1,3-DIPOLAR CYCLOADDITIONS OF NEW MESOIONIC COMPOUNDS. SYNTHESIS OF 1*H*-PYRROLO[1,2-*c*]THIAZOLES, PYRROLIZINES AND 5,6,7,8-TETRAHYDROINDOLIZINES

Piero Dalla Croce ^a and Concetta La Rosa ^{b,*}

Abstract - We studied the 1,3-dipolar cycloaddition reactions between alkyne dipolarophiles and the new mesoionic compounds 2H,5H,7H-thiazolo[4,3-b]oxazol-2-one (12), 2H,5H,7H-pyrrolo[2,1-b]oxazol-2-one (13) and 2H,5H,7H-oxazolo[3,2-a]pyridin-2-one (14). These 1,3-dipoles were prepared *in situ* by means of cyclodehydration with acetic anhydride of the corresponding α -substituted 4-oxo-3-thiazolidine- (9), 2-oxo-1-pyrrolidine- (10) and 2-oxo-1-piperidineacetic acids (11). The cycloaddition reactions with alkyne dipolarophiles afforded single 1H-pyrrolo[1,2-c]thiazole, pyrrolizine and 5,6,7,8-tetrahydroindolizine derivatives, or a mixture of the two possible regioisomers, depending on whether symmetrical or unsymmetrical alkynes.

Introduction

We have previously reported the reactivity of the bicyclic mesoionic compounds (5) deriving from the cyclodehydration of cyclic N-acyl- α -amino acids as: N-acyl-(R)-thiazolidine-4-carboxylic acids (1), N-acyl-(L)-prolines (2), N-acyl-(D,L)-pipecolinic acids (3) and N-benzoyl-(S)-oxazolidine-4-carboxylic acid (4). The reaction with N-phenylmethylenebenzenesulfonamide afforded mixtures of diastereoisomeric spirocyclic β -lactams (7) and/or imidazo-condensed products (8) depending on the experimental conditions and the nature of the R and X groups (Scheme 1).

^a Dipartimento di Chimica Organica e Industriale and Centro C.N.R., Via Venezian 21, I-20133 Milano, Italy

^b Istituto di Chimica Organica, Facoltà di Farmacia, Via Venezian 21, I-20133 Milano, Italy

^{*} Corresponding author. e-mail: concetta.larosa@unimi.it

Scheme 1

1
$$X = S$$
, a $R = Me$, b $R = Ph$
2 $X = CH_2$, a $R = Me$, b $R = Ph$
3 $X = (CH_2)_2$, a $R = Me$, b $R = Ph$
4 $X = O$, $R = Ph$

The cyclodehydration of these N-acyl- α -amino acids leads to the *in situ* formation of the bicyclic mesoionic compounds (5) and their ketene valence tautomers (6), which are respectively responsible for the formation of the products (7) and (8). The 1,3-dipolar cycloaddition reaction was completely regionselective, with only regionsomers (8) being obtained.

In connection with these results, we decided to study the reactivity of the mesoionic compounds (12-14) (Scheme 2), which have an opposite 1,3-dipolar reactive form from that of 5, with the aim of obtaining the regioisomeric imidazo-condensed cycloadducts (16) on reaction with N-phenylmethylene-benzenesulfonamide. A survey of the literature showed that the α -amino acids (9-11), (the precursors of new dipoles (12-14)), have received little attention in regard to their synthesis, and that the 1,3-dipoles (12-14) had never been used before. To the best of our knowledge, few examples of analogous 1,3-dipoles were known, 3,4 all of which had more complex structures, and no a systematic study had been made of their reactivity. We therefore decided to verify the reactivity of dipoles (12-14) with alkynes, generally the most reactive dipolarophiles.

Scheme 2

9,12
$$X = S$$
, **a** $R = H$, **b** $R = Me$, **c** $R = Ph$
10,13 $X = CH_2$, **a** $R = H$, **b** $R = Me$, **c** $R = Ph$
11,14 $X = (CH_2)_2$, **a** $R = H$, **b** $R = Me$, **c** $R = Ph$

Results and Discussion

The synthesis of the α -substituted 4-oxo-3-thiazolidineacetic acids (**9a-c**) could follow the different routes shown in Scheme 3. Using route A, products (**9**) can be obtained by alkylation of the 4-oxo-thiazolidine with α -substituted α -bromoacetates in the presence of a base, followed by hydrolysis; route B can lead to the generation of the 4-oxothiazolidine ring by means of the condensation of an aldehyde (in our case formaldehyde), a mercaptoacetic acid and a primary amine (in our case an α -amino acid). The only report regarding compounds (**9**) is a patent showing the synthesis of **9a** and **9b** by route A. Route B is reported as having been used for the first time with α -amino acids, the fact that only aromatic aldehydes were used means that 2-aryl-substituted 4-oxothiazolidines were obtained. We tested both routes. In the first case, it was necessary to prepare the unavailable 4-oxothiazolidine. 4-Oxothiazolidines have been extensively studied and numerous syntheses have been reported, including the reduction of the inexpensive rhodanine with zinc dust in boiling acetic acid, which led to 4-oxo-thiazolidine in 58 % yield.

