CATIONIC COPPER(■)—OXAZOLINE-SULFOXIDE CATALYSTS: APPLICATION TO ASYMMETRIC DIELS-ALDER REACTIONS

Kazuhiro Watanabe, Takashi Hirasawa, and Kunio Hiroi*

Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan E-mail:khiroi@tohoku-pharm.ac.jp

Abstract—New chiral sulfoxides bearing a chiral 1,3-oxazoline ring were prepared and used as chiral ligands in copper(\mathbb{I})-catalyzed Diels-Alder reactions. The copper(\mathbb{I})-catalyzed cycloaddition reactions using the new chiral ligands were carried out at -78° C to afford adducts with rather high (up to 75 %) enantiomeric excess. Introduction of a counterion (triflate or hexafluoroantimonate) into the catalysts represented higher degree of asymmetric induction; namely, the more cationic copper(\mathbb{I})-oxazoline sulfoxide catalysts improved the enantioselectivity in the cycloaddition reaction.

An asymmetric Diels-Alder reaction is one of the most powerful and versatile methods for the creation of six-membered rings in organic synthesis.¹ Catalytic enantioselective processes with chiral Lewis acid-derived catalysts significantly extended the scope and utility of this reaction.^{2,3} In the design of chiral Lewis acidic catalysts, the choice of a matched chiral ligand for the reactions is seriously crucial for the achievement of the superior *endo/exo* selectivity as well as the *endo* enantioselectivity.⁴ Hitherto we have developed a number of chiral sulfoxide ligands in transition metal-catalyzed asymmetric reactions, in which palladium-catalyzed asymmetric allylic alkylations with them were exemplified.⁵

We wish to communicate herein the synthesis of O-N type ligands (2 and 3) containing both chiral sulfoxide bearing a bulky aryl group (2-methoxy-1-naphthyl) and 1,3-oxazoline functions, and their application as the chiral ligands in copper(II)-catalyzed enantioselective Diels-Alder reactions.⁶

Me
$$\stackrel{O}{\longrightarrow}_{\mathbb{N}}$$
 $\stackrel{a}{\longrightarrow}_{\mathbb{N}}$ $\stackrel{O}{\longrightarrow}_{\mathbb{N}}$ $\stackrel{b}{\longrightarrow}_{\mathbb{N}}$ $\stackrel{O}{\longrightarrow}_{\mathbb{N}}$ \stackrel

a) LDA, (-)-menthyl (S)-2-methoxynaphthalenesulfinate, -78°C, 12 h. b) LDA, MeI, -78°C-rt, 6 h. c) KHMDS, MeI, 0°C-rt, 2 h.

Scheme 1

Chiral sulfoxide ligands $((Ss,S)-3\mathbf{a-c})$ were prepared via chiral 1,3-oxazolines $((S)-1\mathbf{a-c})$ derived from readily available optically active α -amino acids, as follows. Sulfinylation of the chiral 1,3-oxazolines $((S)-1\mathbf{a-c})$ with (-)-menthyl (S)-2-methoxynaphthalenesulfinate⁷ was carried out in THF at $-78^{\circ}\mathbb{C}$ using LDA as a base to give $(Rs,S)-2\mathbf{a-c}$. Methylation of the sulfoxides $((Rs,S)-2\mathbf{a-c})$ with methyl iodide (LDA, THF, at $-78^{\circ}\mathbb{C}$ —room temperature) followed by the reaction with methyl iodide using potassium hexamethyldisilazide (KHMDS) as a base at $-78^{\circ}\mathbb{C}$ —room temperature, affording $(Ss,S)-3\mathbf{a-c}$ (Scheme 1).

AgX
$$Cl \qquad X = OTf, SbF_6$$

$$R = t-Bu, Ph, Bn$$

$$X = OTf, SbF_6$$

$$R = t-Bu, Ph, Bn$$

$$X = OTf, SbF_6$$

Scheme 2

Chiral Copper(\mathbb{I})—oxazoline-sulfoxide complexes (4) were prepared by the reaction of (Ss,S)-3a-c (1 equiv.) with commercially available CuCl₂ (1 equiv.) in CH₂Cl₂ at room temperature for 4 h. Initial attempts of a catalytic Diels-Alder reaction of a dienophile (6) with a diene (7) in the presence of 10 mol % of a catalyst (4) at -78° C for 48 h resulted in a very sluggish result in low (below 10 %) yields with practically almost no enantioselectivity (<5% ee). For increasing the reactivity of the catalyst (4), we have investigated various counterion effects in the above reactions. Thus, a copper(\mathbb{I})—oxazoline-sulfoxide catalyst (5) (X= OTf) with triflate counterion was prepared by treatment of 4 (1 equiv.) with AgOTf (2 equiv.) in anhydrous CH₂Cl₂ at room temperature for 2 h under argon atmosphere (Scheme 2). The resulting catalyst

(10 mol%) suspended was cooled to -78° C, and 6 (1 equiv.) was added followed by addition of freshly distilled cyclopentadiene (7) (5 equiv.). The reaction mixture was stirred at the temperature for 8 h to provide a Diels-Alder cycloadduct (8) in 80 % yield after purification by column chromatography over silica gel (Table 1, Entry 7). The stereochemistry of the cycloadduct (8) resulted was determined by ¹H-NMR and HPLC analysis as shown in Table 1. ¹⁰ It indicates that the reaction proceeded with high *endo* selectivity (*endo/exo* 82/18) and moderate enantioselectivity (43% ee). The various counterion effects using other ligands in the Diels-Alder reactions are summarized in Table 1.

