CONSOLARINE, A NOVEL NORDITERPENOID ALKALOID FROM CONSOLIDA ARMENIACA

Ali H. Meriçli,^a Filiz Meriçli,^a Ayhan Ulubelen,^{a,b} Haridutt K. Desai,^c Balawant S. Joshi,^c S. William Pelletier*,^{c,d} Seçkin Özden,^e and Mustafa Küçükislamoglu^f

^aFaculty of Pharmacy, University of Istanbul, 34452, Istanbul, Turkey, ^bTUBITAK, Marmara Research Center, Department of Chemistry, P. O. Box 21, 41470, Gebze, Kocaeli, Turkey, ^cInstitute for Natural Products Research, ^dInstitute for Natural Products Research and Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, U. S. A., ^eFaculty of Pharmacy, University of Ankara, Tandogan 06100, Ankara, Turkey, and ^fFaculty of Education, Technical University of Karadeniz, Trabzon, Turkey

(Dedicated to Professor Koji Nakanishi on the occasion of his 75th Birthday)

<u>Abstract</u>—From the aerial parts of *Consolida armeniaca*, (Stapf. Ex Huth.) Schröd. a new norditerpenoid alkaloid named *consolarine* has been isolated along with the known alkaloids ajadelphinine, gigactonine, and lycoctonine. The structure of consolarine (2) was established on the basis of ¹H, ¹³C, DEPT, homonuclear ¹H COSY, HETCOR, NOESY, and COLOC NMR spectral studies.

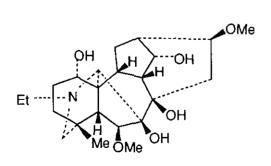
Except for the isolation of four acylated anthocyanin pigments from the flowers of *Consolida armeniaca* (Stapf. Ex Huth.) Schröd.,¹ no phytochemical work appears to have been carried out earlier on this plant. In continuation of our studies on the alkaloids of Turkish *Delphinium*, and *Consolida* species,²⁻⁹ an investigation of the aerial parts of *C. armeniaca* led to the isolation of a novel norditerpenoid alkaloid *consolarine*. The crude alkaloid isolated from *C. armeniaca* at pH 10 was purified on an Al₂O₃ column by VLC and six fractions (A-F) were collected. By chromatographic separation of the third fraction on an Al₂O₃ rotor, an amorphous homogeneous alkaloid designated as consolarine was isolated. The EIMS and the HRMS indicated the molecular ion at m/z 409 suggesting the formula $C_{22}H_{35}NO_6$ for the alkaloid. The NMR spectra showed that the alkaloid contains an *N*-ethyl group (δ_c 13.6, q; δ_H , 1.12, 3H, t, J = 7.2 Hz; δ_c , 50.9 t; δ_H , 2.92, 2.99, 2H, AB J_{gem} = 11.0 Hz) and a methoxyl group (δ_c 57.0, q; δ_H 3.36, 3H, s) accounting for three carbons. Biogenetic

considerations and the molecular formula $C_{22}H_{35}NO_6$ indicated that consolarine is a norditerpenoid alkaloid. As there are no carbonyl functionalities, ether oxygens or methylenedioxy groups, the alkaloid should contain five hydroxyl groups and one methoxyl group. The ¹H and ¹³C NMR spectra (Table 1) indicated the presence of a tertiary methyl (δ_c 30.2 q; δ_H , 1.27, 3H, s) group. As no other functional groups are discernible in the IR or the NMR spectra, a partial structure (1) can be written for consolarine.

The quaternary carbon signals at δ 33.7, 47.5 and 77.5 can be readily assigned to C-4, C-11 and C-8, respectively. The fourth quaternary carbon signal at δ 82.8 remains to be assigned. This carbon bearing a hydroxyl group can be located at either C-5, C-7, C-9, C-10 or C-13. The positions C-5, and C-10 can be discounted as the adjacent carbons C-4 and C-11 would have shown downfield shifts of \sim 4-6 ppm from their normal positions as in bonvalotine and bonvalol, having a C-5 OH; and deltamine and dictyocarpinine 12,13 having a C-10 OH groups, respectively. The carbon signal at δ 75.2 (δ _H 4.12, 1H, t, J = 3.5 Hz) is clearly assigned to C-14 bearing an α hydroxyl group, not having any substituents on the adjacent carbons C-9 and C-13. There are numerous examples in support of this argument. Hence, the tertiary hydroxyl group should be located on the remaining position at C-7, consistent with the chemical shift of this quaternary carbon at δ 82.8.