This was then alkylated with α -substituted α -bromoacetates in boiling THF with NaH as base. The final hydrolysis furnished products (9a-c) in 24%, 25% and 27% total yields from rhodanine.

Following route B, products (9a-c) were synthesised by heating a mixture of polyoxymethylene, thioglycolic acid and the appropriate α -amino acid (in a ratio of 2:3:1) in boiling benzene and removing the water as it formed. In this way, products (9a-c) were obtained in 63%, 70% and 73% yields respectively.⁸ Route B therefore proved to be better.

The 2-oxo-1-pyrrolidineacetic acid and 2-oxo-1-piperidineacetic acid derivatives (**10a-c**) and (**11a-c**) were synthesised by alkylating 2-pyrrolidinone and 2-piperidinone with α -substituted α -bromoacetic acids in toluene in the presence of NaH. Compounds (**10a-c**) and (**11a-b**) were known, ⁹⁻¹³ although some had not been completely described; the unknown **11c** was characterised.

Mesoionic compounds (12-14) were prepared *in situ* from the corresponding compounds (9-11). The use of acetic anhydride as a dehydrating agent and solvent allowed the cycloaddition reaction to be carried out at the suitable temperature of $T=120-130^{\circ}C$. The mesoionic intermediates (12-14) were less reactive than the reversed intermediates (5); possibly because it was more difficult for the oxygen of the lactam carbonyl residue to attack the carbon atom of the carboxylic group, and thus give the bicyclic 1,3-dipole.³ The reaction of 10a-c with the *N*-phenylmethylenebenzenesulfonamide did not afford products (16) or (17) as expected (Scheme 2) but only small amounts (10-25%) of products (18), probably deriving from the unstable intermediate β-lactams as a result of a cycloreversion process (Scheme 4).

Scheme 4

The possibility that **18** was formed by a 1,3-cycloaddition reaction between the dipole and the benzaldehyde deriving from a partial hydrolysis of the imine was rejected because there was no reaction of **10a** with an equimolar quantity of benzaldehyde. This result did not allow comparison of the regioselectivity of mesoionic compounds (**12-14**) with that of the reversed **5**. Moreover, the lower reactivity observed convinced us to use more reactive dipolarophiles as alkynes.

18

The first alkyne used was the dimethyl acetylenedicarboxylate: as shown in Table 1, all of the substrates (9-11,a-c) afforded the products (19-21,a-c) (Scheme 5) with yields ranging from 10% to 91%.

The yields were better when R was a methyl or phenyl group, and when X was one or two methylene groups instead of an heteroatom. This behavior is analogous with that observed with mesoionics (5).

Scheme 5

 $\mathbf{a} \quad \mathbf{R} = \mathbf{H} \quad \mathbf{b} \quad \mathbf{R} = \mathbf{Me} \quad \mathbf{c} \quad \mathbf{R} = \mathbf{Ph}$

 $X = (CH_2)_2$

11,21

Table 1

N °	X	R	Yield (%)
19a	S	Н	10
19b	S	Me	28
19c	S	Ph	65
20a	CH ₂	Н	21
20b	CH ₂	Me	76
20c	CH ₂	Ph	80
21a	(CH ₂) ₂	Н	24
21b	(CH ₂) ₂	Me	34
21c	(CH ₂) ₂	Ph	91

The second alkyne used was the ethyl propiolate: the 1,3-dipoles (12-14,a) (R=H) did not react with this less reactive dipolarophile. The others gave mixtures of the regioisomeric products (22-24b-c) and (25-27,b-c) (Scheme 6) with total yields of between 10% and 92% (Table 2) and a ratio ranging from 55/45 to 87/13, as determined by the relative integration of the H-7 and H-6 signals present in the ¹H-NMR spectra of the crude reaction mixture.

The regiochemistry was assigned to the unknown products by comparing the chemical shift values in their ${}^{1}\text{H-NMR}$ spectra with those of the known products. Furthermore, a positive NOE effect was observed in the minor regioisomer obtained from the reaction of **10c** with ethyl propiolate, between the singlet at δ 6.8 relating to H-6, and a doublet at δ 7.48 relating to the orto-protons of the C-5 phenyl group, thus allowing us to assign it structure (**26c**).

Scheme 6

Table 2

N°	X	R	Yield (%)	Ratio
			22-24 + 25-27	22-24 / 25-27
22b – 25b	S	Me	10	68 / 32
22c – 25c	S	Ph	73	87 / 13
23b – 26b	CH ₂	Me	49	60 / 40
23c – 26c	CH ₂	Ph	83	70 / 30
24b - 27b	(CH ₂) ₂	Me	28	69 / 31
24c – 27c	(CH ₂) ₂	Ph	92	55 / 45

As shown in Table 2, the main regioisomer is always that with the R and carbethoxy groups adjacent to, and deriving from the bond formation between the 1,3-dipole C-2 center and the propiolate dipolarophile β -carbon. The observed regioselectivity agrees with that reported for the reactions of analogous but reversed 1,3-dipoles (5) with alkyl propiolate, ^{14,15} as the ratio between the two regioisomers in our mixtures was the opposite of those reported. In our case, regiocontrol seems to be rationalised by the FMO theory ¹⁵ instead of a tether-based prediction ¹⁶ that would lead to preferential bond formation between the C-2 tethered centre and the α -carbon of the propiolate.

