SYNTHETIC STUDIES OF THE NARGENICINS. 2. SYNTHESIS OF THE "NORTHERN HALF" OF NARGENICIN ${ m A_1}^{ m 1}$

James Kallmerten* and Daniel J. Plata Department of Chemistry, Syracuse University, Syracuse, New York 13244-1200, U.S.A.

Abstract - The synthesis of intermediate $\frac{4}{9}$, corresponding to the C1-C14 fragment of the nargenicin macrolides, is described.

The nargenicins $(\underline{1-3})$ constitute a new class of macrolide antibiotics recently isolated from fermentations of soil-dwelling microorganisms by workers at Pfizer² and Upjohn³. Current interest in these compounds stems from their pronounced activity against drugresistant microbial strains⁴, their novel biogenesis⁵ and the formidable synthetic challenge presented by the unique connectivity and complex stereochemistry of these structurally fascinating decanolides. Recently we described an approach to the 11-oxatricyclo[4.4.1¹,6.0²,7]undecene nucleus of the nargenicins. Herein we report the synthesis of tricyclic intermediate $\underline{4}$, representing the fully-functionalized "northern half" of nargenicin A₁ and its congeners.

$$\frac{1}{2}$$
; $R_1 = \begin{pmatrix} 0 & H \\ N & N \end{pmatrix}$, $R_2 = OH$, Nargenicin A_1
3; $R_1 = H$, $R_2 = OH$, Nodusmicin

Treatment of the previously reported enone $\underline{5}^1$ with ethoxyvinyl lithium at -78°C in the presence of MgBr₂-Et₂O resulted in the formation of an initial adduct, which upon warming to room temperature underwent intramolecular epoxide opening to give tricyclic $\underline{6}^6$

(Scheme I). Protection of the hydroxyl group followed by treatment with methanol and p-toluenesulfonic acid gave the tetracyclic ketal \underline{B} ; selective cleavage of the C_{11} methoxymethyl ether in the latter transformation presumably involves participation of the enol ether (or the mixed ketal derived therefrom). Interestingly, ketal $\underline{8}$ is present as a single stereoisomer, as evidenced by ^{1}H and ^{13}C NMR. We have assigned the β -configuration to the methoxy substituent based on NOE studies of a subsequent intermediate (vide infra).

Scheme I

We next investigated strategies for introduction of a three-carbon subunit corresponding to the C_1 - C_3 segment of the nargenicin macrolide system. Treatment of ketal $\underline{8}$ with N-bromosuccinamide resulted in allylic bromination with concurrent olefin migration $\overline{7}$ to give $\underline{9}$. Assignment of the β -configuration to bromide $\underline{9}$ is based on NOE experiments which show enhancement of the allylic C_4 -H resonance upon irradiation of the C_8 -H methine signal. Additionally, enhancement of the signal attributed to the C_{21} methyl group supports our assignment of the ketal stereochemistry. Attempts to introduce a C_4 substituent by coupling $\underline{9}$ with organometallic reagents were frustrated by a lack of regionand stereochemical control. Thus, addition of lithium dimethyl cuprate to $\underline{9}$ resulted in S_{11} addition to give $\underline{11}$, while treatment with methyl Grignard reagent afforded a mixture of the epimeric adducts $\underline{10}$.

Scheme II

A recent report describing the synthesis of oxygen heterocycles via <u>endo</u> cyclization of sterically constrained 6-heptenyl radicals⁸ led us to investigate this approach to introduction of the C_1 - C_3 segment (Scheme II). Treatment of bromide $\underline{9}$ with allyl alcohol gave the mixed ketal $\underline{12}$; as in the case of ketal $\underline{8}$, a single stereoisomeric product was obtained. Unfortunately, all attempts to induce cyclization of this material via the allylic radical resulted in formation of olefin $\underline{13}$ corresponding to reductive dehalogenation of $\underline{12}$. Consequently, we turned our attention to alternative strategies for introduction of the three-carbon sidechain (Scheme III).

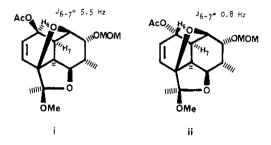
Scheme III | 1111 OMOM | 1111

REAGENTS: a) $CrO_3 \cdot 3.5$ -dimethylpyrrazole, CH_2Cl_2 , $-20^{\circ}C$; b) $LiCu(CN) \longrightarrow 0^{\downarrow}$ OEt, THF, $-78^{\circ}C$, then $(NMe_2)_2POCl$; c) Li, NH_3 , THF, tBuOH; d) Jones, $-20^{\circ}C$, acetone- H_2O ; e) CH_2N_2 , Et_2O ; f) LDA, MOOPh, THF, $-78-0\circ C$, g) KH, Mel.

Treatment of olefin 8 with excess chromium trioxide-3,5-dimethylpyrrazole complex 9 gave enone $\underline{14}$, with no evidence of allylic transposition. Introduction of the requisite three-carbon fragment 10 was then accomplished by cuprate addition to $\underline{14}$ followed by enolate trapping. Reduction 11 of the enol phosphoimidate afforded a single olefinic product, $\underline{15}$. The desired intermediate $\underline{4}$ was obtained by deprotection-oxidation and esterification with diazomethane.