The problem of locating the two secondary hydroxyls thus remains. One of the hydroxyls is present at C-1 ($\delta_{\rm C}$ 72.2 d; $\delta_{\rm H}$, 3.63, 1H, br s, W_{1/2} = 4.5 Hz). This proton shows a correlation with the protons of H-2 ($\delta_{\rm C}$ 28.9 t; $\delta_{\rm H}$, 1.50, 1H, m) in the COSY spectrum and with H-12 in the NOESY spectra (Table 2). The H-2 proton ($\delta_{\rm H}$, 1.50) in turn shows a correlation with one of the H-3 protons ($\delta_{\rm C}$ 34.6 t; $\delta_{\rm H}$, 1.50, 1.80, 2H, m) in the COSY. The H-1 proton shows correlation with C-10 ($\delta_{\rm C}$ 43.4) and C-11 ($\delta_{\rm C}$ 47.5) in the COLOC spectrum (Figure 1). The remaining hydroxyl group should therefore be located at C-6, in preference to C-12 or C-15, which are the only other methylene groups. The H-15 protons ($\delta_{\rm C}$, 36.2, t; $\delta_{\rm H}$, 1.90, 2.85, 2H, m) shows COSY and NOESY correlations with H-16 ($\delta_{\rm H}$, 3.30, 1H, m). The proton signal for C-15 ($\delta_{\rm C}$ 36.2 t; $\delta_{\rm H}$, 1.90, 2.85, 2H, m) is correlated with C-8 ($\delta_{\rm C}$ 77.5) in the COLOC. The H-16 proton shows a correlation with H-13 ($\delta_{\rm C}$, 39.9 d; $\delta_{\rm H}$, 2.25,, 1H, d d) and a W-type coupling with H-14.

Table 1. ¹H and ¹³C Chemical shifts assignments of consolarine (2) and dihydrogadesine (3) (in CDCl₃)


Carbon	δ (ppm)		Proton	δ (ppm)		J (Hz)
	(2)	(3)	(2)			
1	72.2 (<i>d</i>)*	72.8	1b	3.63#	br s	$w_{1/2} = 4.5$
2	28.9 (t)	29.3	2	1.50	m	
3	34.6 (t)	32.2	3 _a , _b	1.50, 1.80	m	
4	33.7 (<i>s</i>)	33.1	4	-	-	
5	50.1 (<i>d</i>)	50.6	5	2.00	d	$J_{5,6}$ = 6.7
6	69.8 (<i>d</i>)	91.0	6 _b	4.49	d	$J_{6,5} = 6.7$
7	82.8 (<i>s</i>)	87.9	7	-	-	
8	77.5 (<i>s</i>)	78.1	8	-	-	
9	46.8 (<i>d</i>)	45.3	9	2.20	m	
10	43.4 (d)	44.1	10	1.85	m	
11	47.5 (s)	49.2	11	-	-	
12	29.6 (t)	29.3	12a,b	1.30, 1.70	m	
13	39.9 (d)	39.4	13	2.25	d d	$J_{13,12b} = 4.9$
14	75.2 (<i>d</i>)	75.7	14	4.12	t	$J_{14,9} = 3.5$
						$J_{13,14} = 3.5$
15	36.2 (t)	34.5	15 _{a,b}	1.90, 2.85	m	
16	82.1 (d)	82.1	16	3.30	m	
17	63.7 (<i>d</i>)	65.7	17	2.80	s	
18	30.2 (q)	27.7	18	1.27	s	
19	60.3 (t)	60.8	19a,b	2.36, 2.82	AB	$J_{gem} = 11.0$
<i>N</i> - <u>C</u> H ₂	50.9 (t)	50.3	N-C <u>H</u> 2a,b	2.92, 2.99	т	$J_{\text{VIC}} = 7.2$
CH ₃	13.6 (<i>q</i>)	13.7	С∐₃	1.12	s	
C-6'	-	58.0	-	-	-	
C-16'	57.0 (q)	56.3	OCH ₃	3.36	s	
			6-OH	3.30	br <i>m</i>	

