REACTION OF PYRIDINE-N-OXIDE WITH A STRAINED SEVEN-MEMBERED CYCLOALKYNE A CORRECTION

Hans Jörg Lindnera*, Adolf Krebsb*, Jan-Hinrich Försterb, and Volker Sinnwellb

^aInstitut für Organische Chemie, Technische Hochschule Darmstadt, Petersenstraße 22, D-64287 Darmstadt, Germany

bInstitut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany

Abstract - Pyridine-N-oxide adds at room temperature to 3,3,6,6-tetramethyl-1-thia-cycloheptyne to give the 3H-azepine (3). A mechanism of formation for 3 is discussed. On heating 3 rearranges to yield the 3-substituted pyridine (8).

The strained 3,3,6,6-tetramethyl-1-thia-4-cycloheptyne (1) reacts at room temperature with pyridine-Noxide (2) to give a 1:1-addition product (3) in 54% yield; a recent X-ray crystal structure analysis and a detailed NMR study revealed that the structure of this product was that of a 3H-azepine derivative (3) and not that of a 2H-azepine derivative (4) as previously suggested on the basis of an X-ray crystal structure analysis. 1

In connection with the synthesis of unsubstituted 2H-azepine² the reaction of 1 with 2 was reinvestigated. To our surprise the 400 MHz 1 H-NMR spectrum of the product showed a singlet at $\delta = 6.42$ ppm which was not significantly coupled to any of the other azepine protons. This fact and the evaluation of a 1 H-COSY spectrum suggested structure (3) for the isolated product; indeed, this structure was confirmed by a second X-ray analysis.

Compound (3) crystallized in colorless triclinic needles. The structure was determined by using direct methods (SHELXL-86³). The non hydrogen atoms were refined anisotropically. The hydrogen atoms were localized in a difference fourier map and refined isotropically. (SHELXL-93⁴). For details see Table 1 and ref. 5. The molecular structure of 3 is shown in Figure 1.6

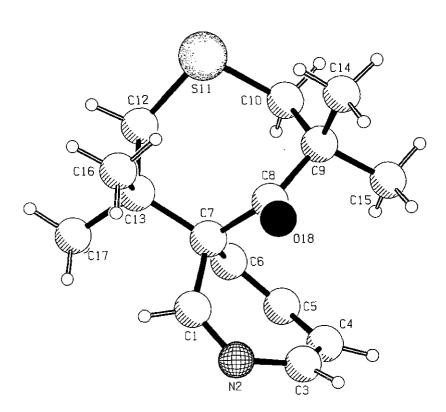


Figure 1: Molecular Structure of 3

In the 400 MHz 1 H-NMR spectrum of 3 at room temperature in addition to signals for the main conformer a second set of signals was present for another conformer (ratio ~7:1). From the coalescence temperature of the 2-H signals (363 K) and the shift difference (0.71 ppm) at room temperature $\Delta G^{\#}_{1} = 78.4 \text{ kJmol}^{-1} (\Delta G^{\#}_{2} = 71.0 \text{ kJmol}^{-1})$ was calculated⁷ for the inversion process of the azepine ring system. The mechanism of formation of 3 can be rationalized by the following sequence (Scheme 2):

$$\begin{bmatrix} 1 & + & 2 & \longrightarrow & \begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Scheme 2

The first step is a 1,3-dipolar cycloaddition of 1 with 2 to yield the unstable intermediate (5) which rearranges to 3 via the azanorcaradiene (6). An alternative mechanism would be a 1,5-sigmatropic rearrangement of 5 to 7 which in turn could give 6 and subsequently 3. There are analogies for both mechanisms in the literature⁸ although in our case the direct rearrangement of 5 to 6 seems to be more likely.⁹ However, in none of the previous cycloadditions of 2 formation of an azepine was observed. The isomeric 3-substituted pyridine (8) can be obtained by heating 3 at 145°C for one hour in almost quantitative yield; the structure (8) was proved by an X-ray crystal structure analysis. This rearrangement probably proceeds via 6, which opens regioselectively to afford 8.

The crystal structure of 8 was determined by direct methods and refined with positioned hydrogen atoms (SHELXL-86³, SHELXS-93⁴); see Table 1 and ref. 5. The molecular structure of 8 is shown in Figure 2.

