PHOTOSENSITIZED OXYGENATION OF 2-PYRIDONES 17

Eisuke Sato, Yoshiya Ikeda, and Yuichi Kanaoka*

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

<u>Abstract</u> — Irradiation of oxygenated solutions of 3- and 6-substituted 2-pyridones with Methylene Blue as sensitizer afforded the oxygenation products probably by way of endoperoxide intermediates (4).

As an extension of systematic research on the photochemistry of nitrogen-carbonyl systems such as amides and imides, 2 we have been exploring photoreactions of conjugated nitrogen-carbonyl system. 1 In connection with these studies we are interested in the photochemical properties of 2-pyridones, the most fundamental member in the family of conjugated nitrogen-carbonyl systems. Although [4+4]dimerization, 3 valence isomerization⁴, and [2+2]cycloaddition to olefins⁵ have been extensively studied, photooxygenation of pyridones, which seems interesting from the view point of synthetic utility, has attracted no attention. 6 In this paper we wish to report the photosensitized oxygenation of 3- and 6-substituted 2-pyridones (1). Irradiation of 3-methyl-2-pyridone (la-f) with Methylene Blue as sensitizer under oxygen atmosphere, in the presence of small amount of acid catalyst, afforded pyridine-2,6-diones (2a-f) as shown in Scheme 1 and Table I. Probably 2-pyridines react initially with photochemically generated singlet oxygen to form unstable endoperoxides (4) by [4+2]addition, followed by the O-O bond fission with acid catalyst by path A leading to the products 2 (Scheme 2).7 Irradiation of 3-methoxy-2-pyridone (1g) in methanol gave 3,3-dimethoxypyridine-2,6(1H,3H)-dione (2g). Presumably nucleophilic addition of methanol occurred at the 3-position of the endoperoxide ($\underline{4}$) when R_2 is OCH₃ (\underline{path} \underline{B}). Similar products 2h-j were also obtained with other alcohols such as ethanol, i-propanol and allyl alcohol as shown in Table I. The site of alcohol addition can be reasonably explained by stabilization of the intermediate carbonium ion with a substituent if the $S_N 1$ -character is postulated for the alcoholysis.

[†] Dedicated to Professor Gilbert Stork on the occasion of his 65th birthday.

Scheme 1

Table I Photooxygenation Products from 2-Pyridones^a

<u>1</u>	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	solvent	yield(%) ^b 2 3	mp(°C) ^C (bp°C).
<u>a</u>	Н	CH ₃	н	H	Н	Н	CH ₂ Cl ₂	14	132-134
<u>b</u>	CH ₃	СН3	H	Н	Н	H	сн ₂ сі ₂	50	82- 86
<u>c</u>	Εt	снз	H	H	Н	H	CH ₂ Cl ₂	27	64- 67
<u>d</u>	Bzl	CH ₃	н	Н	Н	Н	CH ₂ Cl ₂	31	(220/0.9)
<u>e</u>	сн ₃	CH ₃	Н	сн3	Н	H	CH ₂ Cl ₂	21	62- 65
<u>f</u>	Bzl	снз	Н	сн ₃	Н	Н	CH ₂ C1 ₂	41	(220/0.6)
<u>g</u>	H	осн ₃	H	H	H	CH ₃	сн ₃ он	65	86- 87
<u>h</u>	Н	осн ₃	H	H	H	Et	EtOH	42	(165/0.8)
<u>i</u>	Н	осн ₃	Н	H	H	i-Pr	i-PrOH	42	(175/0.9)
<u>j</u>	Н	осн3	H	Н	Н	Allyl	Ally1-OH	19	(175/0.6)
<u>k</u>	Н	H	н	H	сн ₃		сн ₃ он	12	162.5-163
1	H	H	CH ₃	н	сн ₃		сн ₃ он	23	140-141
<u>m</u>	CH ₃	H	Н	Н	сн3		сн ₃ он	11	116-118
<u>n</u>	сн ₃	Н	СНЗ	Н	сн3		сн ₃ он	20	116-118
<u>o</u>	Н.	н	Н	СH ₃	CH ₃		сн3он	26	131-133

a $\underline{1}$ (10 mmol) in 400 ml solvent was irradiated with a 500W halogen lamp through Pyrex filter for 3 h under oxygen atmosphere using Methylene Blue (20 mg) as sensitizer in the presence of p-toluenesulfonic acid (100 mg) as catalyst for $\underline{1}$ a-f, and in the absence of acid for $\underline{1}$ g-o.

b Products were purified by a silica gel chromatography (80g) eluting with a mixture of methylene chloride with ethyl acetate.

c Recrystallized from ethyl acetate-n-hexane or distilled under reduced pressure (bath temperature/mmHg). All new compounds gave satisfactory elemental analyses and showed reasonable spectral data (IR, ¹H-NMR and Mass).

