A NEW SYNTHESIS OF 4-PHENYLQUINOLINES BY REACTION OF 2-(α-BROMOBENZYL)OXIRANES WITH ANILINE DERIVATIVES

Michinori Karikomi, Hiroshi Tsukada, and Takashi Toda,*

Department of Applied Chemistry, Faculty of Engineering, Utsunomiya University, Yoto7-1-2, Utsunomiya 321-8585, Japan

Abstract- Several 4-phenylquinoline derivatives were synthesized by reaction of $(2R^*,1'R^*)$ -2- $(\alpha$ -bromobenzyl)oxiranes (**1a**) with aniline derivatives, and the following treatment of the formed 3-hydroxy-4-phenyl-1,2,3,4-tetrahydroquinolines (**2**) with the Rydon reagent, and potassium *t*-butoxide and air oxidation.

Quinolines are interesting as biologically active compounds;¹ especially in connection with the synthesis of marine-derived alkaloids,² there is increasing interest in methods for synthesis of pyridoacridines and pyridoacridones. 4-Arylquinolines and 4-aryl-1,2,3,4-tarahydroquinolines are a good starting material for synthesis of these marine-derived alkaloids.³ Therefore, if we could find a simple synthetic method of 4-arylquinolines, synthesis of this alkaloid family should be achieved successfully. In this communication, we report a novel stereoselective synthesis of 1,2,3,4-tetrahydroquinolines (2) and their aromatization sequence to 4-phenylquinolines.

In one of our previous studies, the reaction of $(2R^*,1'R^*)$ -2- $(\alpha$ -bromobenzyl)oxirane (**1a**) with aliphatic primary amines afforded *trans*-2-phenyl-3-hydroxyazetidines in good to excellent yields.⁴

In the course of this study, we found that the reaction of $\mathbf{1a}$ with aromatic amines gave trans-3-hydroxy-4-phenyl-1,2,3,4-tetrahydroquinolines (2). On the other hand, $(2R^*,1'S^*)$ -2- $(\alpha$ -bromobenzyl)oxirane ($\mathbf{1b}$), which is diastereomer of $\mathbf{1a}$, gave the corresponding cis-2, selectively. The stereochemical outcome suggested that the ring closure proceeds with inversion at the benzyl carbon.

Generally, Friedel-Crafts type alkylation has long been pointed out to proceeded with almost complete racemization when an optically active alkylating reagent was used.⁶ To our knowledge, few studies of stereospecific electrophilic substitution reaction on arenes with no catalytic procedure have been reported.^{7,8}

When $(2R^*,1^!R^*)$ -2- $(\alpha$ -bromobenzyl)oxirane (**1a**) was treated with 2.0 equiv of aniline derivatives in methanol, *trans*-3-hydroxy-4-phenyl-1,2,3,4-tetrahydroquinoline derivatives (**2a**) were obtained (Method A). However, the results of method A are not satisfactory, because the reaction takes longer and gives low yields.

Recently, rare earth triflates have been used as activating reagents of oxiranes. Addition of 0.1 equiv of $Yb(OTf)_3$ to the above reaction system in methylene chloride solution (Method B) greatly improved the results: increasing yields of 2a and saving reaction time. The results are shown in the Table 1.

Table 1. Synthesis of *trans*-4-Phenyl-1,2,3,4-tetrahydroquinolines (**2a**, **2c-2l**) by reactions of $(2R^*, 1'R^*)$ -2- $(\alpha$ -bromobenzyl)oxirane (**1a**) with various aniline derivatives.

Entry	Amine	Method a	Solvent	Temp/°C	Time/h	Product (Yield/% b)
1	aniline	A	МеОН	rt	33	2a (40)
2	aniline	В	CH_2Cl_2	rt	0.5	2a (43)
3	o-anisidine	A	MeOH	50	33	2c (8-MeO) (60)
4	o-anisidine	В	CH_2Cl_2	rt	12	2c (8-MeO) (61)
5	<i>m</i> -anisidine	A	MeOH	rt	46	2d (7-MeO) (29 ^c)
6	<i>m</i> -anisidine	В	CH_2Cl_2	rt	1	2d (7-MeO)(15), 2e (5-MeO) (48)
7	<i>p</i> -anisidine	A	MeOH	rt	48	2f (6-MeO) (29)
8	<i>p</i> -anisidine	В	CH_2Cl_2	rt	1.5	2f (6-MeO) (42)
9	o-toluidine	A	MeOH	rt	1	2g (8-Me) (51)
10	o-toluidine	В	CH_2Cl_2	rt	1	2g (8-Me) (51)
11	<i>m</i> -toluidine	В	CH_2Cl_2	rt	1	2h (7-Me)(14), 2i (5-Me) (29)
12	<i>p</i> -toluidine	В	CH_2Cl_2	rt	1	2j (6-Me) (56)
13	2-MeO-5-Me-aniline	е В	CH_2Cl_2	rt	1	2k (8-MeO-5-Me) (47)
14	2-MeO-5-Cl-aniline	В	CH_2Cl_2	rt	1	2l (8-MeO-5-Cl) (49)

^aSee text. ^bYield was determined by ¹H NMR. Isolation procedure, see note 10. ^cYield of 7-substituted 2.