Finally, substrates (9c, 10c and 11c) were reacted with another unsymmetrical dipolarophile, the 1,3-diphenylpropynone (Scheme 7 and Table 3). The lower yields of these cycloaddition reactions show the poor reactivity of this alkyne. Also in this case, mixtures of the new regioisomeric compounds (28-30) and (31-33) were obtained with a ratio always in favour of regioisomers (28-30). The regiochemistry of the products was assigned on the basis of the NOE results obtained from the couple deriving from the reaction between 10c and the 1,3-diphenylpropynone.

Scheme 7

11c,30,33

Ph
$$CH$$
-COOH C Ac_2O Ac_2O $COPh$ CO

 $X = (CH_2)_2$

Table 3

N°	X	R	Yield (%)	Ratio
			28-30 + 31-33	28-30 / 31-33
28 - 31	S	Ph	16	75 / 25
29 – 32	CH ₂	Ph	21	72 / 28
30 - 33	(CH ₂) ₂	Ph	95	90 / 10

The major regioisomer showed a positive NOE effect between the triplet at δ 2.89 relating to H-7, and the doublet at δ 7.55 relating to the H-ortho of the benzoyl group, thus indicating that the two groups of protons are close to each other as in structure (29). The other regioisomer showed a positive NOE effect between the triplet at δ 3.02 relating to H-7, and a doublet at δ 7.21 relating to the H-ortho of the C-1 phenyl, thus confirming structure (32). The observed regioselectivity agrees with the reported results of 1,3-cycloaddition reactions between the same 1,3-diphenylpropynone and various 1,3-dipoles (nitrile oxides and nitrile imides, 17 mesoionic compounds such as the 3-methylsydnone 18 and bis(1,3-dithiolylium-4-olates) 19), and can be rationalized using the FMO theory.

In conclusion, this is the first study of the reactivity of the bicyclic mesoionic compounds 2H,5H,7H-thiazolo[4,3-b]oxazol-2-one (12), 2H,5H,7H-pyrrolo[2,1-b]oxazol-2-one (13) and 2H,5H,7H-oxazolo[3,2-a]pyridin-2-one (14) towards alkyne dipolarophiles. The compounds were less reactive than the inverse 1,3-dipoles probably due to greater difficulty in ring closure. However, the reactions did allow us to obtain some new 1H-pyrrolo[1,2-c]thiazoles, pyrrolizine and 5,6,7,8-tetrahydroindolizine derivatives.

EXPERIMENTAL

General Methods: Melting points were measured using a Büchi apparatus and are uncorrected. ¹H and ¹³C NMR spectra were recorded by means of a Bruker AC 300 spectrometer. Chemical shifts (δ) are given in ppm relative to TMS; CDCl₃ was used as solvent if not otherwise stated. All coupling constants (J) are in Hertz. MS spectra were determined on a VG Analytical 7070 EQ mass spectrometer with a VG analytical 11/250 data system attached. IR spectroscopy was performed on a Perkin-Elmer 1725X FT-IR spectrometer. 4-Oxothiazolidine was prepared with the reported method⁷ in 58% yield.

Preparation of 4-Oxo-3-thiazolidineacetic acids (9a-c).

Route A. A solution of 4-oxothiazolidine (0.5 g, 4.8 mmol) in THF (10 mL) was added dropwise to a suspension of NaH (50% in oil, 0.23 g, 4.8 mmol) in THF (20 mL). The mixture was stirred and heated at

65° C for 1 h, then a solution of the α -substituted ethyl α -bromoacetate (4.8 mmol) in THF (5 mL) was added dropwise and the heating continued for 10-13 h. After evaporation of the solvent, the residue was taken up in CH₂Cl₂ (30 mL) and the solution was washed with water. The organic phase was dried (Na₂SO₄) and the solvent evaporated off. The residue was treated with MeOH (20 mL) and 1N NaOH (7.2 mL, 7.2 mmol) at rt for 4 h. After evaporation of the solvent the aqueous solution was extracted with AcOEt (2x10 mL), acidified with 10% HCl and extracted with AcOEt (3x15 mL). The combined organic extracts were dried (Na₂SO₄) and evaporated. The products were recrystallized and identified by means of analytical and spectroscopic data. Products (9a, 9b, 9c) were obtained with 41, 43 and 47% yields respectively.

Route B. A mixture of thioglycolic acid (11.7 mL, 168 mmol), polyoxymethylene (3.35 g, 112 mmol of formaldehyde), α -amino acid (56 mmol) in benzene (100 mL) was heated at reflux temperature for 6 h removing the water as it was formed. After evaporation of the solvent the residue was treated with 10% HCl (80 mL) and extracted with AcOEt (4x50 mL). The combined organic extracts were dried (Na₂SO₄) and evaporated. The unreacted thioglycolic acid was distilled off (T = 185°C, P = 15 mm Hg) and the residue was purified by column chromatography over silica gel (toluene/AcOEt = 25/75). Products (**9a**, **9b**, **9c**) were obtained with 63, 70 and 73% yields respectively.

