A SYNTHESIS OF (±)-1- AND (±)-3-HYDROXY-(C)-HOMOAPORPHINES $\overline{\text{VIA}}$ META-BRIDGED AROMATIC LACTAMS[#]

Osamu Hoshino, Hiromichi Ogasawara, Atsuo Takahashi, and Bunsuke Umezawa Faculty of Pharmaceutical Sciences, Science University of Tokyo, 12, Ichigaya Funagawara-machi, Shinjuku-ku, Tokyo 162, Japan

Abstract— The title (C)-homoaporphines $(\underline{4})$ were synthesized starting with $\underline{\text{meta}}$ -bridged aromatic lactams $(\underline{2})$ readily obtained by photolysis of phenolic N-phenethylbromophenylpropionamides (1).

Previously, we have reported that photolysis 1 of phenolic N-phenethylbromophenylpropionamides ($\underline{1}$) gives rise to <u>meta-bridged</u> aromatic lactams ($\underline{2}$). The lactams ($\underline{2}$) seemed to be useful key compounds for synthesis of (C)-homoaporphines. 2,3 The present paper deals with a synthesis of (C)-homoaporphines by a new synthetic route.

In a typical example, a mixture of $2a^1$ (107.1 mg) and $POCl_3$ (0.75 ml) in CH_3CN (10 ml) was refluxed for 1 h. Usual work-up of the reaction mixture gave an oil, which was reduced with $NaBH_4$ (23 mg) in MeOH (10 ml) at room temperature for 30 min. Usual work-up of the reaction mixture gave an oil, which was crystallized on trituration in n-hexane to afford a solid $(3a)^4$ (99 mg, 97%), mp 215-217°C (MeOH). N-Methylation (1. 35%aq.HCHO; 2. $NaBH_4$) of 3a afforded an oil, which was purified on preparative thin-layer chromatography (SiO_2 : developing solvent: $CHCl_3$: MeOH= 10:1) to afford $4a^4$ (46 mg, 87%), mp 209-211°C (i-PrOH)(lit. 3 , 199-200°C). It was identical with

[#] Dedicated to Professor G. Stork on the occasion of his sixty-fifth birthday.

an authentic sample 3 by comparison of their spectral data. Similarly, reaction of $2b-d^{-1}$ afforded $4b-d^{-4}$ via $3b-d^{-4}$. Thus, a synthesis of $(\pm)-1-$ and $(\pm)-3-$ hydroxy-(C)-homoaporphines $(\underline{4})$ was accomplished by a new synthetic route starting with $\underline{\text{meta-bridged aromatic lactams }}(2)$.

ACKNOWLEDGEMENTS

The authors are indebted to Dr. T. Moroe of Takasago Perfumery Co., Ltd. for his kind supply of vanillin and o-vanillin. Thanks are also due to Sankyo Co., Ltd. for elemental analysis, and to Misses N. Sawabe and N. Yamatani of this Faculty for ¹H-nmr and ms spectral measurements.

REFERENCES AND NOTES

- 1. O.Hoshino, H.Ogasawara, A. Takahashi, and B.Umezawa, Heterocycles, 1985, 23, 1943.
- a) Photochemical cyclization, see; T.Kametani, Y.Satoh, S.Shibuya, M.Koizumi, and K.Fukumoto, J. Org. Chem., 1971, 36, 3733 and refs. cited therein. b) Oxidative coupling, see; S.M.Kupchan, O.P.Dhingra, C.-K.Kim, and V. Kameswaran, ibid., 1978, 43, 2521 and refs. cited therein. c)
 Via quinol acetates, see; H.Hara, O.Hoshino, B.Umezawa, and Y.Iitaka, J. Chem. Soc. Perkin I, 1979, 2657 and refs. cited therein. d) C-Ring expansion of dehydroaporphines, see; L.J.Castro,, L.Castedo, and R.Riguera, Tetrahedron Lett., 1985, 26, 1561.
- 3. H. Hara, H. Shinoki, T. Komatsu, O. Hoshino, and B. Umezawa, Chem. Pharm. Bull., 1986, 34, 1924.
- 4. ¹H-Nmr spectra were taken with a JEOL-JNM-FX-100 (100MHz) or Hitachi R24B (60MHz) instrument in CDCl₃ solution using TMS as internal standard. 3a; δ (60MHz): 3.85 (9H, s, 3xOMe), 6.60, 6.62, 6.70 (3H, each s, 3xAr-H). 4a; δ (60MHz): 2.31 (3H, s, NMe), 3.81 (9H, s, 3xOMe), 6.58, 6.60, 6.68 (3H, each s, 3xAr-H). 3b (90%), mp 216-218°C(dec.)(MeOH); δ (100MHz): 3.88 (3H, s, 2-OMe), 5.92 (2H, s, OCH₂O), 6.67, 6.69, 6.78 (3H, each s, 3xAr-H). 4b (81%), mp 181-183°C(MeOH)(lit.³, 188-190°C); δ (100MHz): 2.40 (3H, s, NMe), 3.90 (3H, s, 2-OMe), 5.94 (2H, s, OCH₂O), 6.68, 6.70, 6.78 (3H, each s, 3xAr-H). 3c (94%), mp 198-199.5°C(dec.)(MeOH); δ (100MHz)(CDCl₃-CD₃OD): 3.91 (3H, s, 2-OMe), 6.78 (1H, s, 1-H), 7.10-7.30 (4H, m, 4xAr-H). 4c (82%), mp 200.5-201.5°C(dec.)(MeOH); δ (100MHz): 2.46 (3H, s, NMe), 3.94 (3H, s, 2-OMe), 6.83 (1H, s, 1-H), 7.20-7.30 (4H, m, 4xAr-H). 3d (94%) (amorphous mass); δ (60MHz): 3.76 (3H, s, OMe), 3.82 (6H, s, 2xOMe), 6.42, 6.59, 6.90 (3H, each s, 3xAr-H). 4d (96%), mp 199-200°C (i-PrOH)(lit.⁵, 199-200°C); δ (60MHz): 2.34 (3H, s, NMe), 3.79 (3H, OMe), 3.84 (6H, s, 2xOMe), 6.46, 6.60, 6.92 (3H, each s, 3xAr-H).
- 5. O.Hoshino, T.Toshioka, K.Ohyama, and B.Umezawa, Chem. Pharm. Bull., 1974, 22, 1307.

Received, 29th May, 1986