STUDIES ON ISOCYANIDES AND RELATED COMPOUNDS. A NOVEL SYNTHETIC ROUTE TO 1,6-DIHYDRO-6-OXOPYRIDINE-2-CARBOXYLIC ACID DERIVATIVES

Ricardo Bossio, Carlos F. Marcos¹, Stefano Marcaccini*, and Roberto Pepino

CNR, Centro di Studio sulla Chimica e la Struttura dei Composti Eterociclici e loro Applicazioni, Dipartimento di Chimica Organica "Ugo Schiff", Università di Firenze, via Gino Capponi 9, I-50121 Firenze, Italy

Abstract — The Ugi 4-CC between (E)-cinnamaldehyde (2), benzoylformic acid (3), cyclohexyl isocyanide (4) and amines (5) afforded the expected (E)-2-[N-benzoylformyl-N-arylamino]-4-phenylbut-3-enoic acid N-cyclohexylamides (6) which underwent a base-catalyzed cyclization to give the title compounds in high yields.

The 1,6-dihydro-6-oxopyridine-2-carboxylic acid moiety is contained in natural products such as acromelic acids.² The totally hydrogenated ring has been found in the amino acid tabtoxinine δ -lactam, a metabolite of *Pseudomonas* species.³ Furthermore, some derivatives of 1,6-dihydro-6-oxopyridine-2-carboxylic acid are interesting because of their biological activities.⁴

The synthesis of these compounds has been achieved starting from suitable pyridine derivatives. Thus, the reaction of appropriate pyridine *N*-oxides with trifluoroacetic anhydride affords the desired hydroxylated compounds.⁵ An alternative method consists in the reaction of pyridinecarboxylic acids with fluorine.⁶ For this procedure a poor regioselectivity has been claimed, and a microbial hydroxylation of 2-picolinic acid has been proposed for a large-scale preparation of the parent compound.⁷ Another elegant approach is based on the cleavage of 4,6-dichloro-2-oxa-5-azabicyclo[2.2.2]oct-5-en-3-ones.⁴

The present note, belonging to a series of articles on the synthetic utility of isocyanides,⁸ deals with a convenient two-step synthesis of 1-substituted *N*-cyclohexyl-1,6-dihydro-6-oxo-4,5-diphenylpyridine-2-carboxamides (1).

The first step of the synthesis consisted in the reaction between (E)-cinnamaldehyde (2), benzoylformic acid (3), cyclohexyl isocyanide (4), and amines (5). The reaction took place easily, giving the expected Ugi four-component condensation products⁹ (6) in high yields and in an almost pure form. Upon treatment with methanolic KOH, compounds (6) underwent a ring-closure reaction that afforded the pyridones (1) in very good yields.

The IR and ¹H NMR spectral data of compounds (1) were in agreement with the assigned structures. Thus, in the IR spectra of 1 a strong absorption due to the amide NH group was detected at about 3270 cm⁻¹. Furthermore, two absorptions at about 1670 and 1630 cm⁻¹ were detected due to the cyclic CO and to the amide

carbonyl group, respectively. In the 1H NMR spectra of compounds (1) a singlet signal at about δ 6.5, due to the proton in position -3 of the pyridine ring, was clearly detected. Further evidence for the assigned structures (1) was provided by MS spectra. In fact, besides the molecular ion, the fragment ion (PhC=CPhCH+) m/z 191 was always detected.

A possible reaction mechanism is reported in the Scheme 1. The key intermediate is the highly-stabilized anion (7) which behaves as a benzyl anion in the intramolecular nucleophilic attack on the oxo group.

EXPERIMENTAL

All of the starting products were purchased from Aldrich and employed without further purification. IR spectra were recorded on a Perkin-Elmer 881 spectrophotometer, ¹H NMR spectra on a Varian Gemini 200 spectrometer, and MS spectra on a Carlo Erba QMD 1000 apparatus at 70 eV. Melting points are uncorrected.

(E)-2-[N-Benzoylformyl-N-phenylamino]-4-phenylbut-3-enoic acid N-cyclohexylamide (6a). General Procedure for the Synthesis of Compounds (6). A solution of aniline (5a) (1.32 g, 14 mmol) in MeOH (5 mL) was added to a well-stirred solution of benzoylformic acid (3) (2.11 g, 14 mmol) in MeOH (5 mL). The resulting solution was treated, as quickly as possible, with a solution of (E)-cinnamaldehyde (2) (1.85 g, 14 mmol) in MeOH (5 mL), and then with a solution of cyclohexyl isocyanide (4) (1.53 g, 14 mmol) in MeOH (5 mL). The resulting mixture was stirred for 24 h at rt and then filtered. The collected product was washed with a little i-PrOH and then with i-Pr₂O, and dried to give 6a (5.43 g, 83%): mp 177–178 °C (EtOH); IR (KBr) 3341, 1671, 1659, 1641 cm⁻¹. Anal. Calcd for C₃₀H₃₀N₂O₃: C, 77.23; H, 6.48; N, 6.01. Found: C, 77.01; H, 6.63; N, 6.14.

