HETEROCYCLES, Vol. 55, No. 8, pp. 1439 - 1442, Received, 25th May, 2001

A FACILE SYNTHESIS OF SPIRO-CYCLOPENTENONES FROM VARIOUS 1-ALKYNES AND CYCLIC *EXO*-METHYLENE COMPOUNDS BY INTERMOLECULAR PAUSON-KHAND REACTION

Miyuki Ishizaki,* Yasuhiro Kasama, Mieko Zyo, Yuka Niimi, and Osamu Hoshino*

Faculty of Pharmaceutical Sciences, Science University of Tokyo, 12, Ichigaya Funagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan

Abstract - Intermolecular Pauson-Khand reaction of various 1-alkynes with *exo*-methylene-piperidine and -cyclohexane derivatives was examined to give the title compounds in moderate to good yields.

Spirocyclic compounds are one of important key intermediates in the total synthesis of natural products¹ and several methodology to access them has been developed.² In connection with our recent work³ on intramolecular Pauson-Khand reaction of *exo*-cyclic olefins, we envisaged that intermolecular Pauson-Khand reaction of *exo*-cyclic olefins could be convenient synthetic method of spirocycles. Since first report of Pauson-Khand reaction,⁴ a few works have appeared on the reaction of *exo*-methylene cycles constituted by only small ring substrates such as cyclo-propanes^{5a,b} and -butanes.^{5b} Here, we wish to describe the Pauson-Khand reaction of various 1-alkynes with 6-membered cyclic *exo*-methylene compounds to furnish 6-5 spirobicyclic compounds.

At first, intermolecular Pauson-Khand reaction of phenylacetylene (**1a**) was examined with 2 eq. of *N*-benzyloxycarbonyl-4-methylenepiperidine (**2a**)⁶ (Scheme 1). Among experiments, the reaction in boiling toluene gave stereoselectively spiro-cyclic compound (**3a**)^{7,8}(30%) and no improvement (29%) was observed in the reaction under CO atmosphere. Furthermore, the reaction in the presence of BuSMe⁹ formed intractable mixture to give **3a** in only 9% yield. Also, the reaction with NMO¹⁰ did not result in

formation of **3a** and only decomplexation was observed on TLC. Structure of **3a** was determined by NOE experiment. In all cases, regioisomer (**4a**) of **3a** was not formed. It should be due to severe steric interaction between alkyne-cobalt complex and piperidine ring as depicted in Scheme 2 (**3aT** vs **4aT**).

It is well known that strained cyclic alkenes such as norbornene and 2,5-norbornadiene are good substrates in intermolecular Pauson-Khand reaction, in which when excess amounts (3-10 eq.) of them are used, the cyclized products are formed in good yield. Based on the findings, secondly, the reaction with increased amounts of **2a** was examined. Gratifyingly, when five and ten equivalents of **2a** were employed, **3a** was produced in 55 and 78% yields, respectively. Thus, excess of **2a** (10 eq)¹¹ was required to obtain good yield of Pauson-Khand adduct. Unchanged **2a** could be recovered in 75% yield and reused [**3a** (76%); **2a** (77%)].

From these results, the reaction of various 1-alkynes (**1a-n**) was conducted with ten equivalents of *exo*-cyclic olefins (**2a,b**).⁶ The results are summarized in Table 1. The reaction of arylacetylenes having acetoxy (**1b,c**), methoxycarbonyl (**1e,f**), and methoxy (**1g,h**) groups in 4- and 3-positions on benzene ring with **2a** gave the corresponding spiro-cyclopentenones (**3b,c,e,f,h,i**)⁷ in good yield (68-80%) along with unchanged **2a** (75-79%). On the other hand, similar reaction of 2-substituted arylacetylenes (**1d,g,j**) afforded corresponding adducts (**3d,g,j**)⁷ in moderate yield (40-44%). In these cases, many by-products were detected on TLC, which could not be isolated. These results would be rationalized by considering that sterically hindered 2-substituents on benzene ring interfered to approach the alkyne-cobalt complex to olefin moiety. Also another possibility that intramolecular coordination of 2-substituted oxygen or nitrogen atom to cobalt one in alkyne-cobalt complex accelerates decomplexation¹² to give the corresponding starting alkynes might be not excluded.

