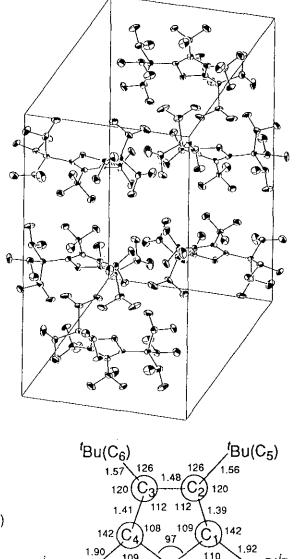
A NONPLANAR THIOPHENE, 3,4-DI-tert-BUTYL-2,5-BIS(TRIISO-PROPYLSILYL)THIOPHENE

Juzo Nakayama,* Ting Yu, Yoshiaki Sugihara, Akihiko Ishii, and Shigekazu Kumakura Department of Chemistry, Faculty of Science, Saitama University, Urawa, Saitama 338, Japan


Abstract - Treatment of 2,5-dibromo-3,4-di-*tert*-butylthiophene with *tert*-butyllithium followed by reaction with triisopropylsilyl chloride gave a highly congested thiophene, 3,4-di-*tert*-buty-2,5-bis(triisopropylsilyl)thiophene, whose thiophene ring is no longer planar.

We have been investigating the syntheses, structures and reactions of congested thiophenes such as 3,4-di-tert-butyl-,1a-c 2,3-di-tert-butyl-,1d 3,4-di-1-adamantyl-,1e and 3,4-dineopentylthiophenes. If The most congested tetrasubstituted thiophene ever synthesized would be tetra-tert-butylthiophene whose thiophene ring is no longer planar. We have now planed to prepare another series of nonplanar tetrasubstituted thiophenes by introducing trialkylsilyl groups into the 2- and 5-positions of 3,4-di-tert-butylthiophene (1). We report here the preparation of 3,4-di-tert-butyl-2,5-bis(triisopropylsilyl)thiophene (4c) whose thiophene ring is nonplanar.

The thiophene 1, now became readily obtainable in large quantities, ^{1a,3} was brominated with 2 molar amounts of N-bromosuccinimide to give 2,5-dibromo-3,4-di-tert-butylthiophene (2) in 95% yield. Treatment of 2 with 4 molar amounts of tert-butyllithium in THF gave a suspension of 3,4-di-tert-butyl-2,5-dilithiothiophene (3). Preparation of 3 by dilithiation of 1 with alkyllithiums or lithium diisopropylamide was unsuccessful probably because of steric hindrance. Heating the suspension of 3 with triisopropylsilyl chloride at reflux for 24 h gave the desired product, 3,4-di-tert-butyl-2,5-bis(triisopropylsilyl)thiophene (4c), in 42% yield. Less congested thiophenes, 3,4-di-tert-butyl-2,5-bis(trimethylsilyl)thiophene (4a) and 3,4-di-tert-butyl-2,5-bis(triethylsilyl)thiophene (4b), were obtained more easily in much better yields. Thus, the reaction of 3 with trimethylsilyl chloride at room temperature gave 4a in 97% yield, while the reaction with triethylsilyl chloride required refluxing for the completion to give 4b in 95% yield. In the latter synthesis, the use of triethylsilyl trifluoromethane-sulfonate gave 4b in a decreased yield (34%).

All of 4 gave spectroscopic data⁴ and elemental analyses which are in harmony with the assigned structures. Two *tert*-butyl and also two trialkylsilyl groups of 4 are equivalent both in the 1 H- and 13 C-NMR spectra, showing that the sp²(C)-CMe₃ and sp²(C)-SiR₃ bonds are freely rotating at room temperature. This is probably due to the highly distorted structures of 4 which made the energy gap between the ground state and the transition state of the rotation smaller.⁵ Interestingly, in the 13 C NMR spectra of 4, the α -carbon signals of thiophene ring undergo an up-field shift with increase of steric congestion; δ 139.2 for 4a, 135.7 for 4b and 133.5 for 4c, whereas the β -carbon signals remain nearly constant; δ 159.2 for 4a and 160.3 for 4b and 4c.

