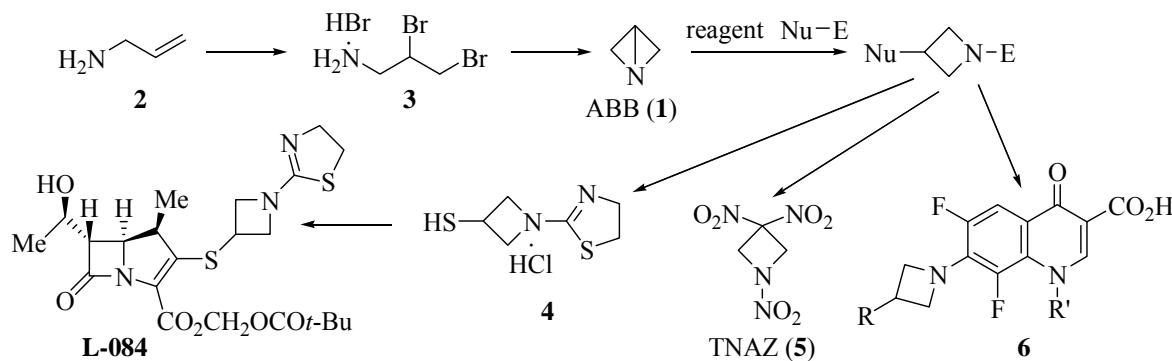


HETEROCYCLES, Vol. 78, No. 7, 2009, pp. 1777 - 1786. © The Japan Institute of Heterocyclic Chemistry  
Received, 5th February, 2009, Accepted, 12th March, 2009, Published online, 13th March, 2009  
DOI: 10.3987/COM-09-11677

## REACTION OF 1-AZABICYCLO[1.1.0]BUTANE WITH ACTIVATED AMIDES

Kazuhiko Hayashi,<sup>\*,a</sup> Eiko Kujime,<sup>a</sup> Hajime Katayama,<sup>a</sup> Shigeki Sano,<sup>b</sup> and Yoshimitsu Nagao<sup>b</sup>

<sup>a</sup>College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan. E-mail: hayashi@kinjo-u.ac.jp

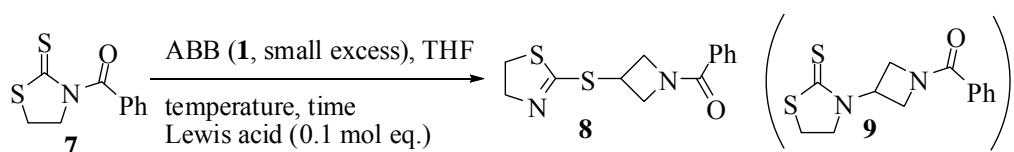

<sup>b</sup>Graduate School of Pharmaceutical Sciences, The University of Tokushima, Sho-machi, Tokushima 770-8505, Japan

**Abstract** — 1-Azabicyclo[1.1.0]butane (ABB, **1**) reacted with 3-acyl-1,3-thiazolidine-2-thiones (**7,11a—m**) in the presence of a catalytic amount of Mg(OTf)<sub>2</sub> to give the corresponding 2-(1-acylazetidin-3-yl)thio-1,3-thiazolines (**8,12a—m**). It was hypothesized that this reaction is primarily influenced by a steric bulkiness of acyl groups in 3-acyl-1,3-thiazolidine-2-thiones. Resulting compounds (**8, 12k**) were readily converted to thiols (**13,14**), and azetidine-3-thiol hydrochloride (**15**), which is the key intermediate of 1-(1,3-thiazolin-2-yl)azetidine-3-thiol hydrochloride (**4**) useful for the preparation of a new oral 1 $\beta$ -methylcarbapenem antibiotic **L-084**, was obtained quantitatively by hydrolysis of **14**.

## INTRODUCTION

1-Azabicyclo[1.1.0]butanes have proved to be a unique molecule bearing a highly strained bicyclic structure, and are synthetically useful for the preparation of azetidine derivatives.<sup>1,2</sup> In the last two decades, numerous reactions have been described in which 1-azabicyclo[1.1.0]butanes were explored as versatile reagents.<sup>1-3</sup> However, the synthetic utility of unsubstituted 1-azabicyclo[1.1.0]butane (ABB, **1**), which must be useful for the preparation of various 3-monosubstituted and 1,3-disubstituted azetidines, has rarely been reported because of its synthetic difficulty related to its remarkably strained structure.<sup>1,2</sup> These azetidine moieties have often been found in many natural products<sup>4</sup> and biologically active compounds such as carbapenems<sup>4</sup> and new quinolone antibiotics.<sup>5</sup>

In this context, we established an efficient synthetic method of ABB (**1**) starting from allylamine (**2**) *via* 2,3-dibromopropylamine hydrobromide (**3**),<sup>5</sup> and reported its application to the syntheses of various 3-substituted azetidines.<sup>7</sup> Additionally, the resulting azetidines were converted to 1-(1,3-thiazolin-2-yl)azetidine-3-thiol hydrochloride (**4**), which was exploited for the synthesis of a new oral 1 $\beta$ -methylcarbapenem antibiotic **L-084**,<sup>5,7,8</sup> an energetic material 1,3,3-trinitroazetidine (TNAZ, **5**),<sup>2,8</sup> and a new quinolone derivatives (**6**),<sup>9</sup> as shown in Scheme 1. In the present study, we observed that the reaction of ABB (**1**) with activated amides results in electrophilic addition of the amides to afford 1,3-disubstituted azetidines, and this reaction is promoted by some Lewis acids. Herein, we focus on the reaction of ABB (**1**) with 3-acyl-1,3-thiazolidine-2-thiones as activated amides,<sup>10</sup> and report the results of our studies.