2-Pyridones (<u>lk-o</u>) possessing a methyl group at the 6-position upon the photo-oxygenation in methanol gave pyridine-2,3-dione derivatives (<u>3k-o</u>). The mechanism is explained based on the dehydration of the hydroperoxide (<u>6</u>) formed by nucleo-philic addition of methanol at the 4-position of the endoperoxide (<u>4</u>) (<u>path C</u>). Dilling et al. reported that oxygen showed no influences on photoreactions of 2-pyridones such as [4+4]dimerization and valence isomerization. Therefore, it is interesting that 3- and 6-substituted 2-pyridones undergo photosensitized oxygenation producing oxygenated products. There are known several examples of photo-oxygenation of six-membered heterocycles: 5-ethoxy-1,3-dimethylpyrazin-2(lH)-one gave 5-ethoxy-3-hydroxy-1,3-dimethylpyrazine-2,6(lH,3H)-dione <u>via</u> initial formation of the endoperoxide. Oxygenation of other pyrazin-2-ones were also reported. Since the photochemical introduction of oxygen-function to 3- and 6-position of 2-pyridones becomes possible, studies on the synthetic application of this reaction are in progress.

REFERENCES AND NOTES

- Photochemistry of the Conjugated Nitrogen-Carbonyl Systems. 2. Part 1: Y.
 Kanaoka, M. Hasebe, Y. Hatanaka, <u>Heterocycles</u>, 1979, 263; Photoinduced Reactions. 89. Part 88: E. Sato, M. Hasebe and Y. Kanaoka, submitted.
- 2. Y. Kanaoka, Accounts Chem. Res., 11, 407 (1978).
- A. Schönberg "Preparative Organic Photochemistry" 2nd ed., ed. by A. Schönberg, Springer-Verlag, Berlin, 1968, p. 97.

- 4. W. L. Dilling, N. B. Tefertiller and A. B. Mitchell, Mol. Photochem., 5, 371 (1973).
- a) K. Somekawa, T. Shimo, K. Tanaka and S. Kumamoto, <u>Chem. Lett.</u>, 1975, 45;
 b) K. Somekawa, <u>Nippon Kagaku Kaishi</u>, 1976, 412;
 c) H. Fujii, K. Shiba, C. Kaneko, <u>J. Chem. Soc.</u>, Chem. <u>Commun.</u>, 1980, 537.
- 6. a) M. V. George and V. Bhat, <u>Chem. Reviews</u>, <u>79</u>, 44 (1979); b) H. H. Wasserman and B. H. Lipshutz "Singlet Oxygen" ed. by H. H. Wasserman and R. W. Murray, Academic Press, New York, <u>1979</u>, p. 429.
- 7. When <u>1b</u> and <u>1e</u> were irradiated under the similar conditions without an acid catalyst, the yield of <u>2b</u> and <u>2e</u> were very low and most of the starting materials were recovered. Presumably the first step of oxygen addition to form endoperoxide (<u>4</u>) is reversible, and the back process may be predominant in the absence of acid catalyst.
- 8. P. J. Machin, A. E. Porter and P. G. Sammes, <u>J. Chem. Soc. Perkin Trans. I</u>, 1973, 404.
- 9. a) J. L. Markham and P. G. Sammes, J. Chem. Soc., Chem. Commun., 1976, 417;
 - b) T. Nishio, N. Nakajima and Y. Omote, Tetrahedron Lett., 1981, 753;
 - c) T. Nishio, N. Nakajima, M. Kondo, Y. Omote and M. Kaftory, <u>J. Chem. Soc.</u> Perkin Trans. I, 1984, 391.

Received, 12th May, 1986