THERMODYNAMICALLY CONTROLLED DERACEMIZATION OF 2-ALKYLCYCLOALKANONES UTILIZING HOST-GUEST INCLUSION COMPLEXATION

Hiroto Kaku, Shinobu Ozako, Shiho Kawamura, Shinobu Takatsu, Masayuki Ishii, and Tetsuto Tsunoda*

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514 Japan

<u>Abstract</u> - Based on host-guest inclusion complexation in the solid state, α-substituted cycloalkanones were deracemized using optically active host compound, TADDOL (2a) in alkaline conditions.

In a previous paper, we described *thermodynamically controlled* deracemization of a few cyclohexanones, such as 2-benzylcyclohexanone (**1b**), using TADDOLs (**2a,b**)² in basic suspension media (e. g. Scheme 1). That study showed that deracemization based on inclusion chemistry could provide a convenient and excellent method for the preparation of optically active α -substituted cyclohexanones. In order to further test the applicability of this methodology and explore the principle of the molecular recognition process, we have extended the reaction to several α -substituted cycloalkanones. Herein the results of our investigation are described.

In a typical experiment, the mixture of cyclic ketone (1) (250 mg), host compound (2a), and sodium hydroxide (4 equiv.) in MeOH - H_2O (1 : 1, 25 mL) was stirred at room temperature for 2 days. The resulting mixture was treated with aq. saturated NH₄Cl and extracted with ether. After evaporation of the solvent *in vacuo*, the ketone (1) and the host (2a) were easily isolated by silica gel column chromatography.³

Table 1. Deracemization of cycloalkanones

		R	2a			* R	
	4	´)n N	NaOH (4 equiv.) H ₂ O / MeOH				/) n
	1 racen	nic	rt, 2 days			1 optically active	
entry	n	R		equiv. of 2a	H ₂ O / MeOH	yield (%)	% ee (configuration)
1*	0	-CH ₂ Ph	(1a)	1.0	1 / 1	85	10
2**	1	-CH ₂ Ph	(1b)	1.0	1 / 1	100	74 (<i>R</i>)
3	2	-CH ₂ Ph	(1c)	1.0	1 / 1	100	36 (<i>R</i>)
4	1	-Ph	(1d)	1.0	1 / 1	92	46 (<i>R</i>)
5	1	-CH ₂ CH ₂ Ph	(1e)	1.0	1/1	100	54 (<i>R</i>)
6	1	-CH ₂ C ₆ H ₄ Me-o	(1f)	1.0	2 / 1	97	66 (<i>R</i>)
7	1	-CH ₂ C ₆ H ₄ Me- <i>m</i>	(1g)	1.0	2 / 1	98	86 (<i>R</i>)
8	1	-CH ₂ C ₆ H ₄ Me- <i>p</i>	(1h)	1.0	1 / 1	96	82 (<i>R</i>)
9**	1	-CH ₂ CH=CH ₂	(1i)	1.0	1 / 1	96	34 (<i>R</i>)
10	1	-CH ₂ CH=CMe ₂	(1j)	1.0	4 / 1	97	90 (<i>R</i>)
11	1	-CH ₂ CH ₂ CHMe ₂	(1k)	1.0	2/1	92	46 (<i>R</i>)
12*	* 1	-CH ₂ CH ₂ OMe	(11)	2.0	2/1	96	94 (<i>R</i>)
13	1	-CH ₂ CH ₂ CH ₂ OMe	(1m)	2.0	1/1	100	16

^{*)} The reaction was carried out for 2 weeks. **) See ref. 1.

Table 1 shows that the R-isomer of cyclic ketones was obtained predominantly, and 2-benzylcyclohexanone (**1b**) was deracemized more effectively than 2-benzylcyclopentanone (**1a**) and -cycloheptanone (**1c**) (entry 2 vs 1 and 3). In the case of 2-(ω -arylalkyl)cyclohexanones, the optical purity was dramatically changed by the difference of i) the length of the side chain (entry 2 vs 4 and 5) and ii) the position of the

methyl groups on the aromatic ring (entry 2 vs 6~8). The introduction of methyl group on the side chain influences also the molecular recognition process in the case of 2-allylic cyclohexanone. Thus, 2-prenylcyclohexanone (1j) was included into a cavity constituted by the aggregation of a host molecule (2a) more effectively than 2-allylcyclohexanone (1i) (entry 9 vs 10). On the contrary, the ee(%) was decreased dramatically by the lack of a π -electron system on the side chain (entry 10 vs 11). The presence of a lone pair electron of a oxygen atom also induced excellent host-guest complexation (entry 12). However, one carbon elongation complicated the non-covalent binding interactions between the guest and host molecules again (entry 12 vs 13).

Thus, the deracemization was influenced by chain length, shape, functionality, π -electron and the architecture of the α -alkyl side chain on the cycloalkanone and the ring size. Since X-Ray analytical studies of a host-guest complex are not available, the principle of the molecular recognition process is still unclear. However, thermodynamically controlled deracemization based on inclusion chemistry can provide a convenient method for the preparation of optically active α -substituted cyclohexanones.

Further studies to disclose the principle of the molecular recognition process and the applicability of the present method are now in progress.

ACKNOWLEDGEMENTS

This work was supported partially by a Grant-in-Aid for Encouragement of Young Scientists from the Ministry of Education, Science, Sports, and Culture of Japan.

REFERENCES AND NOTES

- 1. T. Tsunoda, H. Kaku, M. Nagaku, and E. Okuyama, *Tetrahedron Lett.*, 1997, **38**, 7759 and references cited therein.
- 2. D. Seebach, A. K. Beck, R. Imwinkelried, S. Roggo, and A. Wonnacott, *Helv. Chem. Acta*, 1987, 70, 954.
- The optical purity of 1 was determined by HPLC and/or GLC analysis using a chiral column. The absolute configuration of 1b-e, 1i-l was elucidated by [α]_D and/or CD spectrum. see a) A. I. Meyers, D. R. Williams, G. W. Erickson, S. White, and M. Druelinger, *J. Am. Chem. Soc.*, 1981, 103, 3081.
 b) K. Hiroi, K. Achiwa, and S. Yamada, *Chem. Pharm. Bull.*, 1972, 20, 246. c) G. Berti, B. Macchia, and F. Macchia, *J Chem. Soc.*(C), 1971, 3371.
- 4 MTPA esters of *trans*-alcohol derived from **1f-1h** were subjected to the modified Mosher's method to elucidate the absolute configuration of **1f-1h**. see a) I. Ohtani, T. Kusumi, and H. Kakisawa, *J*.

Am. Chem. Soc., 1991, **113**, 4092. b) H. Nishiyama, S.-B. Park, and K. Itoh, *Tetrahedron: Asymmetry*, 1992, **3**, 1029.