An X-Ray crystal structure analysis of 4c was carried out at -120 °C (Figures 1-3).⁶ The torsion angles C5-C2-C3-C6 and C1-C2-C3-C4 that amount to about 39° and 14°, respectively, make the thiophene ring no longer planar. The torsion angles Si1-C1-C2-C3 and Si2-C4-C3-C2 are about 27° and 32°, respectively. The C2-C3 bond (1.48 Å) is much longer than that of the parent thiophene (1.42 Å).⁷ The C1-C2 (1.39 Å) and C3-C4 (1.41 Å) bonds are also longer than that of the parent thiophene (1.37 Å).⁷ The C5-C2-C3 and C6-C3-C4 bond angles (126°) are comparable with those of the parent thiophene (125°).⁷ The C1-C2-C5 and C4-C3-C6 bond angles (120°) are smaller than those of the parent thiophene (124°), but instead Si1-C1-C2 and Si2-C4-C3 bond angles (142°) are far larger than those of the parent thiophene (128°), thus driving the triisopropylsilyl groups to the sterically open sulfur atom side and making S-C1-Si1 and S-C4-Si2 bond angles (110° and 109°) much smaller than those of the parent thiophene (120°). The above data reveal that 4c is released from steric congestion mainly by expansion of bond angles (particularly Si1-C1-C2 and Si2-C4-C3 bond angles) and also by large torsion angles.

 $^{\prime}$ Pr₃Si₍₂₎ $^{\prime}$ Bu(C₆) C_4 C_3 C_1 $^{\prime}$ Bu(C₅)

Figure 1. Crystal structure

of the thiophene (4c).

Figure 2. A side view of 4c showing the nonplanar structure. Torsion angles (°); Si(1)-C(1)-C(2)-C(5), 25.5; Si(2)-C(4)-C(3)-C(6), 32.4; C(5)-C(2)-C(4)-C(6), 38.8; C(1)-C(2)-C(3)-Ç(4), 14.1; S-C(1)-C(2)-C(3), 9.7; S-C(4)-C(3)-C(2), 11.4 (mean values of the three molecules).

Figure 3. Selected bond lengths (Å) and angles (°) of 4c (mean values of the three molecules).

All available data considered, the extent of the distortion of the molecular structure of **4c** from the parent thiophene seems to be comparable with that of tetra-*tert*-butylthiophene^{2,8} in spite of C-Si bonds being much longer than the corresponding C-C bonds.⁹

ACKNOWLEDGMENTS

The present work was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan (No. 09440213).