An inspection of models suggests that cuprate addition to enone $\underline{14}$ will occur from the desired β -orientation, since the opposing face is effectively blocked by the ketal methyl substituent. Additionally, we reasoned that the oxa-bridge and/or the methoxy group might function as coordinating ligands, directing β -attack. That we had indeed established the correct stereochemistry of the C_1 - C_3 fragment was confirmed by an alternative sequence for introduction of this substituent (Scheme IV). Reduction of enone $\underline{14}$ gave a single alcohol $\underline{16}^{12}$ which upon treatment with triethyl orthoacetate in refluxing xylene afforded Claisen product $\underline{17}$. Conversion of $\underline{17}$ to the aldehyde and Wittig methylenation furnished olefin $\underline{18}$, which was identical in all respects to a sample prepared from $\underline{15}$ by deprotection, mesylation and elimination.

REAGENTS: a) LiEt₃BH, THF, -78° C; b) (OEt)₃CCH₃, TsOH, xylene, 140° C; c) LiAlH₄, Et₂O, 0° C; d) Collins, CH₂Cl₂; e) Ph₃PCH₂, THF, 0° -RT; f) HCl, THF-H₂O; g) MsCl, pyridine, then t_{Bu}OK, DMSO.


Finally, the C_2 -methoxy substituent present in the nargenicins can be introduced in a nonstereoselective manner by enolate oxidation 13 of $\underline{4}$ and alkylation of the resulting α -hydroxy ester. Obtained was a 1:1 mixture of epimeric esters $\underline{19}$ and $\underline{20}$. A more efficient protocol for control of C_2 stereochemistry may prove to be via oxidation of a C_2 -deoxy macrolide intermediate late in our synthetic plan. Efforts directed at conversion of the "northern half" intermediate $\underline{4}$ to the naturally occurring nargenicins are in progress and will be reported in due course.

ACKNOWLEDGEMENT

We gratefully acknowledge the Research Corporation and the National Institutes of Health (AI-19632) for their support of this work. High-field NMR spectra were obtained from the N.I.H. Research Resource for Multi-Nuclear NMR and Data Processing (RR-01317) at Syracuse University.

REFERENCES

- a) For Part 1 see: J. Kallmerten, <u>Tetrahedron Lett.</u>, 2843 (1984); b) Portions of this work were presented at the 191st National Meeting of the American Chemical Society, New York, N.Y., April 13-18, 1986, Abstract ORGN 315.
- a) W.D. Celmer, G.N. Chmurny, C.E. Moppett, R.S. Ware, P.C. Watts and E.B. Whipple, J. Amer. Chem. Soc., 102, 4203 (1980); b)
 B.J. Magerlein and R.J. Reid, J. Antibiotics, 254 (1982); c)
 W.D. Celmer, W.P. Cullen, R. Shibakawa and J. Tone (to Pfizer, Inc., New York)
 U.S. Patent 4,436,747; see Chem. Abstr., 101, 53332 (1984).
- 3. H.A. Whaley, C.G. Chidester, S.A. Mizsak and R.J. Wnuk, Tetrahedron Lett., 3659 (1980).
- 4. a) B.J. Magerlein, Medi #72, Abstracts of the 182nd ACS National Meeting, August 23, 1981; b) J. Yone, R. Shibakawa, H. Maeda, Y. Yamauchi, K. Niki, M. Saito, K. Tsukuda, E.B. Whipple, P.C. Watts, C.E. Moppett, M.T. Jefferson, L. H. Huang, W.P. Cullen and W.D. Celmer, Abstract #62 from the 20th Interscience Conference of Antimicrobial Agents and Chemotherapy, September 22, 1980; c) H.A. Whaley and J.H. Coates, Abstract #187 from the 21st Interscience Conference on Antimicrobial Agents and Chemotherapy, November 4, 1981
- D.E. Cane and C.-C. Yang, <u>J. Amer. Chem. Soc.</u> 106, 784 (1984); W.C. Snyder and K.L. Rinehart, ibid., 106, 787 (1984); D.E. Cane and C.-C. Yang, J. Antibiotics, 423 (1985).
- All new compounds were characterized by IR, 500 MHz PMR, 90 MHz CMR and combustion analysis.
- 7. The regiochemistry of bromination was unambiguously determined by proton decoupling studies. In addition, the splitting patterns of the C_5 and C_6 olefinic protons are identical to those observed for authentic samples of the \underline{seco} esters derived from nargenicin A_1 and nodusmicin.
- 8. M.D. Bachi and C. Hoornaert, Tetrahedron Lett., 2689 (1981).
- 9. W.G. Salmond, M.A. Barta and J.L. Havens, J. Org. Chem., 43, 2057 (1978).
- 10. J.C. Stowell, Chem. Rev., 84, 409 (1984).
- 11. R.E. Ireland and G. Pfister, <u>Tetrahedron Lett.</u>, 2145 (1969); D.C. Muchmore, <u>Org. Synth.</u>, 52, 109 (1972).
- 12. Our assignment of the β -configuration to alcohol $\underline{16}$ is based on the observed coupling constant (5.4 Hz) between H₆ and H₇. By contrast, the epimeric α -alcohol should exhibit minimal H₆-H₇ coupling since the relevant dihedral angle approaches 90° in models. Solvolysis of bromide $\underline{9}$ (AgOAc, benzene) affords a mixture of acetates \underline{i} and \underline{i} i; as expected, only a small (<1 Hz) H₆-H₇ coupling is observed for \underline{i} .

13. E. Vedejs, J. Amer. Chem. Soc., 96, 5944 (1974).

Received, 29th May, 1986