^{*} Multiplicity deduced by DEPT

² Carbon showing long-range correlation with indicated protons deduced by HETCOR

Table 2. ¹H, ¹H correlations and nOe's of consolarine (2)

Observed H Correlations (COSY)		nOe's (NOESY)		
H-1 _β	H-2	H-12 _a		
H-2	H-1 _β , H-3	-		
H-3 _a	H-3 _b , CH ₃ -18	N-CH ₂ CH ₃		
H-3 _b	H-3 _a			
H-5	H-6	H-6, CH ₃ -18		
H-6	H-5	H-5, H-9		
H-9	H-10, H-13, H-14	H-6		
H-10	H-9, H-12 _b	•		
H-12a	H-12 _b , H-13	Η-1β		
H-12 _b	H-10, H-12 _a	•		
H-13	H-9, H-12 _a , H-14, H-16 (W)	H-14, H-16		
H-14	H-9, H-13, H-16	` H-13, H-16		
H-15 _a	H-15 _b , H-16	H-15 _b		
H-15 _b	H-15 _a	H-15 _a , H-16		
H-16	H-13, H-14, H-15 _a , H-15 _b	H-13, H-14, H-15 _b ,		
H-17	-	H-16		
CH ₃ -18	H-3 _b	H-5		
H-19 _a	-	CH ₃ -18, H-19 _b		
H-19 _b	-	CH ₃ -18, H-19 _a		
N-CH ₂ C <u>H</u> 3	-	H-3 _a		
N-C <u>H</u> ₂CH ₃	-	CH ₃ -18, <i>N</i> -CH ₂ C <u>H</u>		

3 Dihydrogadesine

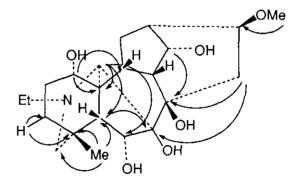


Figure 1 COLOC Correlations of consolarine 2

Thus, the five hydroxyl groups of the alkaloid are located at C-1, C-6, C-7, C-8 and C-14 and the methoxyl is at C-16 in the partial structure (1). In most of the lycoctonine-type norditerpenoid alkaloids, the hydroxyl group at C-6 is in a β position and H-C-6 is α and the Dreiding model reveals the

 $H(5\beta)-H(6\alpha)$ dihedral angle ~ 90°. The chemical shift for H-6 normally appears at ~ δ 4.5, corresponding with 6- α H and $J_{56.6\alpha} = \sim 0$ Hz. In the present alkaloid, the H-6 signal (δ_c 69.8 d; δ_H , 4.49, 1H, d, J = 6.7 Hz) clearly shows that the hydroxyl group is in an α - position. In the aconitine-type alkaloids, where the C-6 methoxyl is in an α -position, e.g., acoforesticine, ¹⁴ acoforestinine, ¹⁴ and flavaconidine, 15 C-6- β H appears at $\sim \delta$ 4.1 as a doublet, showing a coupling of ~ 6 Hz with H-5. The coupling with H-7 is negligible as the dihedral angle is ~ 90°. Consolarine indicates similarity to the C-6 α hydroxyl group of pubescenine (δ_c 70.8 d; δ_H , 4.45, 1H, d, J = 6.8 Hz, H-6 β), 16 as against 6-epi-pubescenine where H-6 appears as a singlet showing no coupling with H-5.17 A Dreiding model shows that H-6 α hydroxyl group is in close proximity to the C-18 methyl group (δ_c 30.2 g; δ_{H} , 1.27, 3H, s). In a 1D difference nOe experiment, the C-18 methyl group showed an nOe to the C-6 α hydroxyl group which appears at δ 3.30. A plausible explanation for the downfield shifts of the C-18 methyl in the 13 C and 1 H spectra (δ_c 30.2; δ_H , 1.27), from the normal values (δ_c 25.0-26; $\delta_{\rm H}$, 0.8-1.1) lies in the deshielding influence of the 6- α -hydroxyl group on the C-18 methyl. On the basis of these data, structure (2) has been assigned to consolarine. Consolarine is the only example of a lycoctonine-type norditerpenoid alkaloid bearing a C-18 methyl and C-6 α OH groups. The structure of consolarine (2) resembles dihydrogadesine (3) (see Table 1 for ¹³C NMR spectra) except for a β-methoxyl at C-6 instead of a C-6 α-hydroxyl group. 18