REFERENCES

- a) J. Nakayama, S. Yamaoka, and M. Hoshino, Tetrahedron Lett., 1988, 29, 1161; b) J. Nakayama, S. Yamaoka, T. Nakanishi, and M. Hoshino, J. Am. Chem. Soc., 1988, 110, 6598; c) J. Nakayama and A. Hirashima, J. Am. Chem. Soc., 1990, 112, 7648; d) J. Nakayama, K. S. Choi, A. Ishii, and M. Hoshino, Bull. Chem. Soc. Jpn., 1990, 63, 1026; e) J. Nakayama and R. Hasemi, J. Am. Chem. Soc., 1990, 112, 5654; f) J. Nakayama and K. Yoshimura, Tetrahedron Lett., 1994, 35, 2709.
- 2. A. W. Krebs, E. Franken, M. Müller, H. Collberg, W. Cholcha, J. Wilken, J. Ohrenberg, R. Albrecht, and E. Weiss, *Tetrahedron Lett.*, 1992, 33, 5947.
- 3. J. Nakayama, H. Machida, R. Saito, and M. Hoshino, Tetrahedron Lett., 1985, 26, 1983.
- 4a: mp 141-142 °C; ¹H-NMR (CDCl₃, 200 MHz) δ 0.43 (18H, s, Me₃Si), 1.57 (18H, s, Me₃C); ¹³C-NMR (CDCl₃, 100 MHz) δ 4.1 (Me₃Si), 35.5 (Me₃C), 37.4 (Me₃C), 139.2 (α-carbons of the thiophene ring), 160.4 (β-carbons); MS (EI) m/z 340 (M+), 325 (M+-Me). 4b: mp 82.5-83 °C; ¹H-NMR (CDCl₃, 400 MHz) δ 0.88-1.13 (30H, m, CH₃ and CH₂ of Et₃Si), 1.53 (18H, s, Me₃C); ¹³C-NMR (CDCl₃, 100 MHz) δ 7.3 (CH₃CH₂), 7.9 (CH₃CH₂), 35.4 (Me₃C), 36.9 (Me₃C), 135.7 (α-carbons of the thiophene ring), 160.3 (β-carbons); MS (EI) m/z 424 (M+), 395 (M+-Et). 4c: mp 81.5-82 °C; ¹H-NMR (CDCl₃, 400 MHz) δ 1.05 (36H, d, J = 7.4 Hz, Me₂CH), 1.40 (18H, s, Me₃C)), 1.4-1.5 (m, 6H, Me₂CH); ¹³C-NMR (CDCl₃, 100 MHz) δ 14.9 (Me₂CH), 19.8 (Me₂CH), 35.7 (Me₃C), 37.1 (Me₃C), 133.5 (α-carbons of the thiophene ring), 160.3 (β-carbons); MS (EI) m/z 508 (M+), 465 (M+-CHMe₂).
- 5. M. Oki in Topics in Stereochemistry, Vol 14, John Wiley, New York, 1983, p. 1.
- 6. Crystal data for 4c: C₃₀H₆₀SSi₂, FW = 509.04, triclinic, space group; P1, a = 12.394(1) Å, b = 17.670(2) Å, c = 23.858(2) Å, α = 96.557(5)°, β = 97.538(5)°, γ = 108.554(6)°, V = 4842.5(9) Å³, Z = 6, Dc = 1.047 Mg m⁻³. The structure was solved by a direct method using CRYSTAN. Full matrix least-squares refinement was done on three molecules and yielded the final R value of 0.083 (R_w = 0.101) for 10120 independent reflections [I > 3.00σ (I)] using Mac Science DIP3000 difractometers. Although 4c was crystallized from a variety of solvents, the resulting crystals are triclinic in every case containing six molecules in a unit cell. This made difficult to improve further the final R values because of a great number of parameters to be considered. In Figure 1, only one molecule of the three is shown. Torsion angles data given under Figure 2 are average values of the three molecules. For example, three pairs of Si₁-C₁-C₂-C₃ and Si₂-C₄-C₃-C₂ torsion angles are 22.2 and 30.1°, 30.7 and 30.9°, and 26.8 and 36.2°, respectively. The bond lengths and angles data given in Figures 3 and 4 are also average values, which are in the range of three times of standard deviations.
- 7. R. M. Kellogg in *Comprehensive Heterocyclic Chemistry*, Vol. 4, ed. by C. W. Bird and G. W. H. Cheeseman, Chapter 3.10, Pergamon, Oxford, 1984.
- 8. The thiophene ring of 3,4-di-tert-butyl- and 3,4-di-1-adamantylthiophene is nearly planar: G. Bokkers, A. J. M. Duisenberg, J. Kroon, and L. Brandsma, Cryst. Struct. Chem., 1985, 10, 361; F. Iwasaki and J. Nakayama, unpublished results, although two adamantyl groups of the latter thiophene is twisted with a torsion angle of about 13°.
- 9. The bond lengths of Me₃Si-sp² and sp hybridized carbon bonds are found in the range 1.81-1.85 Å; W. S. Sheldrick in *The Chemistry of Organic Silicon Compounds*, *Part 1*, ed. by S. Patai, John Wiley, Chichester, 1989, p. 227.