Interestingly, the reaction of arylacetylenes (**1k-m**) bearing benzyloxycarbonylamino group with **2a** afforded corresponding spiro-cyclopentenones (**3k-m**)⁷ in moderate yield (43-44%) along with free anilino products (**3kN-3mN**).^{7,13} The latter products would be formed by debenzyloxycarbonylation, which might be accelerated by coordination of nitrogen atom to cobalt complex during the reaction. The reaction of 1-hexyne (**1n**) with **2a** required long reaction time to afford **3n** in 43% yield. In a similar manner, the reaction of **1a** and **1n** with 8-methylene-1,4-dioxaspiro[4.5]decane (**2b**) proceeded to give spiro-cyclopentenones (**4a,n**)⁷ in 63% and 42% yield.

R Ta-n Cbz
$$R$$
 N-Cbz R NCbz R NCbz R 1a-n R 2a 2b R 3a-n R 3kN : $R = 4-H_2NC_6H_4$ R 4a : $R = Ph$ 3lN : $R = 3-H_2NC_6H_4$ 4n : $R = n-C_4H_9$ 3mN : $R = 2-H_2NC_6H_4$

Table 1. Intermolecular Pauson-Khand Reaction of Various 1-Alkynes and Olefins.^a

Run	1-Alky	nes R	Olefin	Time (h)	Product	Yield (%) mp (°C)	Recovered olefin (%)
1	1a	C_6H_5	2a	3	3a	78	131-132	75
2	$1b^{b}$	4-AcOC	$_{6}H_{4}$ 2a	3	3 b	77	109-110	78
3	$1c^{c}$	3-AcOC	$_{6}H_{4}$ 2a	4	3c	68	oil	77
4	$1d^d$	2-AcOC	$_{6}H_{4}$ 2a	4	3d	44	oil	78
5	1e ^e	4-MeO ₂ C	C_6H_4 2a	3	3e	78	96-97	75
6	$1f^{e}$	3-MeO ₂ C	C_6H_4 2a	3	3f	80	oil	79
7	$1g^{e}$	2-MeO ₂ C	C_6H_4 2a	3	3 g	42	oil	76
8	$\mathbf{1h}^{\mathrm{f}}$	4-MeOC	$_{6}^{2}H_{4}$ 2a	4	3h	70	100-101	79
9	$\mathbf{1i}^{\mathrm{f}}$	3-MeOC	H_4 2a	3	3i	68	oil	78
10	$\mathbf{1j}^{\mathrm{f}}$	2-MeOC	H_4 2a	4	3 j	40	oil	79
11	$1k^g$	4-CbzNH	C_6H_4 2a	4	3k+3kN	44+9	69-70, 62-63	3 81
12	$1l^g$	3-CbzNH	C_6H_4 2a	4	3l+3lN	43+11	65-66, 47-48	8 83
13	$1m^h$	2-CbzNH	C_6H_4 2a	3	3m+3mN	44 + 1	57-58, 150-13	51 85
14	1n	$n-C_4H$,	9	3n	43	oil	77
17	1a	C_6H_5		4	4a	63	88-89	77
18	1n	$n-C_4H$	2b	10	4n	42	oil	71

a) All reactions were carried out in boiling toluene with 10 eq. of olefin. b) M. Kotora and E. Negishi, *Synthesis*, 1997, 121. c) P. T. W. Cheng, P. Devasthale, Y. T. Jeon, S. Chen, and H. Zhang, PCT Int. Appl. WO 0121602, 2001. d) M. C. Pirrung and Y. R. Lee, *J. Org. Chem.*, 1993, **58**, 6961. e) S. J. Havens and P. M. Hergenrother, *J. Org. Chem.*, 1985, **50**, 1763. f) U. Appelberg, N. Mohell, and U. Hacksell, *Bioorg. Med. Chem. Lett.*, 1996, **6**, 415. g) Obtained by benzyloxycarbonylation of 4- or 3-ethynylaniline (T. Takeichi and J. K. Stille, *Macromolecules*, 1986, **19**, 2093). h) Obtained by benzyloxycarbonylation of 2-ethynylaniline (S. Cacchi, G. Fabrizi, and P. Pace, *J. Org. Chem.*, 1998, **63**, 1001).

In summary, we have investigated intermolecular Pauson-Khand reaction of various arylacetylenes (1a-m) and 1-hexyne (1n) with 6-membered cyclic *exo*-methylene compounds (2a,b) to give spirocyclopentenones. The reaction of arylacetylenes bearing substituents (except for benzyloxycarbonylamino group) in 3- and 4-positions on benzene ring gave the corresponding adducts in good yields, whereas that of 2-substituted and nitrogen-containing arylacetylenes, and aliphatic 1-alkyne furnished the corresponding spiro-cyclopentenones in moderate yields.

