SYNTHETIC STUDY OF NEOCARZINOSTATIN CHROMOPHORE: STEREOSELECTIVE SYNTHESIS OF N-METHYLFUCOSAMINE AND ITS α -GLYCOSIDE

Toshio Kaneko, Kazunobu Takahashi, and Masahiro Hırama*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-77, Japan

Abstract - Stereoselective glycosylation of cyclopentanol with 2-azido-2,6-dideoxygalactopyranose (2-azidofucose) derivatives and its transformation to *N*-methylfucosamine was achieved as a model for the synthesis of neocarzinostatin chromophore.

Recently, considerable effort has been devoted to elucidating the role of the N-methylfucosamine moiety of neocarzinostatin chromophore (1)¹ in T-selective DNA cleavage² and specific binding to apoprotein.³ The syntheses of 1 and its analogs possessing α -N-methylfucosamine are of great interest in clarifying this issue.^{4,5} Although remarkable progress has recently been made with the stereoselective glycosylation method,⁶ much work remains for establishing a mild and α -selective glycosylation method with N-methylfucosamine derivatives in the synthesis of 1. Glycosylation of N-acylated 2-aminosugars generally tends to give β -glycoside via participation of the neighboring group. We previously examined glycosylation using a donor with a free N-methylamino group, since in situ protection as a quaternary

Figure 1. NCS-chromophore (1)

ammonium salt was expected to inhibit such participation. However, β-glycosides were obtained as a sole products. Therefore, we turned to a more conventional method using 2-azidosugars with the lack of such participation. If the azide is transformed to an N-methylamino group under mild conditions, it could offer a promising route to 1 and its analogs. In this communication, we examined the stereoselectivity of glycosylation reactions with 2-azido-2,6-dideoxygalactopyranose derivatives under various conditions and the transformation of an azide derivative to N-methylfucosamine.

Synthesis of various 2-azido-2,6-dideoxygalactoside derivatives (7 - 10) as glycosyl donors was achieved from readily available o-nitrobenzylglycoside (2), 7 as shown in Schemes 1 and 2.

ACO Me ONB
$$a, b$$
 OME ONB c, d ONB e, f

NB = o-nitrobenzyl

ACO Me ONB g, h ACO Me ONB

 S N₃

ACO Me ONB

 S N₃

ACO Me ONB

 S N₃

Scheme 1. Synthesis of 2-azido-2,6-dideoxygalactoside (6).

(a) K_2CO_3 (0.1 eq), MeOH, rt, 1 h; (b) $(MeO)_2CMe_2$ (10 eq), TsOH (1.1 eq), DMF, rt, 3 h, 93 % (two steps); (c) $(COCl)_2$ (1.0 eq), DMSO (1.6 eq), $E_{13}N$ (3.3 eq), CH_2Cl_2 , - 78 °C ~ rt, 2 h; (d) $NaBH_4$ (1.0 eq), MeOH, 0 °C, 10 min, 72 % (two steps); (e) pyridine (6.1 eq), $T_{12}CO$ (3.0 eq), CH_2Cl_2 , - 30 °C, 1.5 h; (f) Bu_4NN_3 (2.7 eq), DMF, rt, 5 h, 72 % (two steps); (g) $T_{12}CO$ (2.1 eq), MeOH, rt, 1 h; (h) $C_{12}CO$ (15 eq), DMAP (cat), pyridine, rt, 5 h, 93 % (two steps).

Scheme 2. Synthesis of glycosyl donors (7 - 10).

(a) hv (high presusure mercury lamp, pyrex filter), THF-pH 7 buffer (10:1); (b) Ac₂O (3.5 eq), DMAP (0.8 eq), pyridine, rt, 7 h, 62 % (two steps), α / β = 1 8 / 1; (c) EtSH (1.1 eq), SnCl₄ (1.2 eq), CH₂Cl₂, 0 °C, 1.5 h, 71 %, recovery 5 %; (d) K₂CO₃ (cat), MeOH, 2 h; (e) BnCl (4.3 eq), NaH (5.9 eq), DMF, 2 h, 85 % (two steps); (f) CCl₃CN (20 eq), DBU (0.5 eq), CH₂Cl₂, - 30 °C, 3 h, 58 % (two steps), α / β = 3.8 / 1.

