A CONVENIENT APPROACH TO PENTAGONAL 2,3': 5',2"-TRIHETEROCYCLIC COMPOUNDS

Ainhoa Rámila, Joaquín Plumet,* and Emilio Camacho

Universidad Complutense, Facultad de Química, Departamento de Química Orgánica I, E-28040 Madrid, Spain

Dedicated to Ma Victoria Martín Ramos. In Memoriam.

Abstract- A convenient synthesis of pentagonal 2,3': 5',2"-triheterocyclic compounds has been achieved using as key step the conjugate addition of 2-lithio-1,3-dithiane to 1,3-bis heterocyclic propenones.

Extended triheterocyclic compounds are of interest in fields such as agriculture and material science. In addition, some of these compounds have been used as precursors for the preparation of more complex polyheterocyclic systems. In the case of pentagonal triheterocyclic compounds, the major research concerns to the synthesis of 2,2':5',2"-1 and 2,3':4',2"-2-disubstituted derivatives. However, the synthesis of the related 2,3': 5',2"-systems, constituted by equal or different heterocyclic moieties (3), has received very little attention.

In this report we wish to account for a convenient method in order to prepare compounds such as 3 using the α,β -unsaturated ketone (4) as starting material. The key step in our synthetic approach is the introduction of a formyl group equivalent in conjugate fashion on 4. Heterocyclization of the resulting β -

oxo aldehyde should give 3. To the best of our knowledge, there are no known procedures for converting heterocyclic enones such as 4 in the related keto aldehydes using the conjugated addition of a formyl group anion equivalent, followed by unmasking to a formyl group. On the other hand, it is well known that the lithiated derivative of 1,3-dithiane reacts with alkenals and alkenones in the presence of HMPA⁵ to give conjugate addition products in variable yields. In our hands, reaction of compounds (4a-b) with 2-lithio-1,3-dithiane (generated *in situ* from 1,3-dithiane and ⁿBuLi at -78°C in THF) in the presence of HMPA afforded poor isolated yields of 5. Nevertheless, when the reaction was achieved in absence of any additive, acceptable yields of products (5) were obtained (Scheme 1) and transformed in the related aldehydes 6 using the system CuCl₂ / CuO.6

Scheme 1

Heterocyclizations of 6 were achieved on the crude aldehyde without further purification. In this way, triheterocycles (8) and (10) were isolated in almost quantitative yields in the reaction crude. Further purification afforded these compounds in 70% and 76% isolated yield respectively, whereas compounds (9) and (11) have been obtained in 60% and 50% yields respectively (Scheme 2). N-Methylpyrrole derivatives were prepared by reaction of compounds (6) with methylamine hydrochlroride whereas thienyl derivatives were synthesized using the Lawesson's reagent.

i) MeNH2. HCl for 8 and 10; Lawesson's reagent for 9 and 11

Scheme 2

In summary, in this report a convenient and versatile approach for pentagonal 2,3': 5',2"-triheterocyclic compounds is described.

EXPERIMENTAL

Compounds (4a) and (4b) were synthesized by aldolic reaction of 2-furfural or 2-thiophenecarboxaldehyde and 2-acetylfuran or 2-acetylthiophene respectively in ethanol with NaOH 10%. Cold water was added to the reaction mixture and the precipitate was filtered and crystallizated (EtOH/water) yielding 4a (90%, mp: 54-55°C) and 4b (86%, mp: 93-84°C).