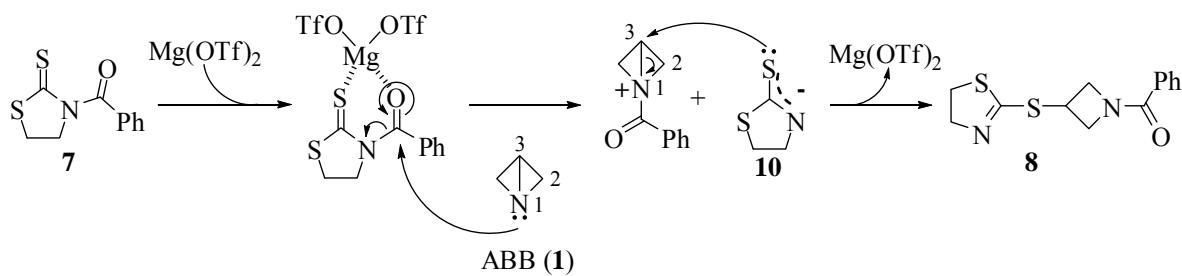



Scheme 1

## RESULTS AND DISCUSSION

A THF solution of ABB (**1**), obtained by treatment of **3** with *n*-BuLi at -78 °C in THF followed by codistillation with THF,<sup>5,7</sup> was used for the reaction with 3-acyl-1,3-thiazolidine-2-thiones. First, 3-benzoyl-1,3-thiazolidine-2-thione (**7**) was allowed to react with a small excess of ABB (**1**) under reflux for 15 h, and 2-(1-benzoylazetidin-3-yl)thio-1,3-thiazoline (**8**) was generated in poor yield, as shown in Scheme 2 and Table 1 (entry 1). The addition of the catalytic amount of Lewis acid improved the reaction, and Mg(OTf)<sub>2</sub> was most effective (entries 2–6). Room temperature was selected as the reaction temperature from the results of entries 6–8. The compound 1-(1-benzoylazetidin-3-yl)-1,3-thiazolidine-2-thione (**9**) was not obtained under any of the conditions employed (Scheme 2). In this reaction, the benzoyl group activated by a Lewis acid may initiate attack of the N1 position of the strained molecule ABB (**1**), followed by cleavage of the highly strained N1-C3  $\sigma$ -bond,<sup>2,11</sup> and the sulfur atom of 1,3-thiazolidine-2-thionyl anion (**10**) then reacts with the cationic C3 position, as shown in Scheme 3.

Table 2 shows representative results of the reaction of ABB (**1**) with various 3-acyl-1,3-thiazolidine-2-thiones (**11a–m**) at room temperature in the presence of Mg(OTf)<sub>2</sub>. All reactions proceeded to give the corresponding products **12a–m**. In the case of the reaction with **11a–h**,




Scheme 2

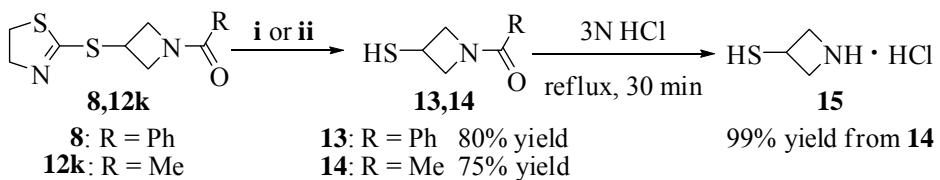
Table 1 Reaction of ABB (1) with 7

| entry | Lewis acid                          | temperature | time (h) | yield (%) <sup>a)</sup> of <b>8</b> |
|-------|-------------------------------------|-------------|----------|-------------------------------------|
| 1     | none                                | reflux      | 15       | 7                                   |
| 2     | Zn(OTf) <sub>2</sub>                | reflux      | 15       | 21                                  |
| 3     | BF <sub>3</sub> · Et <sub>2</sub> O | reflux      | 15       | 60                                  |
| 4     | Ti(O <i>i</i> -Pr) <sub>4</sub>     | reflux      | 4        | 60                                  |
| 5     | Mg(ClO <sub>4</sub> ) <sub>2</sub>  | reflux      | 15       | 53                                  |
| 6     | Mg(OTf) <sub>2</sub>                | reflux      | 0.5      | 65                                  |
| 7     | Mg(OTf) <sub>2</sub>                | rt          | 1.5      | 64 (65) <sup>b)</sup>               |
| 8     | Mg(OTf) <sub>2</sub>                | 0 °C        | 15       | 62                                  |

a) Determined by HPLC analysis (ODS column, 1 / 15 M phosphate buffer (pH 7.0) / MeCN = 60 / 40, at 254 nm). b) Isolated yield.



