STRUCTURAL ELUCIDATION OF ISOMERIC METHYL (E)-3-[5-AMINOBENZOTRIAZOL-1(2)(3)-YL]PROPENOATES BY NMR SPECTROSCOPY

Antonio Cartaa, Paolo Sanna, *a and Henriette Molinarib

^aIstituto di Chimica Farmaceutica, University of Sassari, Via Muroni 23/a, 07100 - Sassari, Italy

bIstituto Policattedra, Università degli Studi di Verona, Strada Le Grazie, 37100 - Verona, Italy

Abstract- Revised attribution of the structure to three isomers of methyl (E)-3-[5-aminobenzotriazol-1(2)(3)-yl]propenoate ((E)-2, 3 and 4), using combined experiments of mono- and two-dimensional NMR spectroscopy, is reported.

In a previous paper we reported that the reaction of 5-aminobenzotriazole (1) with methyl propynoate gave, according to Michael's reaction, a mixture of three isomers of the methyl (E)-3-[5-aminobenzotriazol-1(2)(3)-yl]propenoate (E)-2, 3 and 4, instead of the expected addition product (5), necessary for an other project.

$$\begin{array}{c|c} CH_a=CH_xCO_2Me \\ \hline \\ H_2N \\ \hline \\ E-2 \\ \hline \\ H_2N \\ \hline \\ E-3 \\ \hline \\ K-CH_a=CH_xCO_2Me \\ \hline \\ CH_a=CH_xCO_2Me \\ \hline \\ CH_a=CH_xCO_2Me \\ \hline \\ H_2N \\ \hline \\ CH_a=CH_xCO_2Me \\ \hline \\ H_2N \\ \hline \\ E-3 \\ \hline \\ CH_a=CH_xCO_2Me \\ \hline \\ H_2N \\ \hline \\ E-4 \\ \hline \\ E-4 \\ \hline \\ E-5 \\ \hline \\ CH_a=CH_xCO_2Me \\ \hline \\ CH_xCO_2Me \\ \hline C$$

Scheme 1

Attribution of the structure to each isomer was achieved comparing our spectroscopic data (UV, IR, 1 H- and 13 C-NMR) with those reported in the literarure for similar cases. $^{2-4}$ In particular, the overall data allowed to distinguish between the 1- and 3-monosubstituted isomers from the 2-substituted one, while the difference between 1- and 3-substituted benzotriazoles are negligible and uncertainty may arise in the exact attribution of the structure to each single isomer. This is the case of compounds ((E)-2, (E)-3 and (E)-4), the NMR data of which, reported in Table 1, clearly show how the overlapping of both proton and carbon signals prevent any exact assignment.

Table 1. ¹ H- and ¹³ C-NMR chemical shifts ranges of compounds (E) -2,3,	Table 1	. ¹ H-	and	¹³ C-NMR	chemical	shifts ranges	of (compounds	(E))-2,3,
---	---------	-------------------	-----	---------------------	----------	---------------	------	-----------	-----	--------

1 _{H-NMR}	δRange	Multiplicity	J (Hz)	¹³ C-NMR	δ Range
Ha	8.2-8.5	d	14-14.2	C=O	165.1-166.1
H-7	7.5-7.8	d	9-9.4	C-5	147.5-151.4
H-4	6.6-7.2	d	1.8-2	C-H _a	136.0-140.0
H-6	6.8-7.1	dd	9-9.4	C-7	111.8-120.5
			and 1.8-2		
H _x	6.4-6.6	d	14-14.2	C-6	116.0-125.2
NH ₂	5.5-6.0	s	-	C-H _x	104.9-108.8
CH ₃	3.7-3.8	s	-	C-4	90.7-98.7
				CH ₃	51.8-51.9

A definition of the correct structure for this type of compounds was necessary owing to their extensive use as intermediates in building up molecules of biological interest.⁵ In this contest we have used simple two-dimensional nmr methods for solving the above problems. Thus, we have found that ¹³C-¹H heteronuclear nmr experiments (Figure 1) could be an useful method to correlate each proton, of each single isomer, with their scalary coupled carbon atoms.⁶ Of course C-3a and C-7a, being quaternary carbons, do not exhibit such correlation.

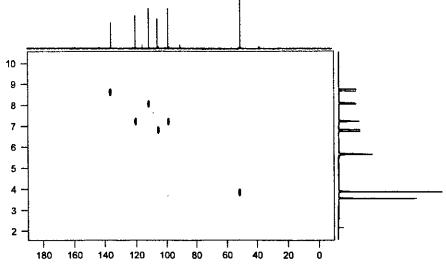
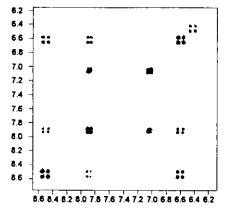



Figure 1. ${}^{13}C^{-1}H$ Heteronuclear NMR for compound ((E)-2).