By chromatographic separation of fractions (A) and (E) on an Al₂O₃ rotor, the known alkaloids ajadelphinine, ¹⁹ lycoctonine ¹⁰ and gigactonin²⁰ were isolated.

EXPERIMENTAL

General Experimental Procedures.— IR spectra were recorded in CHCl₃ on a Perkin-Elmer Model 983 spectrophotometer. HRMS were determined on a VG Zap Spec instrument and Perkin-Elmer SCIEX AP1-1 mass spectrometer. NMR spectra including DEPT and 2D experiments, were recorded in CDCl₃ on a Bruker AC-250 and AC 300 spectrometers. The pulse sequences employed for the NMR experiments were those of the standard Bruker software. ¹H and ¹³C NMR and COLOC spectra were determined on Bruker AC 200L instrument. Optical rotations were determined on Opt. Act Ltd AA-5 polarimeter. Chromatographic separations on a Chromatotron were carried out on rotors coated with 1 mm thick layers of Merck Al₂O₃ 60 PF 254, 365 (EM 1104).

Plant Material.— The aerial parts of *Consolida armeniaca* were collected by one of the authors (M. K.) and identified by (A. H. M. and F. M.) (August 1996) near the Black sea between Gümüshane-Bayburt 30 km from Bayburt at an elevation of 1650 m. A voucher specimen is deposited in the Herbarium of the Faculty of Pharmacy, University of Istanbul ISTE 72679.

Extraction of Crude Alkaloids.— Dried and powdered aerial parts of *C. armeniaca* (2.5 kg) were exhaustively extracted by percolation at rt with 95% EtOH. Evaporation (*in vacuo*) of the combined extracts gave a gummy residue which was dissolved in CH₂Cl₂ (500 mL) and extracted with 2% H₂SO₄ (200 mL x 10). The acidic extract was washed with CH₂Cl₂ (200 mL x 3) and then basified

to pH 10 with cold aq. 10% NaOH. Extractions with CH₂Cl₂ (250 mL x 5) and evaporation of the combined extracts in *vacuo* gave a crude mixture of alkaloids (2.5 g).

Purification of the Alkaloidal Mixture.— The crude alkaloidal mixture was chromatographed by VLC²¹ on an Al₂O₃ column. The eluting solvent was a gradient of hexane, EtOAc and MeOH and six fractions (A-F) were collected. These were separated on Al₂O₃ rotors of a Chromatotron. Fraction (A) was chromatographed on an Al₂O₃ rotor and gradient eluted with hexane, EtOAc, MeOH to afford ajadelphinine (30 mg) as an amorphous product. The identity was established by comparison of the TLC, ¹H and ¹³C NMR spectra with an authentic sample. From the second fraction (B) (163 mg), consolarine (2) was obtained as an amorphous compound (103 mg), $[\alpha]_D + 0.65^\circ$ (c, 0.77, CHCl₃). EIMS: m/z 409 (M+, 75%), 394 (11), 376 (30), 353 (35), 145 (30), 122 (28), 58 (72). HRMS: Found, 409.2450; Calculated. for C₂₂H₃₅NO₆, 409.24643. IR (nujol): ν max 3280, 2920, 2880, 1705, 1640. 1565, 1450, 1400, 1300, 1220, 1162, 1170, 1100 cm⁻¹. For ¹H and ¹³C NMR spectra, see Table 1. The fraction (E) was chromatographed on an Al₂O₃ rotor to afford lycoctonine (190 mg) and gigactonine (25 mg). The alkaloids were identified by comparison of the TLC, ¹H and ¹³C NMR spectra with those of authentic samples.