Scheme 3


*para*-substituted compounds **11e–h** showed a higher yield than the *ortho*-substituted compounds **11a–d** regardless of any electronic effect of the substituent on the aromatic ring (entries 1–8). The yield of the reaction with 3-(2-naphthoyl)-1,3-thiazolidine-2-thiones (**11j**) was higher than that of the reaction with 3-(1-naphthoyl)-1,3-thiazolidine-2-thiones (**11i**) (entries 9,10). The compound **11m** afforded **12m** in poor yield, compared with **11k** and **11l** (entries 11–13). From these results, it was estimated that this reaction with **11a–m** is mainly influenced not by an electronic effect but by the steric bulkiness of the acyl groups in 3-acyl-1,3-thiazolidine-2-thiones (**11a–m**).

**Table 2** Reaction of ABB (1) with 3-acyl-1,3-thiazolidine-2-thiones **11a—m**

|       |   |                                        |                                       |       |                  |                                         |    |
|-------|---|----------------------------------------|---------------------------------------|-------|------------------|-----------------------------------------|----|
|       |   |                                        | ABB (1, small excess), THF, rt, 1.5 h |       |                  |                                         |    |
| entry | R | yield(%) <sup>a)</sup> of <b>12a-m</b> |                                       | entry | R                | yield (%) <sup>a)</sup> of <b>12a-m</b> |    |
| 1     |   | <b>12a</b>                             | 34                                    | 7     |                  | <b>12g</b>                              | 72 |
| 2     |   | <b>12b</b>                             | 42                                    | 8     |                  | <b>12h</b>                              | 58 |
| 3     |   | <b>12c</b>                             | 46                                    | 9     |                  | <b>12i</b>                              | 45 |
| 4     |   | <b>12d</b>                             | 33                                    | 10    |                  | <b>12j</b>                              | 61 |
| 5     |   | <b>12e</b>                             | 57                                    | 11    | —Me              | <b>12k</b>                              | 57 |
| 6     |   | <b>12f</b>                             | 71                                    | 12    | —H <sup>b)</sup> | <b>12l</b>                              | 52 |
|       |   |                                        |                                       | 13    |                  | <b>12m</b>                              | 27 |

a) Isolated yield. b) Reaction was carried out for 4 h. c) Reaction was carried out for 23 h.

Subsequently, the reaction of products **8** and **12k** with hydrochloric acid in MeOH were carried out under reflux, and thiols **13** and **14** were obtained in 80% and 75% yield, respectively (Scheme 4). To the best of our knowledge, 1-acylazetidine-3-thiols such as **13** and **14** have not been reported. This method is efficient for the synthesis of 1-acylazetidine-3-thiol derivatives. Further, the resulting compound **14** was readily hydrolyzed with 3N HCl to afford azetidine-3-thiol hydrochloride (**15**), which is the key intermediate of **4** (Scheme 1), in quantitative yield.



Reagents and conditions: (i) 3N HCl - MeOH (1 : 10), reflux, 1 h; (ii) 1N HCl - MeOH (1 : 10), reflux, 40 min.

**Scheme 4**

In conclusion, we demonstrated the reaction of ABB (**1**) with 3-acyl-1,3-thiazolidine-2-thiones (**7**, **11a-m**). The reaction was promoted by a Lewis acid, and 2-(1-acylazetidin-3-yl)thio-1,3-thiazolines (**8**, **12a-m**) were obtained. The resulting compounds (**8**, **12k**) were readily converted to thiols (**13**, **14**), respectively. The compound (**14**) was hydrolyzed quantitatively to give **15**, which is the key intermediate of **4** useful for the preparation of **L-084**.

## EXPERIMENTAL

All melting points were measured using a Yanaco micro melting point apparatus and are uncorrected. IR spectra were obtained on a JASCO FT/IR-420 or JASCO FT/IR-4100 IR Fourier transform spectrometer. <sup>1</sup>H-NMR spectra were recorded on a JEOL JNM-ECA500 (500 MHz) spectrometer. <sup>13</sup>C-NMR spectra were recorded on a JEOL JNM-ECA500 (125 MHz) spectrometer with complete proton decoupling. Chemical shifts are given in  $\delta$  values (ppm) using tetramethylsilane (TMS) as an internal standard. Electron spray ionization (ESI)-MS were recorded on a Waters LCT Premier spectrometer. All reactions were monitored by TLC employing 0.25-mm silica gel plates (Merck 5715; 60 F<sub>254</sub>). Column chromatography was carried out on silica gel [Kanto Chemical 60N (spherical, neutral); 63-210  $\mu$ m]. All reagents were used as purchased.

### THF solution of 1-azabicyclo[1.1.0]butane (ABB, **1**)<sup>5,7,8</sup>

A hexane solution of *n*-BuLi (2.64 mol/L, 94.7 ml, 252 mmol) was added dropwise to a suspension of **3** (25.0 g, 83.9 mmol) in THF (250 mL) at -78 °C under nitrogen, and the mixture was stirred at -78 °C for 1 h. The reaction was then quenched with 50% KOH and distilled at 80 °C. The resulting THF solution was dried over K<sub>2</sub>CO<sub>3</sub> and filtered. The filtrate was adjusted to the 500 mL volume with THF. This THF solution of ABB (**1**, *ca.* 0.14 mol/L) was used in the following reactions.