1-(2-Thienyl)-3-(2-furyl)-3-(2,4-dithianyl)propanone (5a). Under Ar, nBuLi (4.99 mmol, 1.6 M in hexane) was added at -78°C to a solution of 1,3-dithiane (500 mg, 4.16 mmol) in THF (2 mL). The mixture was stirred at -20°C for 1 h and cooled to -78°C. Then 1-(2-thienyl)-3-(2-furyl)propenone (850 mg, 4.16 mmol) was added. After stirring for 5 h, the solution was quenched with sat. NH₄Cl and extracted with ether. The organic layer was washed with water and sat. NaCl, dried over MgSO₄ and concentrated in vacuo. The crude reaction mixture was chromatographed on silica gel using hexane-ethyl acetate (10:1) to produce 875 mg (65%) of pure 5a as an oil. 1 H-NMR (CDCl₃,): δ 7.69 (dd, 1H, J= 4.0 and 1.0 Hz, H-C5'), 7.56 (dd, 1H, J= 5.1 and 1.0 Hz, H-C3'), 7.27 (d, 1H, J= 1.8 Hz, H-C5"), 7.05 (dd, 1H, J= 5.1 and 4.0 Hz, H-C4'), 6.21 (dd, 1H, J=3.2 and 1.8 Hz, H-C4"), 6.13 (d, 1H, J= 3.2 Hz, H-C3"), 4.35 (d, 1H, J=6.5 Hz, dithiane CH), 3.98-3.90 (m, 1H, H-C3), 3.47 (ABX system, δ_A =3.60, δ_B =3.33, 2H, J=17.0 Hz and 5.0 Hz, H-C2), 2.79-2.74 and 2.05-1.96 (m, dithiane CH₂) ppm, ¹³C-NMR (CDCl₃) δ 190.40 (C=O), 153.32 (C2"), 144.08 (C2'), 141.77 (C5"), 134.99 (C3'), 132.24 (C4'), 128.26 (C5'), 110.37 (C3"), 107.88 (C4"), 51.14 (dithiane CH), 40.30 (C2), 39.35 (C3), 30.23 and 25.79 (dithiane CH₂) ppm. Anal. Calcd for C₁₅H₁₆O₂S₃: C, 64.71; H, 3.92. Found: C, 64.85; H, 4.01. 1-(2-Furyl)-3-(2-thienyl)-3-(2,4-dithianyl)propanone (5b). The same procedure was applied to 850 mg (4.16 mmol) of 1-(2-furyl)-3-(2-thienyl)propenone. After 5 h of stirring the reaction mixture was worked up and purified as before, to yield 984 (73%) mg of pure 5b as an oil. ¹H-NMR (CDCl₃): δ 7.42 (d, 1H, J= 1.8 Hz, H-C5'), 7.11-7.06 (m, 2H, H-5" and H-C3"), 6.88 (d, 1H, J= 3.7 Hz, H-C3'), 6.80 (dd, 1H, J= 2.7 and 1.8 Hz, H-C4"), 6.40 (dd, 1H, J=3.7 and 1.8 Hz, H-C4'), 4.25 (d, 1H, J=6.3 Hz, dithiane CH), 4.11-4.07 (m, 1H, H-C3), 3.44 (ABX system, δ_A =3.48, δ_B =3.28, 2H, J=17.1 Hz and 6.0 Hz, H-C2), 2.75-2.70 and 1.94-1.90 (m, dithiane CH₂) ppm, 13 C-NMR (CDCl₃) δ 186.41 (C=O), 152.61 (C2'), 146.62 (C5'), 143.46 (C2"), 126.59 (C3"), 126.27 (C4"), 124.40 (C5"), 117.52 (C3'), 112.41 (C4'), 53.49 (dithiane CH), 42.66 (C2), 40.69 (C3), 30.49 and 25.74 (dithiane CH₂) ppm. Anal. Calcd for C₁₅H₁₆O₂S₃: C, 64.71; H, 3.92. Found: C, 64.92; H, 3.88.

2-(2-Thienyl)4-(2-furyl)-4-oxabutanal (6a). Under Ar, CuO (324 mg, 4.08 mmol) and CuCl₂ (274 mg, 2.02 mmol) were added to a solution of **5a** (330 mg, 1.01 mmol) in acetone-water (99:1, 10 mL). After reflux for 6 h, the reaction mixture was washed with hexane-CH₂Cl₂ (1:1) and extracted with 5M AcONH₄. The organic layer was washed with water and sat. NaCl, dried over MgSO₄ and the solvent was evaporated in vacuo. Yield: 180 mg of oil (76%, from crude's ¹H-NMR spectrum). ¹H-NMR (CDCl₃,): δ 9.67 (s, 1H, H-CO), 7.69 (dd, 1H, J= 3.8 and 1.1 Hz, H-C5'), 7.56 (dd, 1H, J= 4.9 and 1.1 Hz, H-C3'), 7.31 (d, 1H, J= 1.8 Hz, H-C5"), 7.04 (dd, 1H, J= 4.9 and 3.8 Hz, H-C4'), 6.28 (dd, 1H, J=3.3 and 1.8 Hz, H-C4"), 6.21 (d, 1H, J= 3.3 Hz, H-C3"), 4.41 (q, 1H, J= 7.5 Hz, H-C3), 3.46 (ABX)