4-Oxo-3-thiazolidineacetic acid (**9a**):⁵ colorless solid, mp 176-178 °C (EtOH); ¹H-NMR (CD₃COCD₃): δ 2.8 (br, 1H, COOH exchangeable), 3.5 (s, 2H, H-5), 4.15 (s, 2H, N-CH₂-CO), 4.55 (s, 2H, H-2). IR (nujol): v 1711.92 cm⁻¹ (C-COO-), 1635.81 cm⁻¹ (N-CO-). MS (70eV, EI): m/ ϵ 161 [M⁺], 102, 88. Anal. Calcd for C₅H₇NO₃S: C, 37.27; H, 4.35; N, 8.69. Found: C, 36.98; H, 4.22; N, 8.55.

α-Methyl-4-oxo-3-thiazolidineacetic acid (9b): 5 colorless solid, mp 70-72 $^\circ$ C (iPr₂O/iPrOH). 1 H-NMR: δ 1.45 (d, J=7.53, 3H, CH₃), 3.55, 3.6 (AB syst. J=15.7, 2H, H-5), 4.35, 4.5 (AB syst. J=7.18, 2H, H-2), 4.85 (q, J=7.53, 1H, N-CH-CO), 6.25 (br, 1H, COOH). IR (nujol): ν 1732.77 cm⁻¹ (C-COO-), 1642.47 cm⁻¹ (N-CO-). MS (70eV, EI): m/z 175 [M⁺], 138, 102. Anal. Calcd for C₆H₉NO₃S: C, 41.14; H, 5.14; N, 8.0. Found: C, 40.98; H, 5.36; N 8.15.

α-Phenyl-4-oxo-3-thiazolidineacetic acid (9c): colorless solid, mp 120-122 °C (iPr₂O/iPrOH). ¹H-NMR: δ 3.55, 3.6 (AB syst. J=15.82, 2H, H-5), 3.8, 4.65 (AB syst. J=8.68, 2H, H-2), 5.85 (broad, 1H, COOH), 6.0 (s, 1H, N-CH-CO), 7.25-7.45 (m, 5H, Ph). IR (nujol): v 1738.58 cm⁻¹ (C-COO-), 1631.03 cm⁻¹ (N-CO-). MS (70eV, EI): m/z 237 [M⁺], 219, 192, 164, 118. Anal. Calcd for C₁₁H₁₁NO₃S: C, 55.69; H, 4.64; N, 5.90. Found: C, 55.56; H, 4.59; N 5.91.

Preparation of 2-Oxo-1-pyrrolidineacetic acids (10a-c) and 2-oxo-1-piperidineacetic acids (11a-c)

General method: A solution of 2-pyrrolidinone or 2-piperidinone (60 mmol) in toluene (15 mL) was added dropwise to a suspension of NaH (50% in oil, 6.34 g, 132 mmol) in toluene (80 mL). The mixture was stirred and heated at 60° C for 1 h, then a solution of the α-substituted α-bromoacetic acid (60 mmol) in toluene (10 mL) was added dropwise and the heating continued for 2-6 h. After evaporation of the solvent the residue was treated with water, acidified with conc. HCl (pH 2), and extracted with AcOEt (4x50 mL). The combined organic extracts were dried (Na₂SO₄) and evaporated. The products were recrystallized and characterized by means of analytical and spectroscopic data.

2-Oxo-1-pyrrolidineacetic acid (10a): Yield 72%; mp 143 °C (lit., 9 143 °C). 1H-NMR: δ 2.1 (m, 2H, H-4), 2.45 (t, J=7.54, 2H, H-3), 3.5 (t, J=6.98, 2H, H-5), 4.05 (s, 2H, N-CH₂-CO), 4.6 (br, 1H, COOH).

α-Methyl-2-oxo-1-pyrrolidineacetic acid (10b): Yield 50%; mp 128 °C (lit., 10 129 °C). 1H-NMR: δ 1.45 (d, J=7.59, 3H, CH₃), 2.1 (m, 2H, H-4), 2.5 (t, J=7.62, 2H, H-3), 3.5 (m, 2H, H-5), 4.85 (q, J=7.59, 1H, N-CH-CO), 5.9 (br, 1H, COOH).

α-Phenyl-2-oxo-1-pyrrolidineacetic acid (10c): Yield 48%; mp 124 °C (lit., 11 125 °C).

2-Oxo-1-piperidineacetic acid (11a): Yield 53%; mp 180 °C (lit., ¹² 184 °C).

α-Methyl-2-oxo-1-piperidineacetic acid (11b): Yield 52%; mp 147 °C (lit., 13 148 °C). 1 H-NMR: δ 1.45 (d, J=7.36, 3H, CH₃), 1.7 (m, 4H, H-4 and H-5), 2.45 (t, J=5.9, 2H, H-3), 3.25 (t, J=5.8, 2H, H-6), 4.95 (q, J=7.33, 1H, N-CH-CO), 7.3 (br, 1H, COOH).