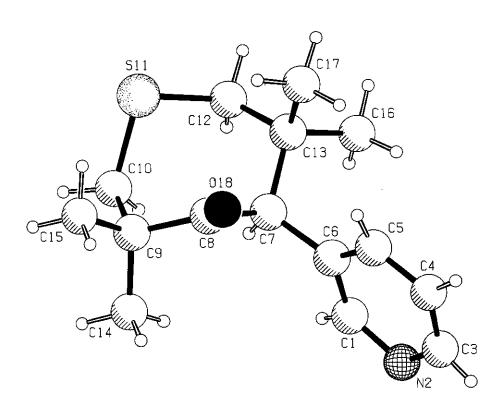


Figure 2: Molecular structure of 8

ACKNOWLEDGEMENT

We thank Mrs. S. Foro for technical assistance, Prof. Dr. H. Fuess, Fachbereich Materialwissenschaften, Technische Hochschule Darmstadt and STOE & Cie, Darmstadt for diffractometer time.

Table 1: Crystal data and refinement for 3 and 8

Compound	3	8
Empirical formula	C ₁₅ H ₂₁ NOS	C ₁₅ H ₂₁ NOS
Formula weight	263.4	263.4
Temperature, K	299	299 (2)
Diffractometer	STOE IPDS	CAD 4
Wavelength, Å	0.71073	0.71069
Crystal system	Triclinic	Monoclinic
Space group	P 1	P21/c
Unit cell dimensions, Å; deg	a=6.2857 (9) alpha=85.16 (1)	a = 17.839 (3) $alpha = 90$
	b=8.730 (1) beta=89.79 (1)	b=5.9520 (1) beta = 100.97 (2)
	c=13.415 (3) gamma=82.40 (1)	c=13.728 (4) gamma = 90
Volume, Å ³	727.0 (2)	1431.0 (5)
Z	2	4
Density (calculated) gcm ⁻³	1.203	1.223
Absorption coefficient mm ⁻¹	0.212	0.212
F (000)	284	568
Crystal size, mm	0.875 x 0.075 x 0.05	0.375 x 0.25 x 0.075
Theta range for data	2.70 to 22.50	1.16 to 19.99
collection, deg		
Index ranges	-7<=h<=7, -11<=k<=11,	-19<=h<=19, 0<=k<=6,
	-17<=1<=17	-15<=1<=9
Reflections collected	4568	2476
Independent reflections	1811[R(int)=0.1158]	1343[R-(int)=.0662]
Absorption correction	None	None
Refinement method	Full-matrix least-squares on F ²	Full-matrix least squares on F ²
Data/restraints/parameters	1805 / 0 / 247	1337 / 0 / 180
Goodness-of-fit on F ²	0.938	1.183
Final R indices [I>2sigma (I)]	R =0.0461, wR2=0.1000	R1=0.0686, wR2=0.1959
R indices (all data)	R1=0.0744, wR2=0.1112	R1=0.0882, wR2=0.2087
Largest diff. peak and hole, cÅ-3	0.126 and -0.161	0.264 and -0.252
Extinction coefficient		0.014 (4)

REFERENCES and NOTES

- 1. A. Krebs, H. Colberg, U. Höpfner, H. Kimling, and J. Odenthal, Heterocycles, 1979, 12, 1153.
- 2. D. Hamprecht, K. Polborn, and W. Steglich, Angew. Chem., 1995, 107, 1639, Angew. Chem., Int. Ed. Engl., 1995, 34, 1469.
- 3. G.M. Sheldrick: SHELXL93, a program for crystal structure determination. University of Göttingen, Germany 1993.
- 4. G.M. Sheldrick: SHELXS86. Program for the solution of crystal structures. University of Göttingen, Germany 1986.
- 5. Full details of the crystal structure analyses are available on request from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, on quoting the depositary numbers CSD 406066 (3) and CSD 406067 (8), the names of the authors, and the journal citation.
- 6. A.L. Spek: PLUTON93. Program for the display and analysis of crystal and molecular structures. University of Utrecht, the Netherlands 1993.
- 7. M. Oki, Application of Dynamic NMR Spectroscopy to Organic Chemistry, VCH Verlags-gesellschaft Weinheim, 1986, 6.
- 8. R.A. Abramovitch and I. Shinkai, Acc. Chem. Res., 1976, 9, 192 and references cited therein.
- 9. None of the postulated intermediates (5, 6 or 7) have been observed in a ¹H-NMR study of the reaction at room termperature.

Received, 20th December, 1996