ACKNOWLEDGEMENTS

The authors are grateful to Mrs. F. Hasegawa of this faculty for her MS spectral measurement.

REFERENCES AND NOTES

- 1. For some recent examples, (a) J.-C. Quiron, D. S. Grierson, J. Royer, and H.-P. Husson, *Tetrahedron Lett.*, 1988, **29**, 3311. (b) M. T. Crimmins, Z. Wang, and L. A. McKerlie, *Tetrahedron Lett.*, 1996, **37**, 8703.
- 2. For a review, M. Sannigrahi, *Tetrahedron*, 1999, **55**, 9007.
- 3. (a) M. Ishizaki, K. Iwahara, K. Kyoumura, and O. Hoshino, *Synlett*, 1999, 587. (b) M. Ishizaki, K. Iwahara, Y. Niimi, H. Satoh, and O. Hoshino, *Tetrahedron*, 2001, **57**, 2729. (c) M. Ishizaki, Y. Niimi, and O. Hoshino, *Chem. Lett.*, 2001, 546.
- 4. For a reviews, K. M. Brummond and J. L. Kent, *Tetrahedron*, 2000, **56**, 3263.
- 5. (a) W. A. Smit, S. L. Kireev, O. M. Nefedov, and V. A. Tarasov, *Tetrahedron Lett.*, 1989, **30**, 4021. (b) H. Corlay, I. W. James, E. Fouquet, J. Schmidt, and W. B. Motherwell, *Synlett*, 1996, 990.
- 6. S Olefins (2a,b) were synthesized from corresponding commercially available ketones by Wittig methylenation (PPh₃•MeBr, *t*-BuOK, THF, rt) in 98 and 83% yield, respectively.
- 7. All new compounds gave satisfactory ¹H- and ¹³C-NMR, IR, and MS spectral data.
- 8. Representative procedure of Pauson-Khand reaction (Table 1, Run 1): A mixture of **1a** (0.020 g, 0.2 mmol), **2a** (0.462 g, 2.0 mmol), and Co₂(CO)₈ (0.083 g, 0.23 mmol) in toluene (2 mL) was stirred at rt for 1 h and at reflux for 4 h. The mixture was diluted with Et₂O. The precipitate was filtered through Celite 545 short pad. The filtrate was evaporated *in vacuo* to afford a residue, which was purified by preparative TLC on silica gel (AcOEt: hexane = 1:2) to give **3a** (0.057 g, 78%) and **2a** (0.344 g, 75%). **3a**: mp 131-132 °C; ¹H NMR δ 7.70 (2H, dd, *J* = 1.7, 7.9 Hz), 7.57 (1H, s), 7.32-7.42 (8H, m), 5.16 (2H, s), 4.05 (2H, br d, *J* = 13 Hz), 3.11 (2H, br t, *J* = 11.5 Hz), 2.51 (2H, s), 1.77 (2H, br t, *J* = 11.5 Hz), 1.52 (2H, br d, *J* = 13 Hz); ¹³C NMR δ 205.3, 164.4, 155.2, 141.6, 136.2, 130.9, 128.7, 128.5, 128.4, 128.1, 127.9, 127.2, 67.2, 47.1, 41.4, 41.0, 35.9; IR 1698, 1681, 1497 cm⁻¹; MS *m*/*z* 361 (M⁺); HRMS *m*/*z* calcd for C₂₃H₂₃NO₃ (M⁺) 361.1678, found: 361.1676.
- 9. T. Sugihara, M. Yamada, M. Yamaguchi, and M. Nishizawa, *Synlett*, 1999, 771.
- 10. S. Shambayati, W. E. Crowe, and S. L. Schreiber, Tetrahedron Lett., 1990, 31, 5289.
- 11. N. E. Shore, 'The Pauson-Khand Cycloaddition Reaction for Synthesis of Cyclopentanones' in Organic Reactions, Vol. 40, John Wiley & Sons Inc., New York, 1991, p. 6: The reaction of phenylacetylene with simple alkene such as cyclohexene (2 eq.) in boiling toluene gave the corresponding adduct in only 3% yield; I. U. Khand and P. L. Pauson, *J. Chem. Res.* (*M*), 1977, 168.
- 12. The authors thank a referee for his useful suggestion: T. Sugihara, H. Ban, and M. Yamaguchi, *J. Organometal. Chem.*, 1998, **554**, 163.
- 13. The reaction of 4-aminophenylacetylene with **2a** gave the corresponding adduct (**3kN**) in only 16% yield.