A CHIRAL, NON-RACEMIC c_1 - c_7 ERYTHRONOLIDE SYNTHON USING THE 3-METHYL- γ -BUTY-ROLACTONE STRATEGY¹

Frederick E. Ziegler* and Alyssa Kneisley
Sterling Chemistry Laboratory, Yale University
New Haven, Connecticut 06511, USA

<u>Abstract</u> — A chiral, non-racemic C_1 - C_7 unit for the synthesis of the erythronolides has been prepared. R-3-Methyl- γ -butyrolactone serves as the template for the synthesis. The stereochemistry at C_3 of the synthon $\underline{13}$ was established by stereoselective, kinetic protonation of the enolates of lactones 9 and 10.

We have developed two procedures using R or S lactone $\underline{1}$ and R or S alcohol $\underline{2}$ that provide three of the four possible diastereomers (six enantiomers) of lactone 3. Since the stereoisomeric lactones $\underline{3}$ (Scheme) can be induced to undergo oxidative decarboxylation with retention of configuration, they can be transformed into their respective diols $\underline{4}$. Only the 2,3-syn, 3,4-syn diastereomer of diol 4, and its congener $\underline{3}$, cannot be realized directly by our methodology. The ability to realize syn-syn stereochemistry is important as it appears at C_3 - C_5 in erythronolide A ($\underline{5a}$) and 6-deoxyerythronolide B ($\underline{5b}$). In this communication we reveal a solution to this problem.

R-3-Methyl- γ -butyrolactone diethylortholactone (%ee=97.4) and R-2-methyl-4(E)-hexen-2-ol $\underline{2}$ (%ee>99%) were subjected to Claisen rearrangement (toluene, reflux; pivalic acid, cat.; 48h) affording epimeric lactones $\underline{6a/6b}$ (54/46) whose equilibration (t-BuOK, t-BuOH-Et₂0, 25°C, 18h) gave a 98/2 mixture of $\underline{6a/6b}$ in 94% overall yield. Formal Baeyer-Villiger oxidation of lactone $\underline{6a}$ was accomplished via the Criegee rearrangement sequence (MeLi, Et₂0, 0°C; aq. H₂0₂, HOAc, THF; Ac₂0, Et₃N, DMAP, CH₂Cl₂, then heat at 40°C; LiAlH₄; Me₂C(OMe)₂, p-TsOH), 2b , or providing the acetonide $\underline{7}$ in 82% yield for the five steps. Iterative homologation of lactone $\underline{6a}$ to lactone $\underline{8a}$ was completed as follows. Ozonolysis of olefinic acetonide $\underline{7}$ (0₃, MeOH; LiAlH₄, Et₂0), chain extension (TsCl, pyr., 25°C, 18h; NaCN, DMSO, 90°C, 4.5h), hydrolysis (HCl, H₂0/MeOH, reflux, 18h), and silylation (t-BuPh₂SiCl, imidazole, DMF, 25°C, 18h) afforded lactone $\underline{8a}$ in 63% yield from acetonide $\underline{7}$.

Carbomethoxylation of lactone 8a (2 equiv. LDA, THF/HMPA, -78° C, then NCCO₂Me, 1h; 98% yield) set the stage for further chain extension. Alkylation of the sodium salt of lactonic ester 8b (NaH, THF) with the diethyl phosphate ester of R-2-methyl-4(E)-hexen-2-ol 2 (5 mol % (Ph₃P)₄Pd, 5 mol % Ph₃P, THF, 0°C, 45 min, 25°C, 1h) followed by Krapcho decarboxylation (LiCl, DMSO/H₂O, 190°C, 4h) gave 2,3-cis lactone 9 (73%, mp 115-116°C) and 2,3-trans-lactone 10 (21%, mp 67-69°C).

The 2,3-cis stereochemistry of lactone $\underline{9}$ was confirmed when it was transformed via the Criegee sequence into acetonide $\underline{11}$ (87%). The nmr spectrum of acetonide $\underline{11}$, which can have the

Me Me Me Me Me Me Me Me OTBDPS

6a,
$$R = \beta$$
-H

b, $R = \alpha$ -H

b, $R = CO_2Me$

1,3-dioxane ring exist in a chair, revealed the C_3 -methine proton at \$3.82 (dd, J=10.0, 1.9 Hz) and its C_5 counterpart at \$3.45 (dd, J=9.9, 1.9 Hz); the smaller couplings arise from the C_4 -methine proton. The C_3 -proton of acetonide <u>12</u>, derived from 2,3-trans-lactone <u>10</u> resonated at \$3.60 (dd, $J_{2,3}$ =10.8 Hz, $J_{3,4}$ =3.9 Hz), while the C_5 -proton absorbed a \$3.18 (dd, $J_{4,5}$ =6.6 Hz, $J_{5,6}$ =3.8 Hz).

Equilibration (t-BuOK, t-BuOH, Et₂0, 25°C) of lactones $\underline{9}$ and $\underline{10}$ gave a readily separable (flash chromatography) 1:1 mixture. However, deprotonation (LDA, THF, -78°C) of either lactone followed by kinetic protonation (HOAc) gave a 19:1 ratio of $\underline{9/10}$. Protonation occurs preferentially on the sterically less demanding face of the lactone enolate. Ozonolysis of olefinic acetonide $\underline{11}$ (0₃, MeOH/CH₂Cl₂, NaHCO₃, -78°C) followed by reduction (LiAlH₄, Et₂0) afforded alcohol $\underline{13}$ in 83% yield.

Alcohol $\underline{13}$ is a chiral, non-racemic synthon (%ee>99.9)² for the erythronolides having the absolute stereochemistry of carbons 2-6 correlating with their counterparts in 6-deoxyerythronolide B ($\underline{5b}$).

ACKNOWLEDGMENTS

This research was supported by grant GM-33180 from the Institute of General Medical Sciences, NIH. We are indebted to Kanegafuchi (Osaka) for materials used in this work. A. K. expresses her gratitude for receipt of a Dox Fellowship (1985-86).

REFERENCES AND NOTES

- This communication is dedicated to Professor Gilbert Stork on the occasion of his sixtyfifth birthday.
- a) F. E. Ziegler, A. Kneisley, and R. T. Wester, <u>Tetrahedron Lett.</u>, 1986, <u>27</u>, 1221; b) F. E. Ziegler and R. T. Wester, <u>ibid.</u>, 1986, <u>27</u>, 1225; c) F. E. Ziegler, E. P. Stirchak, and R. T. Wester, <u>ibid.</u>, 1986, <u>27</u>, 1229; d) F. E. Ziegler and A. Kneisley, <u>ibid.</u>, 1985, <u>26</u>, 263 and earlier references cited therein.
- 3. For a recent synthesis of an erythronolide fragment, see S. D. Burke, F. J. Schoenen, and C. W. Murtiashaw, <u>Tetrahedron Lett.</u>, 1986, <u>27</u>, 449; M. Kinoshita, M. Arai, K. Tomooka, and M. Nakata, <u>ibid.</u>, 1986, <u>27</u>, 1811. For previous syntheses of erythromycin, erythronolides, and fragments thereof, see references 2 and 4, respectively, in these papers.
- 4. Diisobutylaluminum hydride (DIBAL) was used instead of $LiAlH_4$ to cleave the acetates.

Received, 26th May, 1986