α-Phenyl-2-oxo-1-piperidineacetic acid (11c): Yield 74%; mp 148-149 °C (iPrOH). ¹H-NMR: δ 1.75 (m, 4H, H-4 and H-5), 2.5 (t, J=6.4, 2H, H-3), 2.85 (m, 1H, H-6), 3.35 (m, 1H, H-6), 6.0 (br, 1H, COOH), 6.3 (s, 1H, N-CH-CO), 7.3-7.5 (m, 5H, Ph). Anal. Calcd for C₁₃H₁₅NO₃: C, 66.95; H, 6.44; N, 6.01. Found: C, 66.76; H, 6.49; N, 5.92.

Reaction of compounds (10a,c) with N-phenylmethylenebenzenesulfonamide

General method: A solution of **10a** or **10c** (5 mmol) in acetic anhydride (5 mL) was heated at reflux temperature for 1 h under nitrogen. *N*-Phenylmethylenebenzenesulfonamide (1.22 g, 5 mmol) was added and the heating continued for 24 h. After evaporation of the acetic anhydride, the residue was taken up in CH₂Cl₂ (20 mL) and the solution was washed with saturated NaHCO₃ and then with water. The organic

phase was dried (Na_2SO_4) and evaporated. The residue was purified by column chromatography on silica gel (Toluene/AcOEt = 90/10).

(E)-1-(2-Phenylethenyl)-2-pyrrolidinone (18a): Yield 10%; mp 125 °C (lit., ²⁰ 128 °C).

(**E**)-1-(1,2-Diphenylethenyl)-2-pyrrolidinone (18c): Yield 25%; mp 143-145 °C (toluene). ¹H-NMR: δ 2.15 (m, 2H, H-4), 3.2 (t, J=7.1, 2H, H-3), 3.55 (t, J=7.2, 2H, H-5), 6.9 (s, 1H, =CHPh), 7.1-7.5 (m, 5H, Ph). Anal. Calcd for C₁₈H₁₇NO: C, 82.13; H, 6.46; N, 5.32. Found: C, 82.04; H, 6.45; N, 5.12.

Reaction of compounds (9-11,a-c) with dimethyl acetylenedicarboxylate, ethyl propiolate or 1,3-diphenylpropynone

General method: A solution of substrates (**9-11,a-c**) (3 mmol) in acetic anhydride (5 mL) was heated at reflux temperature for 1 h under nitrogen. Dimethyl acetylenedicarboxylate (0.43 g, 3 mmol), ethyl propiolate (1.47 g, 15 mmol) or 1,3-diphenylpropynone (0.62 g, 3 mmol) was added and the heating continued for 3-24 h. After evaporation of the acetic anhydride, the residue was taken up in CH_2Cl_2 (20 mL) and the solution was washed with saturated $NaHCO_3$ and then with water. The organic phase was dried (Na_2SO_4) and evaporated. The residue was purified by column chromatography on silica gel (Toluene/AcOEt = 90/10).

Dimethyl 1*H***,3***H***-pyrrolo[1,2-***c***]thiazole-6,7-dicarboxylate (19a):** mp 108-110 °C (iPrOH). ¹H-NMR: δ 3.75 (s, 6H, 2 COOCH₃), 4.2 (s, 2H, H-1), 4.95 (s, 2H, H-3), 7.2 (s, 1H, H-5). ¹³C-NMR: δ 29.99 (t, C-1), 48.94 (t, C-3), 51.33 (q, OCH₃), 51.46 (q, OCH₃), 120.42 (s, C-7a), 121.4 (d, C-5), 142.62 (2s, C-6 and C-7), 163.55 (2s, 2 CO). IR (nujol): v 1733.0 cm⁻¹ (COOCH₃). MS (70eV, EI): m/z 241 [M⁺], 209, 182, 164, 151, 123. Anal. Calcd for C₁₀H₁₁NO₄S: C, 49.79; H, 4.56; N, 5.81. Found: C, 49.56; H, 4.59; N, 5.61.

Dimethyl 5-methyl-1H,3H-pyrrolo[1,2-c]thiazole-6,7-dicarboxylate (19b): mp 134 °C (lit., 21 135 °C).

Dimethyl 5-phenyl-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-6,7-dicarboxylate (19c): mp 112-113 °C (iPrOH).

¹H-NMR: δ 3.65 (s, 3H, COOCH₃), 3.75 (s, 3H, COOCH₃), 4.3 (s, 2H, H-1), 4.85 (s, 2H, H-3), 7.3-7.4 (m, 5H, Ph).

¹³C-NMR: δ 29.92 (t, C-1), 48.38 (t, C-3), 51.31 (q, OCH₃), 51.81 (q, OCH₃), 105.6 (s, C-5), 117.07 (s, C-7a), 128.42 (d, Ph), 128.59 (d, Ph), 128.99 (d, Ph), 129.77 (s, Ph), 130.92 (s, C-6), 140.98 (s, C-7), 161.18 (s, CO), 162.88 (s, CO). IR (nujol): v 1712.77 cm⁻¹ (COOCH₃). MS (70eV, EI): m/z 317 [M⁺], 285, 256, 240, 227, 199. Anal. Calcd for C₁₆H₁₅NO₄S: C, 60.56; H, 4.73; N, 4.41. Found C, 60.34; H, 4.49; N, 4.28.