- system, δ_A =3.47, δ_B =3.45, 2H, J=17.6 Hz and 7.5 Hz, H-C2), ppm, ¹³C-NMR (CDCl₃) δ 196.70 (CH=O), 189.75 (C=O), 148.94 (C2"), 143.39 (C2'), 143.22 (C5"), 134.18 (C3'), 132.45 (C4'), 128.31 (C5'), 110.95 (C3"), 108.79 (C4"), 47,33 (C3), 37.36 (C2) ppm.
- **2-(2-Furyl)4-(2-thienyl)-4-oxabutanal (6b)**. The same procedure was used with **5b** (480 mg, 1.48 mmol) and after 6 h reflux the reaction mixture was worked up as above to yield **6b** as an oil (236 mg, 85%, from crude's ¹H-NMR spectrum). ¹H-NMR (CDCl₃,): δ 9.66 (s, 1H, H-CO) 7.51 (d, 1H, J= 1.7 Hz, H-C5'), 7.20 (dd, 1H, J= 5.1 and 1.0 Hz, H-C3'), 7.15 (dd, 1H, J= 3.5 and 1.0 Hz, H-C5"), 6.94 (dd, 1H, J= 5.1 and 3.7 Hz, H-C4"), 6.88 (d, 1H, J= 3.6 Hz, H-C3'), 6.46 (dd, 1H, J=3.6 and 1.7 Hz, H-C4'), 4.57 (q, 1H, J= 8.0 Hz, H-C3), 3.41 (ABX system, δ_A =3.99, δ_B =32.88, 2H, J=17.7 Hz and 8.0 Hz, H-C2) ppm, ¹³C-NMR (CDCl₃) δ 197.06 (CHO), 185.95 (C=O), 152.24 (C2'), 146.78 (C5'), 137.15 (C2"), 127.73 (C3"), 126.94 (C4"), 126.05 (C5"), 117.90 (C3'), 112.54 (C4'), 48.00 (C3), 39.50 (C2) ppm.
- **2-(2-Thienyl)-4-(2-furyl)-***N***-methylpyrrole** (**8**). Compound (**6a**) (123 mg, 0.52 mmol), methylamine hydrochloride (35 mg, 0.52 mmol) and sodium acetate (1424 mg, 10.47 mmol) were refluxed in 7 mL of ethanol for 2 h under Ar. The reaction mixture was cooled and 20 mL of water was added. The solid formed was chromatographed on silica gel using hexane-ethyl acetate (10:1) to produce 83 mg (70%) of pure **8** as a yellow solid. 1 H-NMR (CDCl₃,): δ 7.26 (d, 1H, J= 1.8 Hz, H-C5"), 7.21 (dd, 1H, J= 4.8 and 1.5 Hz, H-C3'), 7.06-6.96 (m, 2H, H-C4' and H-C5'), 6.89 (d, 1H, J= 1.9 Hz, H-C5), 6.44 (d, 1H, J= 1.9 Hz, H-C3), 6.32 (dd, 1H, J= 3.2 and 1.8 Hz, H-C4"), 6.20 (d, 1H, J= 3.2 Hz, H-C3"), 3.63 (s, 3H, H-N-C<u>H</u>₃) ppm, 13 C-NMR (CDCl₃) δ 151.07 (C2"), 140.09 (C5"), 134.37 (C2'), 127.99 (C2), 127.49 (C3'), 125.48 (C4'), 125.03 (C5'), 120.41 (C5), 115.66 (C4), 111.17 (C3"), 107.00 (C4"), 102.18 (C3), 35.41 (CH₃) ppm.
- **2-(2-Thienyl)-4-(2-furyl)thiophene (9).** A mixture of compound (**6a**) (170 mg, 0.73 mmol) and Lawesson's reagent (178 mg, 0.44 mmol) was refluxed for 3 h in 5 mL of toluene. The toluene was evaporated and the residue was chromatographed in hexane-ethyl acetate (10:1) to yield 101 mg (60%) of **9** as a yellow solid. ¹H-NMR (CDCl₃,): δ 7.33 (d, 1H, J= 1.8 Hz, H-C5"), 7.29 (d, 1H, J= 1.3 Hz, H-C5), 7.24 (d, 1H, J= 1.3 Hz, H-C3), 7.15 (dd, 1H, J= 5.1 and 1.0 Hz, H-C3'), 7.12 (dd, 1H, J= 3.6 and 1.0 Hz, H-C5'), 6.94 (dd, 1H, J= 5.1 and 3.6 Hz, H-C4'), 6.41 (d, 1H, J= 3.3 Hz, H-C3"), 6.36 (dd, 1H, J= 3.3 and 1.8 Hz, H-C4') ppm, ¹³C-NMR (CDCl₃) δ 150.68 (C2"), 141.63 (C5"), 138.19 (C4), 137.06 and 133.16 (C2 and C2'), 127.96, 124.84, 124.21, 121.11 and 117.75 (C3, C3', C4', C5 and C5'), 111.48 (C3"), 105.11 (C4") ppm.
- **2-(2-Furyl)-4-(2-thienyl)-***N***-methylpyrrole** (**10**). The same procedure used for the synthesis of **8** was applied to **6b** (147 mg, 0.63 mmol) to yield 109 mg (76%) of **10** as a yellow solid. 1 H-NMR (CDCl₃,): δ 7.36 (d, 1H, J= 1.7 Hz, H-C5'), 7.00 (dd, 1H, J= 4.9 and 1.2 Hz, H-C3"), 6.95 (dd, 1H, J= 3.5 and 1.2 Hz, H-C5"), 6.90 (dd, 1H, J= 4.9 and 3.5 Hz, H-C4"), 6.79 (d, 1H, J= 1.9 Hz, H-C5), 6.53 (d, 1H, J= 1.9 Hz, H-C3), 6.37 (dd, 1H, J= 3.3 and 1.7 Hz, H-C4'), 6.30 (d, 1H, J= 3.3 Hz, H-C3'), 3.66 (s, 3H, H-N-CH₃) ppm, 13 C-NMR (CDCl₃) δ 147.48 (C2'), 141.51 (C5'), 139.03 (C2"), 127.60 (C3"), 125.89 (C2), 121.91 (C4"), 121.16 (C5"), 120.90 (C5), 118.42 (C4), 111.25 (C3'), 106.99 (C4'), 106.02 (C3), 35.98 (CH₃) ppm.