### Typical procedure for the preparation of 2-(1-benzoylazetidin-3-yl)thio-1,3-thiazoline (**8**) (Table 1)

To a solution of 3-benzoyl-1,3-thiazolidine-2-thione (**7**, 139 mg, 0.621 mmol) and ABB (**1**, *ca.* 0.14 mol/L in THF, 5.0 mL, *ca.* 0.70 mmol) in THF was added Mg(OTf)<sub>2</sub> (20 mg, 0.062 mmol) at 0 °C. After being stirred at room temperature for 1.5 h, the reaction mixture was evaporated *in vacuo* to give a residue, which was purified by column chromatography on silica gel with *n*-hexane – AcOEt (1 : 2, v/v) to afford **8** (113 mg, 65%).

2-(1-Benzoylazetidin-3-yl)thio-1,3-thiazoline (**8**): Colorless needles (Et<sub>2</sub>O); mp 92–92.5 °C; <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ : 3.40 (2H, t, *J* = 8.0 Hz), 4.10–4.30 (2H, m), 4.17 (2H, td, *J* = 8.0, 2.3 Hz), 4.43 (1H, tt, *J* = 8.0, 5.5 Hz), 4.56–4.78 (2H, m), 7.41 (2H, t, *J* = 7.4 Hz), 7.47 (1H, t, *J* = 7.4 Hz), 7.62 (2H, d, *J* = 7.4 Hz); <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$ : 33.9, 35.7, 54.8, 61.0, 64.4, 127.9, 128.4, 131.2, 132.7, 163.3, 170.4; IR (KBr) 1629, 1565, 1446, 1400, 1002, 792, 717, 695 cm<sup>-1</sup>; ESI-MS Calcd for C<sub>13</sub>H<sub>14</sub>N<sub>2</sub>OS<sub>2</sub> MW 279.0626, Found *m/z* 279.0626 (M<sup>+</sup> + H).

**Typical procedure for the preparation of 2-(1-acylazetidin-3-yl)thio-1,3-thiazoline 12 (Table 2)**

To a solution of 3-(2-methyl)benzoyl-1,3-thiazolidine-2-thione (**9k**, 60 mg, 0.37 mmol) and ABB (**1**, *ca.* 0.14 mol/L in THF, 3.0 mL, *ca.* 0.42 mmol) in THF was added Mg(OTf)<sub>2</sub> (12 mg, 0.037 mmol) at 0 °C. After being stirred at room temperature for 1.5 h, the reaction mixture was evaporated *in vacuo* to give a residue, which was purified by column chromatography on silica gel with *n*-hexane – AcOEt (1 : 2, v/v) to CHCl<sub>3</sub> – MeOH (10 : 1, v/v) to afford **10k** (46 mg, 57%).

**2-[1-(2-Methylbenzoyl)azetidin-3-yl]thio-1,3-thiazoline (**12a**):** Colorless oil. <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) δ: 2.40 (3H, s), 3.39 (2H, td, *J* = 8.0, 2.3 Hz), 3.83—3.92 (1H, m), 4.11—4.19 (1H, m), 4.15 (2H, t, *J* = 8.0 Hz), 4.32—4.41 (2H, m), 4.55—4.62 (1H, m), 7.16—7.26 (3H, m), 7.29 (1H, td, *J* = 7.5, 1.7 Hz); <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ: 19.3, 33.4, 35.6, 54.2, 59.0, 64.2, 125.6, 126.6, 129.7, 130.8, 133.4, 135.5, 163.6, 171.3; IR (neat) 2945, 2877, 1643, 1570, 1415, 742 cm<sup>-1</sup>; ESI-MS Calcd for C<sub>14</sub>H<sub>17</sub>N<sub>2</sub>OS<sub>2</sub> MW 293.0782, Found *m/z* 293.0784 (M<sup>+</sup> + H).

**2-[1-(2-Methoxybenzoyl)azetidin-3-yl]thio-1,3-thiazoline (**12b**):** Colorless oil. <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) δ: 3.38 (2H, td, *J* = 8.0, 2.9 Hz), 3.86 (3H, s), 3.89—3.94 (1H, m), 4.09—4.14 (1H, m), 4.16 (2H, t, *J* = 8.0 Hz), 4.36—4.45 (2H, m), 6.91 (1H, d, *J* = 7.4 Hz), 6.98 (1H, t, *J* = 7.4 Hz), 7.37 (1H, t, *J* = 7.4 Hz), 7.38 (1H, d, *J* = 7.4 Hz); <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ: 33.5, 35.6, 54.6, 55.7, 58.4, 64.2, 111.2, 120.8, 123.3, 129.2, 131.5, 156.0, 163.9, 168.9; IR (neat) 2943, 2879, 1633, 1570, 1464, 1441, 1248, 1022, 756 cm<sup>-1</sup>; ESI-MS Calcd for C<sub>14</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub>S<sub>2</sub> MW 309.0731, Found *m/z* 309.0730 (M<sup>+</sup> + H).