Scheme 3

The lebel of the enantioselectivity observed depended on the steric bulk of both the substituents on the 1,3-oxazolines and the counterions (X) employed, or the combination of both the steric factors. The Table 1 indicates that the enantioselectivity of the reactions was increasing in an order of 2c,3c>2a,3a>2b,3b upon using trifrate as a counterion, whereas 2c,3c>2b,3b>2a,3a with a hexafluoroantimonate counterion. The copper(II)-complex derived from the chiral ligand ((Rs,S)-2a) with a trifrate counterion catalyzed the reaction to afford (R)-endo-8 with 51% ee, while the use of the catalysts ($(Rs,S)-[(2b,c)-Cu(SbF_6)_2]$) with phenyl and benzyl groups provided higher enantioselectivity of (R)-endo-8 (64 and 75% ee, respectively).

The anchored effects by dimethyl substituents in the ligands were studied with cupric catalysts using sulfoxide ligands ((Ss,S)-3a-c). Interestingly, the chiral ligands 2a-c without anchored substituents provided higher enantioselectivity than the ligands 3a-c anchored by dimethyl groups, as listed in Table 1, except for entry 11. Similar effects of the counterion and the substituents on the 1,3-oxazolines were observed. The use of (Ss,S)-3b with hexafluoroantimonate provided (R)-endo-8 with moderate enantioselectivity (52% ee, Entry 10). The highest enantioselectivity (75% ee) of (R)-endo-8 was obtained with (Ss,S)-2c as a chiral ligand using hexafluoroantimonate as a counterion.

Table 1. Studies on the Cu (Ⅱ)-Catalyzed Asymmetric Diels-Alder Reactions of 6 with 7 Using Chiral Ligands (2) and (3)^{a)}

Entry	Ligand	Counterion X	Yield (%) of 8	endo / exo ^{b)} of 8	e.e. (%) of (<i>R</i>)-endo - 8 ^{c)}
1	2a	OTf	92	83 / 17	51
2	2a	SbF_{6}	92	92 / 8	48
3	2b	OTf	86	82 / 18	41
4	2b	SbF_6	82	88 / 12	64
5	2 c	OTf	83	90 / 10	59
6	2 c	SbF_{6}	83	89 / 11	75
7	3a	OTf	80	82 / 18	43
8	3a	SbF_{6}	81	91 / 9	29
9	3 b	OTf	91	81 / 19	36
10	3 b	SbF_6	94	89 / 11	52
11	3c	OTf	75	84 / 16	74
12	3c	SbF_6	80	92 / 8	63

a) The reactions of 6 with 7 (5.0 equiv.) were carried out in CH_2Cl_2 at -78 °C for 8 h in the presence of copper complexes CuX_2 ($X = ClO_4$ or SbF_6) (0.1 equiv.), which were prepared by reacting ligands (2) or (3) (0.1 equiv.) with $CuCl_2$ at rt in CH_2Cl_2 for 4 h, followed by treatment with the corresponding silver salts (AgX) (0.2 equiv.).

In conclusion, the usefulness of chiral copper(II)—oxazoline-sulfoxide complexes as chiral catalysts and their counterion effects in enantioselective Diels-Alder reactions are now reported. Introduction of trifrate and antimonate as a counterion into the catalyst represented a highly effective catalytic system for enantioselective Diels-Alder reactions. The degree of the asymmetric induction was dependent on the steric bulk of the substituents at the chiral centers on the 1,3-oxazolines.

REFERENCES

- 1. W. Oppolzer, 'Comprehensive Organic Syntheses: Strategy and Efficiency in Mordern Organic Chemistry,' Vol. 5, ed. by B. M. Trost, Pergamon Press, Inc., Oxford, 1991, p. 315 and references therein.
- E. J. Corey, S. Sarshar, and D.-H. Lee, J. Am. Chem. Soc., 1994, 116, 12089; H. B. Kagan and O. Riant, Chem. Rev., 1992, 92, 1007; U. Pindur, G. Lutz, and C. Otto, Chem. Rev., 1993, 93, 741.
- 3. A. K. Ghosh, P. Mathivanan, and J. Cappiello, *Tetrahedron: Asymmetry*, 1998, **9**, 1 and references cited therein.
- 4. L. C. Diaz, J. Braz. Chem. Soc., 1997, 8, 289 and references cited therein.
- 5. K. Hiroi and Y. Suzuki, Heterocycles, 1997, 46, 77; K. Hiroi, Y. Suzuki, I. Abe, Y.

b) The endo/exo ratios of the product were determined by ¹H-NMR spectrometry.

c) The enantiomeric excess (ee) was determined by HPLC analysis with chiral column OD.

Hasegawa, and K. Suzuki, *Tetrahedron: Asymmetry*, 1998, **9**, 3797; K. Hiroi and Y. Suzuki, *Tetrahedron Lett.*, 1999, **40**, 715; K. Hiroi, Y. Suzuki, I. Abe, and R. Kawagishi, *Tetrahedron*, 2000, **56**, 4701.

- 6. K. Hiroi, K. Watanabe, I. Abe, and M. Koseki, Tetrahedron Lett., 2001, 42, 7617.
- 7. S. G. Pyne, A. R. Hajipour, and K. Prabakaran, Tetrahedron Lett., 1994, 35, 645.
- 8. N. Kiar, I. Fernandez, and F. Alcudia, Tetrahedron Lett., 1993, 34, 123.
- 9. A. K. Ghosh and H. Matsuda, Org. Lett., 1999, 1, 2157.
- 10. S. Crosignani, G. Desimoni, G. Faita, and P. P. Righetti, Tetrahedron, 1998, 54, 15721.