Dimethyl 2,3-dihydro-1*H***-pyrrolizine-6,7-dicarboxylate (20a):** mp 87 °C (lit., ²² 86.5 °C).

Dimethyl 5-methyl-2,3-dihydro-1*H***-pyrrolizine-6,7-dicarboxylate (20b):** mp 102 °C (lit., ²³ 103 °C).

Dimethyl 5-phenyl-2,3-dihydro-1*H*-pyrrolizine-6,7-dicarboxylate (20c): mp 158 °C (lit., ²⁴ 158 °C).

Dimethyl 5,6,7,8-tetrahydro-1,2-indolizinedicarboxylate (21a):²⁵ mp 80-81 °C (iPr₂O). ¹H-NMR: δ 1.8, 1.9 (2 m, 4H, H-6 and H-7), 2.95 (t, J=6.49, 2H, H-8), 3.85 (t, J=6.02, 2H, H-5), 6.9 (s, 1H, H-3). Anal. Calcd for $C_{12}H_{15}NO_4$: C, 60.76; H, 6.33; N, 5.91. Found: C, 60.44; H, 6.39; N, 5.88.

Dimethyl 3-methyl-5,6,7,8-tetrahydro-1,2-indolizinedicarboxylate (21b): mp 85 °C (lit., 26 86 °C).

Dimethyl 3-phenyl-5,6,7,8-tetrahydro-1,2-indolizinedicarboxylate (21c): mp 125 °C (lit., 27 126 °C).

Ethyl 5-methyl-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-6-carboxylate (22b) and ethyl 5-methyl-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxylate (25b): The structure of these compounds, not stable, was determined by the NMR spectral data of their mixture. **22b** 1 H-NMR: δ 1.3 (t, J=7.13, 3H, OCH₂CH₃), 2.5 (s, 3H, CH₃), 4.0 (s, 2H, H-1), 4.2 (q, J=7.13, 2H, OCH₂CH₃), 4.85 (s, 2H, H-3), 6.25 (s, 1H, H-7). **25b** 1 H-NMR: δ 1.4 (t, J=7.14, 3H, OCH₂CH₃), 2.2 (s, 3H, CH₃), 4.3 (s, 2H, H-1), 4.45 (q, J=7.14, 2H, OCH₂CH₃), 4.9 (s, 2H, H-3), 6.3 (s, 1H, H-6).

Ethyl 5-phenyl-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-6-carboxylate (22c) and ethyl 5-phenyl-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxylate (25c): These compounds are not stable; they were obtained as an oil. **22c** 1 H-NMR: δ 1.15 (t, J=7.13, 3H, OCH₂CH₃), 4.1 (s, 2H, H-1), 4.15 (q, J=7.13, 2H, OCH₂CH₃), 4.85 (s, 2H, H-3), 6.45 (s, 1H, H-7). Anal. Calcd for C₁₅H₁₅NO₂S: C, 65.93; H, 5.49; N, 5.13. Found: C, 65.98; H, 5.32; N, 5.05. **25c** 1 H-NMR: δ 1.35 (t, J=7.12, 3H, OCH₂CH₃), 4.3 (q, J=7.12, 2H, OCH₂CH₃), 4.35 (t, J=1.44, 2H, H-1), 5.15 (t, J=1.44, 2H, H-3), 6.75 (s, 1H, H-6). Anal. Calcd for C₁₅H₁₅NO₂S: C, 65.93; H, 5.49; N, 5.13. Found: C, 65.88; H, 5.28; N, 4.98.

Ethyl 5-methyl-2,3-dihydro-1*H*-pyrrolizine-6-carboxylate (23b)²⁸ and ethyl 5-methyl-2,3-dihydro-1*H*-pyrrolizine-7-carboxylate (26b). 23b: oil. ¹H-NMR: δ 1.32 (t, J=7.14, 3H, OCH₂C \underline{H}_3), 2.45 (s, 3H, CH₃), 2.5 (m, 2H, H-2), 2.8 (t, J=7.0, 2H, H-1), 3.85 (t, J=7.0, 2H, H-3), 4.25 (q, J=7.14, 2H, OC \underline{H}_2 CH₃), 6.15 (s, 1H, H-7). **26b:** mp 53-55 °C (hexane). ¹H-NMR: δ 1.30 (t, J=7.13, 3H, OCH₂C \underline{H}_3), 2.2 (s, 3H, CH₃), 2.5 (m, 2H, H-2), 3.05 (t, J=7.2, 2H, H-1), 3.85 (t, J=7.2, 2H, H-3), 4.25 (q, J=7.13, 2H,

 $OC\underline{H}_2CH_3$), 6.25 (s, 1H, H-6). Anal. Calcd for $C_{11}H_{15}NO_2$: C, 68.39; H, 7.77; N, 7.25. Found: C, 68.28; H, 7.66; N, 7.09.