**2-[1-(2-Chlorobenzoyl)azetidin-3-yl]thio-1,3-thiazoline (**12c**):** Colorless oil. <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) δ: 3.39 (2H, td, *J* = 8.0, 2.3 Hz), 3.87—3.94 (1H, m), 4.10—4.19 (1H, m), 4.15 (2H, t, *J* = 8.0 Hz), 4.35—4.45 (2H, m), 4.56—4.65 (1H, m), 7.23—7.42 (4H, m); <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ: 33.4, 35.6, 54.5, 58.3, 64.2, 127.0, 128.4, 129.8, 130.5, 130.8, 133.6, 163.3, 167.8; IR (neat) 2945, 2877, 1651, 1568, 1423, 1059, 748 cm<sup>-1</sup>; ESI-MS Calcd for C<sub>13</sub>H<sub>14</sub>ClN<sub>2</sub>OS<sub>2</sub> MW 313.0236 Found *m/z* 313.0238 (M<sup>+</sup> + H).

**2-[1-(2-Nitrobenzoyl)azetidin-3-yl]thio-1,3-thiazoline (**12d**):** Pale yellow oil. <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) δ: 3.39 (2H, td, *J* = 8.0, 4.6 Hz), 3.85 (1H, dd, *J* = 9.2, 5.5 Hz), 4.12—4.22 (1H, m), 4.15 (2H, t, *J* = 8.0 Hz), 4.33 (1H, dd, *J* = 9.2, 8.0 Hz), 4.46 (1H, tt, *J* = 8.0, 5.5 Hz), 4.67 (1H, dd, *J* = 10.9, 8.0 Hz), 7.45 (1H, d, *J* = 7.8 Hz), 7.59 (1H, t, *J* = 7.8 Hz), 7.70 (1H, t, *J* = 7.8 Hz), 8.15 (1H, d, *J* = 7.8 Hz); <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ: 33.5, 35.6, 54.9, 58.5, 64.3, 124.7, 128.5, 130.4, 130.7, 134.2, 145.9, 163.2, 167.7; IR (neat) 2947, 2877, 1651, 1574, 1531, 1485, 1427, 1348, 760 cm<sup>-1</sup>; ESI-MS Calcd for C<sub>13</sub>H<sub>13</sub>N<sub>3</sub>NaO<sub>3</sub>S<sub>2</sub> MW 346.0296, Found *m/z* 346.0300 (M<sup>+</sup> + Na).

**2-[1-(4-Methylbenzoyl)azetidin-3-yl]thio-1,3-thiazoline (**12e**):** Colorless needles (THF–*n*-hexane); mp 140—141 °C; <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) δ: 2.38 (3H, s), 3.40 (2H, t, *J* = 8.0 Hz), 4.09—4.29 (2H, m), 4.17 (2H, t, *J* = 8.0 Hz), 4.42 (1H, tt, *J* = 8.0, 5.4 Hz), 4.55—4.78 (2H, m), 7.21 (2H, d, *J* = 8.0 Hz), 7.52

(2H, d,  $J = 8.0$  Hz);  $^{13}\text{C}$ -NMR (125 MHz,  $\text{CDCl}_3$ )  $\delta$ : 21.4, 33.9, 35.6, 54.8, 61.0, 64.3, 127.9, 129.0, 129.8, 141.6, 163.6, 170.4; IR (KBr) 2939, 1624, 1568, 1415, 833, 750  $\text{cm}^{-1}$ ; ESI-MS Calcd for  $\text{C}_{14}\text{H}_{17}\text{N}_2\text{OS}_2$  MW 293.0782, Found  $m/z$  293.0780 ( $\text{M}^+ + \text{H}$ ).

**2-[1-(4-Methoxybenzoyl)azetidin-3-yl]thio-1,3-thiazoline (12f):** Colorless plates (THF-*n*-hexane); mp 116–117 °C;  $^1\text{H}$ -NMR (500 MHz,  $\text{CDCl}_3$ )  $\delta$ : 3.40 (2H, t,  $J = 8.0$  Hz), 3.86 (3H, s), 4.08–4.32 (2H, m), 4.17 (2H, t,  $J = 8.0$  Hz), 4.42 (1H, tt,  $J = 8.0, 5.5$  Hz), 4.53–4.81 (2H, m), 6.88–6.96 (2H, m), 7.57–7.66 (2H, m);  $^{13}\text{C}$ -NMR (125 MHz,  $\text{CDCl}_3$ )  $\delta$ : 33.9, 35.6, 54.8, 55.3, 61.2, 64.2, 113.6, 124.9, 129.8, 161.9, 163.8, 170.0; IR (KBr) 2941, 1606, 1574, 1423, 1402, 1257, 1028, 845, 764  $\text{cm}^{-1}$ ; ESI-MS Calcd for  $\text{C}_{14}\text{H}_{17}\text{N}_2\text{O}_2\text{S}_2$  MW 309.0731, Found  $m/z$  309.0738 ( $\text{M}^+ + \text{H}$ ).