2-(2-Furyl)-4-(2-thienyl)thiophene (11). The same procedure used for the synthesis of **9** was applied to **6b** (63 mg, 0.27 mmol) to yield 31 mg (50%) of **11** as a yellow solid. 1 H-NMR (CDCl₃,): δ 7.45 (d, 1H, J= 1.5 Hz, H-C5"), 7.43 (d, 1H, J= 1.4 Hz, H-C5), 7.26 (d, 1H, J= 1.4 Hz, H-C3), 7.23 (d, 2H, J= 4.5 Hz, H-C3" and 5"), 7.05 (t, 1H, J= 4.5 Hz, H-C4"), 6.56 (d, 1H, J= 3.3 Hz, H-C3'), 6.47 (dd, 1H, J= 3.3 and 1.5 Hz, H-C4') ppm, 13 C-NMR (CDCl₃) δ 149.01 (C2'), 141.90 (C5'), 138.84 (C4), 136.03 and 134.45 (C2 and 2"), 127.73, 124.07, 123.36, 121.29 and 118.13 (C3, C3", C4", C5" and C5), 111.76 (C3'), 105.52 (C4') ppm.

ACKNOWLEDGMENTS

This research was supported by C.I.C.Y.T. (Ministerio de Educación y Ciencia. Grant nºPB93-0077). One of us (A. Rámila) thanks to Comunidad Autónoma de Madrid (Consejería de Educación y Cultura) for a Doctoral Grant.