Ethyl 5-phenyl-2,3-dihydro-1*H*-pyrrolizine-6-carboxylate (23c) and ethyl 5-phenyl-2,3-dihydro-1*H*-pyrrolizine-7-carboxylate (26c). 23c: mp 74-75 °C (cyclohexane). ¹H-NMR: δ 1.15 (t, J=7.10, 3H, OCH₂CH₃), 2.45 (m, 2H, H-2), 2.85 (t, J=7.2, 2H, H-1), 3.85 (t, J=7.2, 2H, H-3), 4.15 (q, J=7.13, 2H, OCH₂CH₃), 6.4 (s, 1H, H-7), 7.3-7.5 (m, 5H, Ph). Anal. Calcd for C₁₆H₁₇NO₂: C, 75.29; H, 6.67; N, 5.48. Found: C, 75.19; H, 6.59; N, 5.38. 26c: mp 91-92 °C (cyclohexane). ¹H-NMR: δ 1.3 (t, J=7.11, 3H, OCH₂CH₃), 2.55 (m, 2H, H-2), 3.1 (t, J=6.95, 2H, H-1), 4.15 (t, J=6.95, 2H, H-3), 4.35 (q, J=7.11, 2H, OCH₂CH₃), 6.8 (s, 1H, H-6), 7.3-7.5 (m, 5H, Ph). Anal. Calcd for C₁₆H₁₇NO₂: C, 75.29; H, 6.67; N, 5.48. Found: C, 75.26; H, 6.72; N, 5.43.

Ethyl 3-methyl-5,6,7,8-tetrahydro-2-indolizinecarboxylate (24b)²⁹ and ethyl 3-methyl-5,6,7,8-tetrahydro-1-indolizinecarboxylate (27b):³⁰ The analytical and spectroscopic data agreed with the reported ones.

Ethyl 3-phenyl-5,6,7,8-tetrahydro-2-indolizinecarboxylate (24c) and ethyl 3-phenyl-5,6,7,8-tetrahydro-1-indolizinecarboxylate (27c). 24c: mp 76-77 °C (iPr₂O). 1 H-NMR: δ 1.1 (t, J=7.12, 3H, OCH₂CH₃), 1.85 (m, 4H, H-6 and H-7), 2.85 (t, J=6.03, 2H, H-8), 3.65 (t, J=5.95, 2H, H-5), 4.1 (q, J=7.12, 2H, OCH₂CH₃), 6.4 (s, 1H, H-1), 7.30-7.45 (m, 5H, Ph). Anal. Calcd for C₁₇H₁₉NO₂: C, 75.84; H, 7.06; N, 5.2. Found: C, 75.66; H, 6.96; N, 5.13. 27c: mp 70-71 °C (iPr₂O). 1 H-NMR: δ 1.3 (t, J=7.12, 3H, OCH₂CH₃), 1.9 (m, 4H, H-6 and H-7), 3.15 (t, J=6.03, 2H, H-8), 3.9 (t, J=5.43, 2H, H-5), 4.3 (q, J=7.12, 2H, OCH₂CH₃), 6.65 (s, 1H, H-2), 7.25-7.40 (m, 5H, Ph). Anal. Calcd for C₁₇H₁₉NO₂: C, 75.84; H, 7.06; N, 5.2. Found: C, 75.74; H, 6.99; N, 5.15.

(5,6-Diphenyl-1*H*,3*H*-pyrrolo[1,2-*c*]thiazol-7-yl)phenylmethanone (28) and (5,7-diphenyl-1*H*,3*H*-pyrrolo[1,2-*c*]thiazol-6-yl)phenylmethanone (31): The structure of these compounds, not stable, was determined by the NMR spectral data of their mixture. 28: 1 H-NMR: δ 4.25 (s, 2H, H-1), 4.95 (s, 2H, H-3), 6.85-7.30 (m, 13H, Ph), 7.5 (d, J=7.35, 2H, H-ortho Ph-CO). 31: 1 H-NMR: δ 4.2 (s, 2H, H-1), 5.0 (s, 2H, H-3), 6.85-7.30 (m, 13H, Ph), 7.6 (d, J=7.57, 2H, H-ortho Ph-CO).

(2,3-Diphenyl-6,7-dihydro-5*H*-pyrrolizin-1-yl)phenylmethanone (29): mp 171-173 °C (iPrO₂). 1 H-NMR: δ 2.45 (m, 2H, H-6), 2.9 (t, J=7.27, 2H, H-7), 3.95 (t, J=7.09, 2H, H-5), 6.9-7.0 (m, 5H, Ph), 7.10-

7.30 (m, 8H, Ph), 7.55 (d, J=6.92, 2H, H-orto Ph-CO). Anal. Calcd for $C_{26}H_{21}NO$: C, 85.95; H, 5.78; N, 3.86. Found: C, 85.84; H, 5.69; N, 3.75.

(1,3-Diphenyl-6,7-dihydro-5*H*-pyrrolizin-2-yl)phenylmethanone (32): mp 213-214 °C (iPrO₂). ¹H-NMR: δ 2.5 (m, 2H, H-6), 3.0 (t, J=7.09, 2H, H-7), 4.0 (t, J=7.01, 2H, H-5), 6.95-7.30 (m, 13H, Ph), 7.65 (d, J=6.98, 2H, H-ortho Ph-CO). Anal. Calcd for C₂₆H₂₁NO: C, 85.95; H, 5.78; N, 3.86. Found: C, 85.82; H, 5.66; N 3.73.