**2-[1-(4-Chlorobenzoyl)azetidin-3-yl]thio-1,3-thiazoline (12g):** Pale yellow needles (THF-*n*-hexane); mp 109.5–110.5 °C;  $^1\text{H}$ -NMR (500 MHz,  $\text{CDCl}_3$ )  $\delta$ : 3.40 (2H, t,  $J = 8.0$  Hz), 4.09–4.27 (2H, m), 4.17 (2H, t,  $J = 8.0$  Hz), 4.43 (1H, tt,  $J = 8.0, 5.5$  Hz), 4.54–4.77 (2H, m), 7.39 (2H, d,  $J = 8.3$  Hz), 7.57 (2H, d,  $J = 8.3$  Hz);  $^{13}\text{C}$ -NMR (125 MHz,  $\text{CDCl}_3$ )  $\delta$ : 33.9, 35.6, 54.8, 61.1, 64.0, 128.7, 129.3, 131.0, 137.4, 164.1, 169.2; IR (KBr) 2945, 1608, 1564, 1439, 1090, 841, 746  $\text{cm}^{-1}$ ; ESI-MS Calcd for  $\text{C}_{13}\text{H}_{14}\text{ClN}_2\text{OS}_2$  MW 313.0236, Found  $m/z$  313.0235 ( $\text{M}^+ + \text{H}$ ).

**2-[1-(4-Nitrobenzoyl)azetidin-3-yl]thio-1,3-thiazoline (12h):** Pale yellow powder (THF-*n*-hexane); mp 140–142 °C;  $^1\text{H}$ -NMR (500 MHz,  $\text{CDCl}_3$ )  $\delta$ : 3.41 (2H, t,  $J = 8.0$  Hz), 4.12–4.27 (2H, m), 4.17 (2H, td,  $J = 8.0, 3.4$  Hz), 4.45 (1H, tt,  $J = 8.0, 5.5$  Hz), 4.58–4.76 (2H, m), 7.79 (2H, d,  $J = 8.6$  Hz), 8.28 (2H, d,  $J = 8.6$  Hz);  $^{13}\text{C}$ -NMR (125 MHz,  $\text{CDCl}_3$ )  $\delta$ : 33.8, 35.6, 54.9, 60.9, 64.2, 123.7, 128.9, 138.5, 149.3, 163.5, 168.0; IR (KBr) 2949, 1620, 1599, 1562, 1520, 1439, 1348, 843, 714  $\text{cm}^{-1}$ ; ESI-MS Calcd for  $\text{C}_{13}\text{H}_{14}\text{N}_3\text{O}_3\text{S}_2$  MW 324.0477, Found  $m/z$  324.0483 ( $\text{M}^+ + \text{H}$ ).

**2-[1-(1-Naphthoyl)azetidin-3-yl]thio-1,3-thiazoline (12i):** Colorless oil.  $^1\text{H}$ -NMR (500 MHz,  $\text{CDCl}_3$ )  $\delta$ : 3.37 (2H, td,  $J = 8.0, 4.0$  Hz), 3.86 (1H, dd,  $J = 9.2, 5.2$  Hz), 4.13 (2H, t,  $J = 8.0$  Hz), 4.26 (1H, dd,  $J = 10.6, 5.2$  Hz), 4.33 (1H, dd,  $J = 9.2, 8.0$  Hz), 4.39 (1H, tt,  $J = 8.0, 5.2$  Hz), 4.70 (1H, dd,  $J = 10.6, 8.0$  Hz), 7.47 (1H, dd,  $J = 8.0, 6.9$  Hz), 7.51–7.61 (3H, m), 7.87 (1H, d,  $J = 8.0$  Hz), 7.90 (1H, d,  $J = 8.0$  Hz), 8.14 (1H, d,  $J = 8.0$  Hz);  $^{13}\text{C}$ -NMR (125 MHz,  $\text{CDCl}_3$ )  $\delta$ : 33.5, 35.5, 54.6, 59.2, 64.2, 124.8, 125.2, 125.4, 126.4, 127.2, 128.4, 129.7, 130.4, 131.3, 133.6, 163.6, 170.7; IR (neat) 2945, 2877, 1643, 1570, 1425, 1385, 795, 779, 752  $\text{cm}^{-1}$ ; ESI-MS Calcd for  $\text{C}_{17}\text{H}_{17}\text{N}_2\text{OS}_2$  MW 329.0782, Found  $m/z$  329.0782 ( $\text{M}^+ + \text{H}$ ).

**2-[1-(2-Naphthoyl)azetidin-3-yl]thio-1,3-thiazoline (12j):** Colorless plates (THF-*n*-hexane); mp 120.5–121.5 °C;  $^1\text{H}$ -NMR (500 MHz,  $\text{CDCl}_3$ )  $\delta$ : 3.40 (2H, t,  $J = 8.0$  Hz), 4.12–4.37 (2H, m), 4.17 (2H, td,  $J = 8.0, 1.7$  Hz), 4.46 (1H, tt,  $J = 8.0, 5.0$  Hz), 4.62–4.86 (2H, m), 7.51–7.62 (2H, m), 7.71 (1H, dd,  $J = 8.6, 1.8$  Hz), 7.83–7.96 (3H, m), 8.11 (1H, s);  $^{13}\text{C}$ -NMR (125 MHz,  $\text{CDCl}_3$ )  $\delta$ : 34.0, 35.6, 54.9, 61.2, 64.3, 124.4, 126.7, 127.6, 127.8, 128.3, 128.4, 128.8, 130.0, 132.5, 134.5, 163.6, 170.5; IR (KBr) 2924, 1631,

1608, 1568, 1444, 1423, 823, 775, 760  $\text{cm}^{-1}$ ; ESI-MS Calcd for  $\text{C}_{17}\text{H}_{16}\text{N}_2\text{NaOS}_2$  MW 351.0602, Found  $m/z$  351.0582 ( $\text{M}^+ + \text{Na}$ ).