In addition NOESY experiments⁷ were used to check if H-7 or H-4 protons were closed in space to H_a and H_x protons, beloging to the side chain on N-1 or N-3 atoms, as in the case of isomers ((E)-2) and ((E)-3). Comparison of ¹H-NOESY data for compounds ((E)-2) and ((E)-3) allowed us to establish that when irradiation at δ 7.9 take place a NOE between the doublet of H-7 with those of H_a (δ 8.5) and H_x (δ 6.6) occurred. This result was pertinent to the structure of the isomer ((E)-2) (Figure 2). Instead the Figure 3 shows an NOE between the doublets of the H_a (δ 8.4) and H_x (δ 6.4) protons with the singlet of the H-4 at δ 6.9, thus indicating unambiguously the alternative structure for (E)-3.

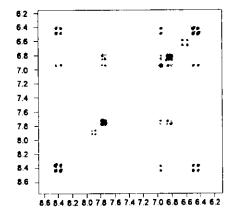


Figure 2. ${}^{1}H$ -NOESY for compound ((E)-2).

Figure 3. ${}^{1}H$ -NOESY for compound ((E)-3).

Exact assignment of the quaternary carbon C-3a and C-7a could be then deduced by evidentiation of ${}^3J_{H-C}$ using "Gate decoupling" and "Hetcor long range" tecniques. A fully coupled ${}^{13}C$ -NMR spectrum of (E)-2 exhibited a signal for C-7a (δ 124.1) as ddd, thus indicating the long range coupling with H-6, H-4 and H_a (Figure 4a). Selective decoupling of H_a signal (δ 8.5) produced a simplified dd due to coupling between C-7a with both H-6 and H-4 protons (Figure 4b), thus confirming that, the alkenoic chain was attached to the N-1 atom. Conversely, the isomer ((E)-3) was deduced by difference.

Another support to this conclusion came from the 1 H-NOESY spectrum of compound ((E)-4) (Figure 5) where no cross peaks were observed between H_a and H_x with H-4 and H-7 protons respectively, in agreement with their long distance.

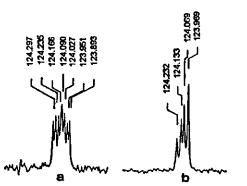


Figure 4. a) Fully coupled 13 C-NMR for C-7a signal of (E)-2; b) selective decoupling of H_a signal for (E)-2.

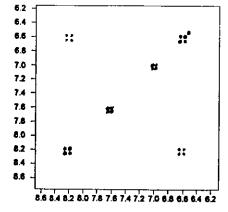


Figure 5. 1 H-NOESY for compound ((E)-4).

Figure 6 showed the conformation at lowest energy related to both compounds ((E)-2) and ((E)-3), whereas Table 2 described the distances, dihedral angles and energies of three conformers at the highest stability of the same compounds.

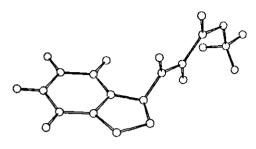


Figure 6. Lowest energy conformation for compounds ((E)-2) and ((E)-3).

Table 2. Data of the calculations for three conformers of (E)-2 or (E)-3.

Conformer		Distance	Distance	Dihedral angle	Energy	
		H ₄ /H _a	H ₄ /H _x	ф		
	i	or H ₇ /H _a	or H7/H _x	C_{3a} - N_3 - CH_a - H_x C_{7a} - N_1 - CH_a - H_x	kcal/mole	
		(A)	(A)	C/a-111-C11a-11X		
	1	3.15	3.92	-122°	25.12	
	2	3.28	3.55	51°	24.78	
	3	3.31	3.31	60°	24.65	

On the basis of these results, the data of ${}^{1}\text{H}$ - and ${}^{13}\text{C-NMR}$ spectra previously assigned to isomers ((E)-2, 3 and 4), 1 must be corrected as reported in Table 3.

Table 3. New values of proton and carbon chemical shifts of the compounds ((E)-2, (E)-3) and (E)-4.