We first examined the glycosylation of cyclopentanol with thioglycosides (8) and (9) using N-iodosuccinimide (NIS) / triflic acid⁸ (Table 1). The stereoselectivity of the glycosylation with acetate (8) depended on the stereochemistry of the anomer of 8 (entries 1 and 2). The α -anomer of 8 gave the α -anomer of 11 predominantly, while the more reactive o-benzylthioglycoside (9) showed β -selective glycosylation irrespective of the anomer.

Table 1. Glycosylation of cyclopentanol with 8 or 9.

entry	donor	temp.	time / h	yield / %	α / β^a
1	8 (α-anomer)	- 50 °C ~ π	13	84	1.5 / 1
2	8 (β-anomer)	- 50 °C ~ rt	13	89	1/2.2
3	9 (α-anomer)	- 60 °C ~ - 15 °C	3.5	80	1 / 6.1
4	9 (β-anomer)	- 50 °C ~ rt	15 ^b	76	1 / 6.7

^a The ratio was determined by ¹H NMR (200 MHz). ^b The reaction seemed to be completed in a few hours.

Glycosylation of trimethylsilyl ether (13) with an anomeric mixture of acetate (7) was examined under Mukaiyama conditions using tin(IV) chloride and silver perchlorate as catalysts (Table 2).⁹ The α -glycoside (11) was obtained as a major product in most solvents, 10 except for acetonitrile.

ACO Me ACO N₃ SnCl₄-AgClO₄ (20 mol%) ACO Me ACO N₃ Solvent, rt N₃
$$(\alpha : \beta = 1.8 : 1)$$

Table 2. Glycosylation of trimethylsilyl ether (13) with 7 at room temperature.

entry	solvent	time / h	yield / %	α/βª
1	CH ₂ Cl ₂	20	76	2.6 / 1
2	benzene	62	48	1.9 / 1
3	THF	70	12 ^b	3.4 / 1
4	MeCN	29	72	1/6.1

^a The ratio was determined by ¹H NMR (200 MHz). ^b Recovery of 7 was 65 %.

Furthermore, glycosylation with trichloroacetoimidate (10) was examined using trimethylsilyl triflate as a catalyst (Table 3).¹¹ This reaction appeared to be more rapid than the other reactions (Tables 1 and 2), even at low temperature. Interestingly, the α / β ratio of the product (11) in dichloromethane increased with an increase in the reaction temperature. Thus, α / β ratios of 1.4 / 1 and 2.9 / 1 were obtained from the α - and β -anomers of 10, respectively, at room temperature. On the other hand, improved α -selectivity (2.7 / 1) from the α -anomer of 10 was realized in diethyl ether at - 30 °C.

Table 3. Glycosylation of cyclopentanol with 10.

entry	anomer	solvent	temp.	yield / %	α / β^a
1	α	CH ₂ Cl ₂	- 30 °C	91	1 / 4.9
2	α	CH_2Cl_2	- 15 °C	67	1/3.8
3	α	CH_2Cl_2	0 °C	65	1/1.3
4	α	CH ₂ Cl ₂	rt	64	1.4/1
5	β	CH ₂ Cl ₂	- 15 °C	65	1 / 1.6
6	β	CH ₂ Cl ₂	rt	83	2.9 / 1
7	β	Et ₂ O	- 30 °C	65	1.5 / 1
8	α	Et ₂ O	- 30 °C	84	2.7 / 1
9	α	Et ₂ O	- 15 °C	85	2.6 / 1
10	α	Et ₂ O	0 °C	82	2.2 / 1
11	α	Et ₂ O	rt	80	1.9 / 1

^a The ratio was determined by ¹H NMR (200 MHz).