**2-(1-Acetylazetidin-3-yl)thio-1,3-thiazoline (12k):** Colorless plates (THF-*n*-hexane); mp 63–64 °C;  $^1\text{H-NMR}$  (500 MHz,  $\text{CDCl}_3$ )  $\delta$ : 1.87 (3H, s), 3.41 (2H, t,  $J$  = 8.0 Hz), 3.93 (1H, dd,  $J$  = 9.7, 5.2 Hz), 4.07 (1H, dd,  $J$  = 8.9, 5.2 Hz), 4.19 (2H, td,  $J$  = 8.0, 2.3 Hz), 4.36 (1H, tt,  $J$  = 8.0, 5.2 Hz), 4.41 (1H, dd,  $J$  = 9.7, 8.0 Hz), 4.58 (1H, dd,  $J$  = 8.9, 8.0 Hz);  $^{13}\text{C-NMR}$  (125 MHz,  $\text{CDCl}_3$ )  $\delta$ : 18.8, 32.7, 35.7, 54.1, 58.2, 64.4, 163.4, 170.5; IR (KBr) 2945, 2877, 1631, 1567, 1463  $\text{cm}^{-1}$ ; ESI-MS Calcd for  $\text{C}_8\text{H}_{13}\text{N}_2\text{OS}_2$  MW 217.0469, Found  $m/z$  217.0477 ( $\text{M}^+ + \text{H}$ ).

**2-(1-Formylazetidin-3-yl)thio-1,3-thiazoline (12l):** Colorless oil.  $^1\text{H-NMR}$  (500 MHz,  $\text{CDCl}_3$ )  $\delta$ : 3.42 (2H, t,  $J$  = 8.0 Hz), 3.93–4.00 (1H, m), 4.09–4.13 (1H, m), 4.19 (2H, t,  $J$  = 8.0 Hz), 4.42–4.51 (2H, m), 4.57–4.64 (1H, m), 8.00 (1H, s);  $^{13}\text{C-NMR}$  (125 MHz,  $\text{CDCl}_3$ )  $\delta$ : 34.6, 35.7, 53.9, 55.8, 64.3, 161.9, 163.1; IR (neat) 2945, 1663, 1568, 1418, 1363  $\text{cm}^{-1}$ ; ESI-MS Calcd for  $\text{C}_7\text{H}_{10}\text{N}_2\text{NaOS}_2$  MW 225.0132, Found  $m/z$  225.0133 ( $\text{M}^+ + \text{Na}$ ).

**2-(1-*tert*-Butoxycarbonylazetidin-3-yl)thio-1,3-thiazoline (12m):** Colorless oil.  $^1\text{H-NMR}$  (500 MHz,  $\text{CDCl}_3$ )  $\delta$ : 1.44 (9H, s), 3.40 (2H, t,  $J$  = 8.0 Hz), 3.88 (2H, dd,  $J$  = 9.5, 4.9 Hz), 4.19 (2H, t,  $J$  = 8.0 Hz), 4.26–4.39 (3H, m);  $^{13}\text{C-NMR}$  (125 MHz,  $\text{CDCl}_3$ )  $\delta$ : 28.3, 33.2, 35.6, 37.7, 55.6, 57.3, 64.4, 79.8, 155.9, 163.6; IR (neat) 2976, 2883, 1703, 1568, 1456, 1392, 1367, 1157  $\text{cm}^{-1}$ ; ESI-MS Calcd for  $\text{C}_{11}\text{H}_{19}\text{N}_2\text{O}_2\text{S}_2$  MW 275.0888, Found  $m/z$  275.0869 ( $\text{M}^+ + \text{H}$ ).

### 1-Benzoylazetidine-3-thiol (13)

To a solution of 2-(1-benzoylazetidin-3-yl)thio-1,3-thiazoline (**8**, 167 mg, 0.600 mmol) in MeOH (6 mL) was added dropwise 3N HCl (0.6 mL) at rt. After the mixture was refluxed for 1 h, the reaction mixture was concentrated *in vacuo* and then extracted with AcOEt. The extract was dried over anhydrous  $\text{MgSO}_4$ , filtered, and evaporated *in vacuo*. The residue was purified by column chromatography on silica gel with *n*-hexane – AcOEt (1 : 1, v/v) to afford **13** (92 mg, 80%).

**1-Benzoylazetidine-3-thiol (13):** Colorless plates (THF-*n*-hexane); mp 73.5–75 °C;  $^1\text{H-NMR}$  (500 MHz,  $\text{CDCl}_3$ )  $\delta$ : 2.08 (1H, d,  $J$  = 8.0 Hz), 3.77–3.86 (1H, m), 4.00–4.23 (2H, m), 4.60–4.73 (2H, m), 7.42 (2H, t,  $J$  = 7.5 Hz), 7.47 (1H, t,  $J$  = 7.5 Hz), 7.61 (2H, d,  $J$  = 7.5 Hz);  $^{13}\text{C-NMR}$  (125 MHz,  $\text{CDCl}_3$ )  $\delta$ : 27.6, 59.4, 63.8, 127.8, 128.4, 131.2, 132.7, 170.2; IR (KBr) 2947, 2866, 2501, 1611, 1574, 1448, 1431, 795, 716  $\text{cm}^{-1}$ ; ESI-MS Calcd for  $\text{C}_{10}\text{H}_{12}\text{NOS}$  MW 194.0640, Found  $m/z$  194.0631 ( $\text{M}^+ + \text{H}$ ).