ACKNOWLEDGEMENTS

The authors thank NATO for a Collaborative Research Grant (CRG 931261). The Turkish authors also thank Istanbul University Research Fund for Grant No. UP 2-150197. Partial financial support provided by Grant HL 32562 from the National Institutes of Health is gratefully acknowledged.

REFERENCES

- 1. H. Saita, K. Toki, S. Ozden, and T. Honda, Phytochemistry, 1996, 41, 1599.
- 2. A. Ulubelen, H. K. Desai, B. S. Joshi, B. P. Hart, S. W. Pelletier, A. H. Meriçli, F. Meriçli, and H. C. Özen, J. Nat. Prod., 1996, 59, 907.
- 3. A. Ulubelen, H. K. Desai, S. K. Srivastava, B. P. hart, J. C. Park, B. S. Joshi, S. W. Pelletier, A. H. Meriçli, F. Meriçli, and R. Ilarsan, *J. Nat. Prod.*, 1996, **59**, 360.
- 4. F. Meriçli, A. H. Meriçli, H. Becker, A. Ulubelen, S. Özden, N. Dürüst, and M. Tanker, *Phytochemistry*, 1996, **42**, 1249.
- 5. A. Ulubelen, H. K. Desai, B. S. Joshi, V. Venkateswarlu, S. W. Pelletier, A. H. Meriçli, F. Meriçli, and H. Ü. Özçelik, *J. Nat. Prod.*, 1995, **58**, 1555.
- 6. A. Ulubelen, A. H. Meriçli, and F. Meriçli, Nat. Prod. Lett., 1994, 5, 135.
- 7 A. Ulubelen, A. H. Meriçli, F. Meriçli, and R. Ilarslan, and W. Voelter, *Phytochemistry*, 1993, **34**, 1165.
- 8. A. Ulubelen, A. H. Meriçli, and F. Meriçli, J. Nat. Prod., 1993, 56, 780.
- 9. A. Ulubelen, A. H. Meriçli, F. Meriçli, F. Ilarslan, and S. A. Matlin, *Phytochemistry*, 1992, **31**, 3239.

- S. W. Pelletier, N. V. Mody, B. S. Joshi, and L. C. Schramm, ¹³C and proton NMR Assignments and Physical Constants of C₁₉-Diterpenoid Alkaloids, in *Alkaloids, Chemical and Biological Perspectives*, Vol. 2, Ed. S. W. Pelletier, Wiley, N. Y. 1983, pp. 206-462.
- 11 Q. P. Jiang and W. L. Sung, Heterocycles, 1984, 22, 2429.
- 12. A. S. Narzullaev, M. S. Yunusov, and Y. S. Yunosov, Khim. Prior. Soedin, 1973, 46, 443.
- 13. S. Pelletier, N. V. Mody, and O. D. Dailey, Can. J. Chem., 1980, 58, 1875.
- S. W. Pelletier, B. S. Joshi, J. A. Glinski, H. P. Chokshi, S. Y. Chen, K. T. Bhandary, and K. T. Go, Heterocycles, 1987, 25, 365.
- 15. Z. G. Chen, A. N. Lao, H. C. Wang, and S. H. Hong, *Heterocycles*, 1989, 29, 997.
- 16. G. de la Fuente, R. D. Acosta, J. A. Gavin, R. H. Lugo, and P. G. Jones, *Tetrahedron Letters*, 1989, **29**, 2723.
- 17 Y. Bai, M. Benn, and W. Majak, *Heterocycles*, 1989, **29**, 1017.
- 18. A. G. Gonzalez, G. de la Fuente, and R. Diaz, *Phytochemistry*, 1982, **21**, 1781; A. G. Gonzalez, G. de la Fuente, M. Reina, and R. D. Acosta, *Heterocycles*, 1986, **24**, 1513.
- 19. S. W. Pelletier, S. Bhandaru, H. K. Desai, S. A. Ross, and H. M. Sayed, *J. Nat. Prod.*, 1992, **55**, 736.
- 20. S. Sakai, N. Shinma, S. Hasegawa, and T. Okamoto, J. Pharm. Soc. (Japan), 1978, 98, 1376.
- 21. S. W. Pelletier, H. P. Chokshi, and H. K. Desai, J. Nat. Prod., 1986, 49, 892.

Received, 22nd April, 1997