37, 300 (1979); C. H. Stammer, "Chemistry and Biochemistry of Amino Acid, Peptide and Protein", 6, 34 (1981).
- K. Noda, Y. Shimohigashi, and N. Izumiya, "The Peptides", Vol. 5, by E. Gross and J. Meienhofer, Academic Press (1983).
- 3. In this paper, the symbol Δ indicates the double bond of DHA derivatives.
- C. Shin, T. Yamada, and Y. Yonezawa, <u>Tetrahedron Lett.</u>, <u>24</u>, 2175 (1983).
 C. Shin and Y. Yonezawa, Chem. Lett., <u>1985</u>, 519.
- 5. R. Jacuier and J. Verducci, Tetrahedron Lett., 25, 2775 (1984).
- 6. C. Shin, Y. Yonezawa, and E. Watanabe, Tetrahedron Lett., 26, 85 (1985).
- H. Hemetsberger, D. Knittel, and H. Weidmann, Monatsh. Chem., 100, 1599 (1969).
- 8. C. Shin, Y. Yonezawa, K. Unoki, and J. Yoshimura, <u>Bull. Chem. Soc. Jpn.</u>, 52, 1657 (1979).

Received, 18th February, 1986