(E)-2-[N-Benzoylformyl-N-(4-methylphenyl)amino]-4-phenylbut-3-enoic acid N-cyclohexylamide (6b): mp 170–171 °C (EtOH); yield 82 %; IR (KBr) 3320, 1677, 1648 cm $^{-1}$. Anal. Calcd for C₃₁H₃₂N₂O₃: C, 77.48; H, 6.71; N, 5.83. Found: C, 77.40; H, 6.76; N, 5.99.

- (*E*)-2-[*N*-Benzoylformyl-*N*-(4-methoxyphenyl)amino]-4-phenylbut-3-enoic acid *N*-cyclohexylamide (6c): mp 153–154 °C (EtOH); yield 80 %; IR (KBr) 3357, 1673, 1657, 1640 cm⁻¹. *Anal.* Calcd for $C_{31}H_{32}N_2O_4$: C, 74.98; H, 6.50; N, 5.64. Found: C, 75.12; H, 6.51; N, 5.73.
- (*E*)-2-[*N*-Benzoylformyl-*N*-(4-chlorophenyl)amino]-4-phenylbut-3-enoic acid *N*-cyclohexylamide(6d): mp 193–194 °C (EtOH); yield 86 %; IR (KBr) 3316, 1680, 1660, 1648 cm⁻¹. *Anal.* Calcd for C₃₀H₂₉N₂O₃Cl: C, 71.92; H, 5.84; N, 5.59. Found: C, 71.72; H, 5.59; N, 5.72.
- (*E*)-2-[*N*-Benzoylformyl-*N*-(3,4-dichlorophenyl)amino]-4-phenylbut-3-enoic acid *N*-cyclohexylamide (6e): mp 174–175 °C (EtOH); yield 79 %; IR (KBr) 3326, 1675, 1655 cm⁻¹. *Anal.* Calcd for $C_{30}H_{28}N_2O_3Cl_2$: C, 67.30; H, 5.27; N, 5.23. Found: C, 67.21; H, 5.12; N, 5.36.
- (E)-2-[N-Benzoylformyl-N-(4-chlorobenzyl)amino]-4-phenylbut-3-enoic acid N-cyclohexylamide (6f): mp 129–130 °C (EtOH); yield 75 %; IR (KBr) 3264, 1676, 1640 cm⁻¹. Anal. Calcd for $C_{31}H_{31}N_2O_3Cl$: C, 72.29; H, 6.07; N, 5.44. Found: C, 72.21; H, 6.25; N, 5.46.

N-Cyclohexyl-1,6-dihydro-6-oxo-1,4,5-triphenylpyridine-2-carboxamide (1a). General Procedure for the Synthesis of Compounds (1). Compound (6a) (3.04 g, 6.5 mmol) was added to a well-stirred solution of KOH (0.36 g, 6.5 mmol) in MeOH (10 mL). The resulting mixture was stirred at rt for 2 h and then cooled and filtered. The collected product was washed with water, and then with a little *i*-PrOH, and dried to give 1a (2.51 g, 86%): mp 264–265 °C (EtOH); 1 H NMR (200 MHz, CDCl₃) & 0.84–1.63 (m, 10 H), 3.48–3.69 (m, 1 H), 5.53–6.64 (m, 1 H), 6.61 (s, 1 H), 6.91–7.47 (m, 15 H); IR (KBr) 3267, 1667, 1659, 1631 cm⁻¹; MS m/z 448 (M⁺), 191 (PhC=CPhCH⁺). *Anal.* Calcd for C₃₀H₂₈N₂O₂: C, 80.33; H, 6.29; N, 6.25. Found: C, 80.31; H, 6.09; N, 6.54.

N-Cyclohexyl-1,6-dihydro-1-(4-methylphenyl)-6-oxo-4,5-diphenylpyridine-2-carboxamide (1b): mp 260–261 °C (EtOH); yield 88%; 1 H NMR (200 MHz, CDCl₃) δ 0.86–1.67 (m, 10 H), 2.38 (s, 3 H), 3.54–3.66 (m, 1 H), 5.63–5.72 (m, 1 H), 6.57 (s, 1 H), 7.08–7.38 (m, 14 H); IR (KBr) 3252, 1671, 1631 cm⁻¹; MS m/z 462 (M⁺), 191 (PhC=CPhCH⁺). *Anal.* Calcd for C₃₁H₃₀N₂O₂: C, 80.49; H, 6.54; N, 6.06. Found: C, 80.32; H, 6.72; N, 5.89.

N-Cyclohexyl-1,6-dihydro-1-(4-methoxyphenyl)-6-oxo-4,5-diphenylpyridine-2-carboxamide (1c): mp 265–266 °C (EtOH); yield 85%; 1 H NMR (200 MHz, CDCl₃) δ0.88–1.64 (m, 10 H), 3.50–3.72 (m, 1 H), 3.82 (s, 3 H), 5.64–5.76 (m, 1 H), 6.55 (s, 1 H), 6.81–7.33 (m, 14 H); IR (KBr) 3255, 1665, 1633 cm⁻¹; MS *m/z* 478 (M⁺), 191 (PhC=CPhCH⁺). *Anal.* Calcd for C₃₁H₃₀N₂O₃: C, 77.80; H, 6.32; N, 5.86. Found: C, 77.56; H, 6.30; N, 5.99.