Compoud	¹ H-NMR (DMSO-d ₆) δ ppm (J in Hz)	¹³ C-NMR (DMSO-d ₆) δ ppm
(E)-2	8.51 (1H, d, $J = 14.2$, H_a), 7.90 (1H, d, $J = 9$, H-7), 7.06 (1H, d, $J = 2$, H-4), 7.04 (1H, dd, $J = 9$ and 2, H-6), 6.62 (1H, d, $J = 14.2$, H_x), 5.51 (2H, s, NH ₂), 3.76 (3H, s, CH ₃)	166.06 (s, CO), 147.95 (s, C-3a), 147.53 (s, C-5), 135.98 (d, C-H _a), 124.09 (s, C-7a), 120.24 (d, C-6), 111.76 (d, C-7), 105.70 (d, C-H _x), 98.56 (d, C-4), 51.78 (q, CH ₃)
(E)-3	8.40 (1H, d, J = 14.2, H_a), 7.74 (1H, d, J = 9, H-7), 6.94 (1H, d, J = 1.8, H-4), 6.83 (1H, dd, J = 9 and 1.8, H-6), 6.45 (1H, d, J = 14.2, H_x), 6.03 (2H, s, NH ₂), 3.75 (3H, s, CH ₃)	166.14 (s, CO), 151.40 (s, C-5), 138.83 (s, C-7a), 136.15 (d, C-H _a), 133.62 (s, C-3a), 120.55 (d, C-7), 116.02 (d, C-6), 104.87 (d, C-H _x), 90.71 (d, C-4), 51.79 (q, CH ₃)
(E)- 4	8.23 (1H, d, $J = 14$, H_a), 7.65 (1H, d, $J = 9.4$, H-7), 7.04 (1H, dd, $J = 9.4$ and 2, H-6), 6.64 (1H, d, $J = 14$, H_x), 6.56 (1H, d, $J = 2$, H-4), 5.95 (2H, s, NH ₂), 3.75 (3H, s, CH ₃)	165.62 (s, CO), 149.55 (s, C-5), 147.80 (s, C-3a), 141.13 (s, C-7a), 140.05 (d, C-H _a), 125.15 (d, C-6), 118.69 (d, C-7), 108.80 (d, C-H _x), 90.55 (d, C-4), 51.95 (q, CH ₃)

EXPERIMENTAL

¹H- and ¹³C-NMR spectra were recorded in DMSO-d₆ with tetramethylsilane as internal standard on a Varian XL-200 spectrometer at 200 MHz and 50 MHz respectively. Mixing time employed for NOESY was of 0.55s, whereas for two-dimensional Hetcor we used an J average of 140 and 7 Hz. Molecular mechanic calculations were performed by MM2 computation, using the Discover packed from Biosim.

REFERENCES

1. P. Sanna, P.A. Sequi, S. Piras, and G. Paglietti, Heterocycles, 1995, 41, 2459.

- a) D. Dal Monte, A. Mangini, R. Passerini, and C. Zauli, Gazz. Chim. Ital., 1958, 88, 977;
 b) D. Dal Monte, A. Mangini, and F. Montanari, Gazz. Chim. Ital., 1958, 88, 1035;
 c) W. Armarego, Phys. Methods in Heterocycl. Chem., 1971, 3, 77 and 103;
 d) G.Paglietti and F. Sparatore, Ann. Chim. (Rome), 1972, 62, 128.
- 3. I. Molnar, Helv. Chim. Acta, 1963, 46, 1473.
- 4. a) N. K. Roberts, J. Chem. Soc., 1963, 5556; b) M. Begtrup, R. M. Claramunt, and J. Elguero, J. Chem. Soc., Perkin Trans. 2, 1978, 99; c) G. Paglietti, P. Sanna, A. Carta, F. Sparatore, I. Vazzana, A. Peana, and M. Satta, Il Farmaco, 1994, 49, 693.
- a) P. Sanna and G. Paglietti, *Il Farmaco*, 1989, 44, 609; b) A. Nuvole, P. Sanna, G. Paglietti,
 C. Juliano, S. Zanetti, and P. Cappuccinelli, *Il Farmaco*, 1989,44,619; c) P.Sanna, A. Carta, G. Paglietti, S. Zanetti, and G. Fadda, *Il Farmaco*, 1992, 47, 1001.
- 6. a) A. Bax and G. A. Morris, J. Magn. Reson., 1981, 42, 501; b) A. Bax, J. Magn. Reson., 1983, 53, 512.
- 7. D. J. States, R. A. Haberkorn, and D.J. Ruben, J. Magn. Reson., 1982, 48, 286.
- a) H. O. Kalinowski, S. Berger, and S. Braun, in "Carbon-13 NMR Spectroscopy", John Wiley & Sons, New York, 1991 pp. 57-59, and references cited therein; b) G. E. Martin and A. S. Zektzer, in "Two-dimensional NMR Methods for Establishing Molecular Connectivity", VCH Publishers, Inc. New York, 1988, p. 163, and references cited therein.

Received, 24th March, 1997