(2,3-Diphenyl-5,6,7,8-tetrahydroindolizin-1-yl)phenylmethanone (30) and (1,3-diphenyl-5,6,7,8-tetrahydroindolizin-2-yl)phenylmethanone (33): The structure of these compounds, not separable by column chromatography, was determined by the NMR spectral data of their mixture. 30: 1 H-NMR: δ 1.9 (m, 4H, H-6 and H-7), 3.1 (t, J=6.39, 2H, H-8), 3.8 (t, J=5.79, 2H, H-5), 6.80-7.30 (m, 13H, Ph), 7.55 (d, J=7.11, 2H, H-ortho Ph-CO). 33: 1 H-NMR: δ 1.9 (m, 4H, H-6 and H-7), 2.9 (t, J=7.02, 2H, H-8), 3.9 (t, J=5.85, 2H, H-5), 6.80-7.30 (m, 13H, Ph), 7.65 (d, J=7.12, 2H, H-orto Ph-CO).

REFERENCES AND NOTES

- 1. P. Dalla Croce, R. Ferraccioli, and C. La Rosa, *Tetrahedron*, 1995, **51**, 9385.
- 2. P. Dalla Croce, R. Ferraccioli, and C. La Rosa, *Tetrahedron*, 1999, **55**, 201.
- 3. W. K. Anderson and P. F. Corey, J. Org. Chem., 1977, 42, 559.
- 4. K. T. Potts and S.Yao, J. Org. Chem., 1979, 44, 977.
- 5. I. Ueda and Y. Katsura, Eur. Patent 203,743, 1986 (Chem. Abstr., 1987, 106, 67300y).
- C. P. Holmes, J. P. Chinn, G. C. Look, E. M. Gordon, and M. A. Gallop, *J. Org. Chem.*, 1995, 60, 7328.
- 7. M. M. Hansen and A. R. Harkness, *Tetrahedron Lett.*, 1994, 35, 6971.
- 8. The same reactions conducted with the α -amino esters instead of the α -amino acids, followed by hydrolysis, furnished products (9a-c) with lower yields despite the greater solubility of the α -amino esters in benzene.
- 9. **10a**: W. Reppe, *Liebigs Ann. Chem.*, 1955, **596**, 213.
- 10. 10b: J. W. Breitenbach, F. Galinovsky, H. Nesvadba, and E. Wolf, Monatsh., 1956, 87, 580.
- 11. **10c**: E. Roth, J. Altman, M. Kapon, and D. Ben-Ishai, *Tetrahedron*, 1995, **51**, 801.
- 12. **11a**: A. Hassner and B. Fischer, *J. Org. Chem.*, 1992, **57**, 3070.
- 13. **11b**: D. Todd and S. Teich, *J. Am. Chem. Soc.*, 1953, **75**, 1895.
- 14. M. T. Pizzorno and S. M. Albonico, J. Org. Chem., 1974, 39, 731.

- 15. O. Yebdri and F. Texier, *J. Heterocycl. Chem.*, 1986, **23**, 809.
- 16. B. P. Coppola, M. C. Noe, and S. Shih-Kuang Hong, Tetrahedron Lett., 1997, 38, 7159.
- 17. G. Bianchi, R. Gandolfi, and C. De Micheli, J. Chem. Res. (M), 1981, 135.
- 18. K. Kano, D. Scarpetti, J. C. Warner, J. P. Anselme, J. P. Springer, and B. H. Arison, *Can. J. Chem.*, 1986, **64**, 2211.
- 19. H. Gotthardt, W. Pflaumbaum, and P. Gutowski, Chem. Ber., 1988, 121, 313.
- 20. R. B. Ainscow, R. Brettle, and S. M. Shibib, J. Chem. Soc., Perkin Trans.1, 1985, 1781.
- 21. A. Padwa, G. E. Fryxell, J. R. Gasdaska, M. K. Venkatramanan, and G. S. K. Wong, *J. Org. Chem.*, 1989, **54**, 644.
- 22. W. K. Anderson and R. H. Mach, J. Med. Chem., 1987, 30, 2109.
- 23. R. Huisgen, H. Gotthard, H. O. Bayer, and F. C. Schaefer, Chem. Ber., 1970, 103, 2611.
- 24. W. K. Anderson and P. F. Corey, J. Med. Chem., 1977, 20, 812.
- 25. E. Vedejs and F. G. West, J. Org. Chem., 1983, 48, 4773.
- 26. T. Uchida, S. Tsubokawa, K. Harihara, and K. Matsumoto, J. Heterocycl. Chem., 1978, 15, 1303.
- 27. A. Padwa, D. C. Dean, D. L. Hertzog, W. R. Nadler, and L. Zhi, *Tetrahedron*, 1992, **48**, 7565.
- 28. Y. Aoyagi, T. Mizusaki, and A. Ohta, Tetrahedron Lett., 1996, 37, 9203.
- 29. J. M. Sprake and K. D. Watson, J. Chem. Soc., Perkin Trans. 1, 1976, 5.
- 30. M. T. Pizzorno and S. M. Albonico, J. Org. Chem., 1977, 42, 909.