Thus, the above examination of glycosylation reactions and the compatibility of the glycosylation conditions with the enedigne functionality in the synthesis of 1 and its analogs 10 suggested that the Schmidt procedure using 10 and trimethylsilyl triflate either in dichloromethane at room temperature or in ether at - 30 °C would be the most appropriate for our purpose.

Conversion of 2-azidoglycoside (11) as a 3 / 1 (α / β) anomeric mixture to N-methylfucosamine (16) was achieved as follows (Scheme 3). The acetate groups of 11 were hydrolyzed and the resulting diol was protected as acetonide (58 % overall yield). Azide (13) was treated with triphenylphosphine in aqueous THF, and the resulting amine (14) was protected as trifluoroacetamide (86 %). N-Methylation¹² of 14 with iodomethane gave 15 in 89 % yield, and deprotection of acetonide in acidic methanol (95 %) followed

by carefully controlled alkaline hydrolysis of trifluoroacetamide gave *N*-methylfucosamine (**16**), which was unambiguously identified as triacetate (**17**) (73 % overall yield).¹³

Scheme 3. Conversion from azide to N-methylamine derivatives. (a) K_2CO_3 (cat), MeOH; (b) (MeO)₂CMe₂ (15 eq), (-)-10-camphorsulfonic acid (1.8 eq), CH₂Cl₂, 1 h; (c) separation of anomer, 58 % (three steps); (d) Ph₃P (3.5 eq), THF-H₂O (10:1), 16 h; (e) (CF₃CO)₂O (3.5 eq), Et₃N (3.7 eq), CH₂Cl₂, 2 h, 86 % (two steps); (f) KH (8.9 eq), 18-crown-6 (3 6 eq), THF, - 30 °C, 30 min, then MeI (2.3 eq), -20 °C, 1.5 h, 89 %; (g) TsOH (2.5 eq), MeOH, 2 h, 95 %; (h) K_2CO_3 (1.1 eq), MeOH-H₂O (5:2), rt, 2 h; (i) Ac₂O (28 eq), 4-N,N-dimethylaminopyridine (1.7 eq), rt ~ 90 °C, 17 h, 73 % (two steps).

In summary, α -selective glycosylation of cyclopentanol with 2-azidoglycoside (10) and facile conversion of the resulting azide (11) to α -N-methylfucosamine (16) have been achieved. The present study provides a secure route for the total synthesis of 1 and its α -glycoside analogs.

REFERENCES AND NOTES

- N. Ishida, K. Miyazaki, K. Kumagai, and M. Rikimaru, J. Antibiot., 1965, 18, 68; K. Edo, M. Mizugaki, Y. Koide, H. Seto, K. Furihata, N. Otake, and N. Ishida, Tetrahedron Lett., 1985, 26, 331; A. G. Myers, P. J. Proteau, and T. M. Handel J. Am. Chem. Soc., 1988, 110, 7212.
- X. Gao, A. Stassinopoulos, J. S. Rice, and I. H. Goldberg, *Biochemistry*, 1995, 34, 40; H. Sugiyama, T. Fujiwara, H. Kawabata, N. Yoda, N. Hirayama, and I. Saito, *J. Am. Chem. Soc.*, 1992, 114, 5573.
- T. Tanaka, M. Hirama, K. Fujita, S. Imajo, and M. Ishiguro, J. Chem. Soc., Chem. Commun., 1993, 1205; M. Hirama, J. Syn. Org. Chem. Jpn. (in English), 1994, 52, 980; M. Hirama and T. Tanaka, Pure Appl. Chem., 1994, 66, 791; T. Tanaka and M. Hirama, 'Comprehensive Supramolecular Chemistry: Supramolecular Neocarzinostatin Complex,' Vol. 4, ed. by J. -M. Lehn, J. L. Atwood, J. E. D. Davies, D. D. Macnicol, F. Vögtle, and Y. Murakami, Elsevier Science Ltd.,