1-(4-Chlorophenyl)-*N*-cyclohexyl-1,6-dihydro-6-oxo-4,5-diphenylpyridine-2-carboxamide (1d): mp 263–264 °C (EtOH); yield 93%; ¹H NMR (200 MHz, CDCl₃) δ 0.92–1.62 (m, 10 H), 3.56–3.68 (m, 1 H), 5.79–

5.89 (m, 1 H), 6.51 (s, 1 H), 7.10–7.43 (m, 14 H); IR (KBr) 3269, 1666, 1631 cm $^{-1}$; MS m/z 482 (M $^{+}$), 191 (PhC=CPhCH $^{+}$). Anal. Calcd for C₃₀H₂₇N₂O₂Cl: C, 74.60; H, 5.64; N, 5.80. Found: C, 74.76; H, 5.51; N, 5.82.

1-(3,4-Dichlorophenyl)-*N*-cyclohexyl-1,6-dihydro-6-oxo-4,5-diphenylpyridine-2-carboxamide (1e): mp 261–262 °C (EtOH); yield 85%; 1 H NMR (200 MHz, CDCl₃) δ 1.01–1.71 (m, 10 H), 3.52–3.76 (m, 1 H), 5.87–5.98 (m, 1 H), 6.51 (s, 1 H), 7.16–7.54 (m, 13 H); IR (KBr) 3281, 1669, 1634 cm⁻¹; MS m/z 516 (M⁺), 191 (PhC=CPhCH⁺). *Anal.* Calcd for C₃₀H₂₆N₂O₂Cl₂: C, 69.64; H, 5.07; N, 5.42. Found: C, 69.73; H, 5.21; N, 5.49.

1-(4-Chlorobenzyl)-*N*-cyclohexyl-1,6-dihydro-6-oxo-4,5-diphenylpyridine-2-carboxamide (1f): mp 224–225 °C (EtOH); yield 80%; 1 H NMR (200 MHz, CDCl₃) δ 0.98–1.86 (m, 10 H), 3.74–3.84 (m, 1 H), 5.55 (s, 2 H), 5.74–5.86 (m, 1 H), 6.36 (s, 1 H), 6.81–7.33 (m, 14 H); IR (KBr) 3351, 1633 cm⁻¹; MS m/z 496 (M⁺), 191 (PhC=CPhCH⁺). *Anal.* Calcd for C₃₁H₂₉N₂O₂Cl: C, 74.91; H, 5.88; N, 5.64. Found: C, 75.06; H, 5.89; N, 5.49.

ACKNOWLEDGEMENT

C. F. M. wishes to thank financial support from Consejería de Educación de la Junta de Extremadura and Fondo Social Europeo (refs. EIA94–43 and BRV9610A043).

REFERENCES AND NOTES

- 1. Present address: Departamento de Química Orgánica, Facultad de Veterinaria, Universidad de Extremadura, E-10071 Cáceres, Spain.
- K. Konno, H. Shirahama, and T. Matsumoto, Tetrahedron Lett., 1983, 24, 939; K. Yamano and H. Shirahama, Chem. Lett., 1993, 21; K. Konno, K. Hashimoto, Y. Ohfune, H. Shirahama, and T. Matsumoto, J. Am. Chem. Soc., 1988, 110, 4807.
- 3. D. L. Lee and H. Rapoport, J. Org. Chem., 1975, 40, 3491.
- 4. K. J. Dubois, C. C. Fannes, F. Compernolle, and G. Hoornaert, *Tetrahedron*, 1996, **52**, 2591 and references therein.
- 5. K. Konno, K. Hashimoto, H. Shirahama, and T. Matsumoto, *Heterocycles*, 1986, 24, 2169.
- 6. M. Van der Puy, D. Nalewajek, and G. E. Wicks, Tetrahedron Lett., 1988, 29, 4389.
- 7. A. Kiener, R. Glöckler, and K. Heinzmann, J. Chem. Soc., Perkin Trans. 1, 1993, 1201.
- 8. S. Marcaccini and T. Torroba, Org. Prep. Proced. Int., 1993, 25, 141; R. Bossio, S. Marcaccini, and R. Pepino, Synthesis, 1994, 765; R. Bossio, S. Marcaccini, and R. Pepino, Tetrahedron Lett., 1995, 36, 2325; R. Bossio, S. Marcaccini, R. Pepino, and T. Torroba, J. Org. Chem., 1996, 61, 2202; R. Bossio, S. Marcaccini, R. Pepino, and T. Torroba, J. Chem. Soc., Perkin Trans. 1, 1996, 229; R. Bossio, S. Marcaccini, R. Pepino, and T. Torroba, Heterocycles, 1996, 43, 471.
- 9. I. Ugi, A. Dömling, and W. Hörl, Endeavour, 1994, 18, 115 and references therein.