REFERENCES

- 1. J. Roncali, Chem. Rev. 1992, 92, 711.
- 2. For leading references, see: a) J. Kagan and S. K. Arora, Heterocycles, 1993, 20, 1937; b) J. Kagan and S. K. Arora, Tetrahedron Lett., 1983, 24, 4043; c) K. T. Potts, M. Cipullo, P. Ralli, and G. Theororides, J. Org. Chem., 1983, 48, 4843; d) J. Nakayama, S. Murabayashi, and M. Hoshino, Heterocycles, 1987, 26, 2599; e) J. Nakayama, Y. Namura, S. Murabayashi, and M. Hoshino, Heterocycles, 1987, 26, 939; f) N. Jayasuriya, J. Kagan, D-B. Huang, and B. K. Teo, Heterocycles, 1988, 27, 1391; g) W. ten Hoeve, H. Wynberg, E. E. Havinga, and E. W. Meijer, J. Am. Chem. Soc., 1991, 113, 5887; h) J. M. Tour, R. Wu, and J. S. Schumm, J. Am. Chem. Soc., 1991, 113, 7064; i) J. Nakayama, K. Sawada, A. Ishii, and M. Hoshino, *Heterocycles*, 1992, 34, 1487; j) R. D. McCullough and R. D. Lowe, J. Chem. Soc., Chem. Comm., 1992, 70; k) T. A. Chen and R. D. Rieke, J. Am. Chem. Soc., 1992, 114, 10087; I) D. C. Miller, M. R. Johnson, J. J. Becker, and J. A. Ibers, J. Heterocycl. Chem., 1993, 30, 1485; m) F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, and P. Alnot, J. Am. Chem. Soc., 1993, 115, 8716; n) M. Kuroda, J. Nakayama, M. Hoshino, N. Furusho, and S. Ohba, Tetrahedron Lett., 1994, 35, 3957; o) D. C. Miller, M. R. Johnson, and J. A. Ibers, J. Org. Chem., 1994, 59, 2877; p) E. Giménez, J. Carilla, Ll. Fajari, C. Alemán, and L. Juliá, J. Org. Chem., 1994, 59, 4630; q) R. M. Musau and A. Whiting, J. Chem. Soc., Perkin Trans. I. 1994, 2881; r) Y. Wei, B. Wang, W. Wang, and J. Tian, Tetrahedron Lett., 1995, 36, 665; s) R. A. Jones, M. Karatza, T. N. Voro, P. U. Ciucir, A. Frank, O. Ortzuk, J. P. Seaman, A. P. Whitmore, and D. J. Williamson, Tetrahedron, 1996, 52, 8707.
- For leading references, see: a) T. El-Hajj, J. C. Martin, and G. Descotes, J. Heterocycl. Chem., 1983, 20, 233; b) J. Nakayama, Y. Nakamura, T. Tajiri, and M. Hoshino, Heterocycles, 1986, 24, 637; c)
 R. Shabana, A. Galal, H. B. Mark, H. Zimmer, S. Gronowitz, and A. B. Hörnfeldt, J. Chem. Soc., Chem. Comm., 1988, 988; d) H. Zimmer, R. Shabana, A. Galal, H. B. Mark, S. Gronowitz, and A. B. Hörnfeldt, Phosphor, Sulfur, Silicon, 1989, 42, 171; e) H. Sasaki, R. Egi, K. Kawanishi, T.

Kitagawa, and T. Shingu, Chem. Pharm. Bull., 1989, 37, 1176; f) B. A. Merrill and L. LeGoff, J. Org. Chem., 1990, 55, 2904; g) S. Gronowitz and D. Peters, Heterocycles, 1990, 30, 645; h) R. Shabana, A. Galal, H. B. Mark, H. Zimmer, S. Gronowitz, and A. B. Hörnfeldt, Phosphor, Sulfur, Silicon, 1990, 43, 239; i) H. Ishida, K. Yui, Y. Aso, T. Otsubo, and F. Ogura, Bull. Chem. Soc. Jpn., 1990, 63, 2828; j) B. Oussaid, L. Moeini, B. Garrigues, and D. Villeumin, Phosphor, Sulfur, Silicon, 1993, 85, 23; k) C. Kitamura, S. Tanaka, and Y. Yamashita, J. Chem. Soc., Chem. Comm., 1994, 1585; l) M. D'Auria, Tetrahedron Lett., 1994, 35, 3151; m) S. Inoue, T. Jigami, H. Nozoe, T. Otsubo, and F. Ogura, Tetrahedron Lett., 1994, 35, 8009; n) R. H. L. Kieboons, P. J. H. Adiaensens, D. J. M. Vanderzande, and J. M. J. V. Gelan, J. Org. Chem., 1997, 62, 1473.

- 4. See, for instance: a) N. Jayasuriya and J. Kagan, *Heterocycles*, 1986, 24, 2261, b) N. Jayasuriya and J. Kagan, *Heterocycles*, 1986, 24, 2901.
- 5. See P. Perlmutter, "Conjugate Addition Reactions in Organic Synthesis", Tetrahedron Organic Chemistry Series, Vol. 9, pp. 91-92, Pergamon, 1992 and references therein.
- 6. K. Narasaka, T. Sakashita, and T. Mukaiyama, Bull. Chem. Soc. Jpn., 1972, 45, 3724.
- 7. M. V. Joshi, C. Hemler, M. P. Cava, J. L. Cain, K. G. Bekker, J. A. McKinley, and R. M. Metzger, J. Chem. Soc., Perkin Trans 2, 1993, 1081.

Received, 18th June, 1997