- Oxford, 1996, pp. 287-309; M. Hirama, 'Neocarzinostatin The Past, Present, and Future of an Anticancer Drug: Synthesis and Chemistry of Nine-Membered Cyclic Enediyne Chromophores of Chromoprotein Antitumor Antibiotics,' ed. by H. Maeda, K. Edo, and N. Ishida, Springer-Verlag, Tokyo, 1997, pp. 47-82.
- K. Edo, Y. Akiyama, K. Saito, M. Mizugaki, Y. Koide, and N. Ishida, J. Antibiot., 1986, 39, 1615;
 K. Takahashi, T. Tanaka, T. Suzuki, and M. Hirama, Tetrahedron, 1994, 50, 1327;
 D. Sames and R. Polt, J. Org. Chem., 1994, 59, 4596;
 V. Ojea, M. Ruiz, and J. M. Quintela, Synlett, 1997, 83.
- A. G. Myers, M. Hammond, Y. Wu, J.-M.N Xiang, P. M. Harrington, and E. Y. Kuo, J. Am. Chem. Soc., 1996, 118, 10006.
- For a recent review of glycosylation methods, see: K. Toshima and K. Tatsuta, Chem. Rev., 1993,
 93, 1503.
- K. C. Nicolaou, C. W. Hummel, M. Nakada, K. Shibayama, E. N. Pitsinos, H. Saimoto, Y. Mizuno, K.-U. Baldenius, and A. L. Smith, J. Am. Chem. Soc., 1993, 115, 7625.
- 8. G. H. Veeneman, S. H. van Leeuween, and J. H. van Boom, Tetrahedron Lett., 1990, 31, 1331.
- 9. K. Matsubara and T. Mukaiyama, Chem. Lett., 1993, 581.
- 10. Ten-membered analogs of 1 decomposed under these conditions: K. Toyama, unpublished results.
- 11. G. Grundler and R. R. Schmidt, *Liebigs Ann. Chem.*, 1984, 1826; R. R. Schmidt, *Angew. Chem.*, *Int. Ed. Engl.*, 1986, 25, 212.
- 12. J. E. Nordlander, D. B. Catalane, T. H. Eberlein, L. V. Farkas, R. S. Howe, R.M. Stevens, and N. A. Tripoulas, *Tetrahedron Lett.*, 1978, 4987.
- 13. Representative data for 17: colorless oil; ¹H NMR (200 MHz, CDCl₃, a 4:1 mixture of rotational isomers of acetoamide) δ 1.14 (d, J = 6.6 Hz, CH₃ major), 1.15 (d, J = 6.6 Hz, CH₃ minor), 1.59-1.71 (m, cyclopentyl), 1.97 (s, COCH₃, minor), 1.98, 2.11 (s, COCH₃, major), 2.16 (s, COCH₃, major and minor), 2.19 (s, COCH₃, minor), 2.82 (s, N-CH₃, minor), 2.87 (s, N-CH₃, major), 4.11-4.25 (m, CH, minor, cyclopentyl), 4.17 (br q, J = 6.6 Hz, CH, major), 4.90 (br d, J = 3.3 Hz, CH, minor), 4.93 (br d, J = 3.3 Hz, CH, major), 5.06 (dd, J = 11.8, 3.9 Hz, CH), 5.29 (d, J = 3.9 Hz, CH, major), 5.33 (d, J = 3.9 Hz, CH, minor), 5.42 (dd, J = 11.8, 3.3 Hz, CH, major), 5.48 (dd, J = 11.8, 3.3 Hz, CH, minor); [α]_D26.5 +121° (c 0.61, CHCl₃); HRMS (EI, 70 eV) m/z calcd for C₁₇H₂₆NO₅F₃: 371.1942 (M⁺), found 371.1938 (M⁺).