The stereochemistry of *trans*- and *cis*-isomers of **2a** and **2b** was confirmed by comparison of their ¹H NMR spectral data: mainly coupling constants of the protons at the 2, 3, and 4 positions, and nOe relations with the *ortho* protons of the 4-phenyl group and the above protons. Therefore, this reaction provides a

The formation of 5-substituted 2 was negligible.

stereoselective synthesis of 3-hydroxy-4-phenyl-1,2,3,4-tetrahydroquinolines (2).

Aromatisation of the tetrahydro moiety of **2** was achieved by treatment of **2** with the Rydon reagents (PPh₃ in CCl₄), and following dehydrochlorination with air oxidation of the formed 3-chloro-4-phenyl-1,2,3,4-tetrahydroquinolines in the presence of *t*-BuOK in *t*-BuOH. The yields of 4-phenylquinoline derivatives are excellent. The results are shown in the Table 2.

Table 2. Synthesis of 4-Phenylquinolines

Entry	Substrate/R	Time / h	mp / °C	Yield (%) <i>b</i>
1	2a (H)	6	227-230 ^a	86 ¹¹
2	2j (6-Me)	4	219-222 ^a	82 ¹¹
3	2h (7-Me)	6	227-231 ^a	83
4	2d (7-MeO)	6	250-253 ^a	88 ¹²
5	2c (8-MeO)	4	114-115	81
6	2k (8-MeO-5-Me)	18	152-153	77
7	2l (8-MeO-5-Cl)	4	131-134	73

a Isolated as the picrate. b Yields were based on the 1,2,3,4-tetrahydroquinolines.

The starting $(2R^*,1'R^*)$ -2- $(\alpha$ -bromobenzyl)oxirane (**1a**) is readily available by a two-step reaction of *trans*-cinnamyl alcohol in good yield. Thus, our method is a most simple synthesis of 4-phenyl-1,2,3,4-tetrahydroquinolines and 4-phenylquinolines under mild conditions.

REFERENCES

- 1. J. A. Joule, K. Mills, and G. F. Smith, *'Heterocyclic Chemistry 3rd ed.'*, Chapman & Hall, 1995, pp. 120-121; A. R. Katritzky, S. Rachwal, and B. Rachwal, *Tetrahedron*, 1996, **52**, 15031.
- 2. T. F. Molinski, Chem. Rev., 1993, 93, 1825.
- 3. A. M. Echavarren and J. K. Stille, J. Am. Chem. Soc., 1988, 110, 4051.
- 4. T. Toda, M. Karikomi, M. Oshima, and M. Yoshida, Heterocycles, 1992, 33, 511.
- 5. The reaction of **1b** with *p*-anisidine gave a mixture of *cis* and *trans*-isomers of **2** in 29% yield (*cis*: trans = 85:15).

- 6. O. Piccolo, F. Spreafico, G. Visentin, and E. Valoti, *J. Org. Chem.*, 1985, **50**, 3945 and references cited therein.
- 7. O. Piccolo, U. Azzena, G. Melloni, G. Delogu, and E. Valoti, *J. Org. Chem.*, 1991, **56**, 183; F. Effenberger and T. Weber, *Angew. Chem.*, *Int. Ed. Engl.*, 1987, **26**, 142.
- 8. The unique feature of this reaction is the ring closure process between the aromatic carbon and benzyl bromide carbon. When (2*R**,1'*R**)-2-(α-bromobutyl)oxirane (3) was treated with *o*-anisidine under Method B conditions, only 1-(*o*-methoxyphenyl)amino-3-bromo-2-hydroxyheptane (4) was obtained. Accordingly, the formation of tetrahydroquinolines (2) could be recognized as an intramoleculer S_N2 type ring closure reaction that took place between the activated aromatic moiety and the benzyl bromide carbon.

- 9. M. Chini, P. Crotti, L. Favero, and M. Pireschi, *Tetrahedron Lett.*, 1994, **35**, 433.
- 10. General procedure (Method B): An aniline derivative (2.0 mmol) was added to a solution of 2-(α-bomobenzyl)oxirane (1a) (213 mg, 1.0 mmol) and Yb(OTf)₃ (62 mg, 0.1 mmol) in dichloromethane. The mixture was stirred at rt for the indicated period (see Table 1), then poured into aqueous 1N-NaOH (2 mL). The solution was filtrated onto celite. The aqueous solution was extracted three times with dichloromethane (50 mL), and the combined organic extracts were dried (Na₂SO₄). After filtration and evaporation of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography eluting with hexane/AcOEt (4:1) and recrystallisation from acetone to give 2. The crude product was also used for the determination of the yield. The integration of 5-H of 2 at ¹H NMR can estimate the formation of 2 by using coumarin as an internal standard.
- 11. B. I. Ardashev and B. A. Tertov, *Zh. Obshch. Khim.*, 26, 218; *J. Gen. Chem. U.S.S.R.*, 1956, **26**, 233. (Engl. transl.)(*Chem. Abstr.*, 1956, **50**, 13926i).
- 12. B. D. Tileak, T. Ravindoranathan, and K. N. Subbaswami, *Indian J. Chem.*, 1968, **6**, 422 (*Chem. Abstr.*, 1969, **70**, 37630b).
- 13. M. Yoshida, T. Hide, M. Oshima, and T. Toda, Heterocycles, 1992, 33, 507.