### 1-Acetylazetidine-3-thiol (14)

To a solution of 2-(1-acetylazetidin-3-yl)thio-1,3-thiazoline (**12k**, 2.16 g, 10.0 mmol) in MeOH (100 mL) was added dropwise 1N HCl (10 mL) at rt. After the mixture was refluxed for 40 min, the reaction mixture was concentrated *in vacuo*, and then extracted with AcOEt. The extract was dried over anhydrous

$\text{MgSO}_4$ , filtered, and evaporated *in vacuo*. The residue was purified by column chromatography on silica gel with *n*-hexane – AcOEt (1:2, v/v) to  $\text{CHCl}_3$  – MeOH (10:1, v/v) to afford **14** (979 mg, 75%).

**1-Acetylazetidine-3-thiol (14):** Colorless oil.  $^1\text{H-NMR}$  (500 MHz,  $\text{CDCl}_3$ )  $\delta$ : 1.86 (3H, s), 2.06 (1H, d,  $J$  = 8.0 Hz), 3.74 (1H, qt,  $J$  = 8.0, 5.7 Hz), 3.85 (1H, dd,  $J$  = 9.7, 5.7 Hz), 3.98 (1H, dd,  $J$  = 8.6, 5.7 Hz), 4.44 (1H, dd,  $J$  = 9.7, 8.0 Hz), 4.54 (1H, dd,  $J$  = 8.6, 8.0 Hz);  $^{13}\text{C-NMR}$  (125 MHz,  $\text{CDCl}_3$ )  $\delta$ : 18.8, 26.5, 58.6, 61.1, 170.4; IR (neat) 2501, 1611, 1574, 1448, 1431, 795, 716  $\text{cm}^{-1}$ ; ESI-MS Calcd for  $\text{C}_5\text{H}_{10}\text{NOS}$  MW 132.0483, Found  $m/z$  132.0486 ( $\text{M}^+ + \text{H}$ ).

### Azetidine-3-thiol hydrochloride (15)<sup>5(b),7</sup>

**1-Acetylazetidiene-3-thiol (14, 39 mg, 0.30 mmol)** was dissolved in 3N HCl (3 mL), and the acidic solution was refluxed for 30 min. The reaction mixture was washed with AcOEt and evaporated *in vacuo* to afford **15** (37 mg, 99%).

**Azetidine-3-thiol hydrochloride (15):** Colorless oil.  $^1\text{H-NMR}$  (500 MHz,  $\text{CDCl}_3$ )  $\delta$ : 3.93–4.09 (3H, m), 4.38–4.45 (2H, m);  $^{13}\text{C-NMR}$  (125 MHz,  $\text{CDCl}_3$ )  $\delta$ : 30.8, 57.4; IR (neat) 3734, 3649, 2972, 1541, 1457  $\text{cm}^{-1}$ ; ESI-MS Calcd for  $\text{C}_3\text{H}_7\text{NNaS}$  MW 112.0197, Found  $m/z$  112.0196 ( $\text{M}^+ - \text{HCl} + \text{Na}$ ).

## ACKNOWLEDGEMENTS

This work was supported in part by a Grant-in-Aid for Scientific Research (C) (20550102) from the Japan Society for the Promotion of Science.

## REFERENCES AND NOTES

1. (a) A. G. Hortmann and D. A. Robertson, *J. Am. Chem. Soc.*, 1972, **94**, 2758; (b) W. Funke, *Chem. Ber.*, 1969, **102**, 3148; (c) W. Funke, *Angew. Chem.*, 1969, **80**, 70; (d) A. G. Hortmann and D. A. Robertson, *J. Am. Chem. Soc.*, 1967, **89**, 5974.
2. R. Bartnik and A. P. Marchand, *Synlett*, 1997, 1029.
3. (a) G. Młostów and M. Woźnicka, *Helv. Chim. Acta*, 2008, **91**, 1419; (b) M. Woźnicka, K. Urbaniak, G. Młostów, and H. Heimgartner, *Heterocycles*, 2006, **69**, 351; (c) G. Młostów and M. Celeda, *Helv. Chim. Acta*, 2005, **88**, 1658; (d) A. P. Marchand and S. Alihodžić, *Tetrahedron*, 1998, **54**, 1998; (e) P. R. Dave, *J. Org. Chem.*, 1996, **61**, 5453; (f) A. P. Marchand, D. Rajagopal, and S. G. Bott, *J. Org. Chem.*, 1995, **60**, 4943.
4. A. R. Pinder, *Nat. Prod. Rep.*, 1992, **9**, 491.
5. (a) K. Hayashi, Y. Ikee, S. Goto, M. Shiro, and Y. Nagao, *Chem. Pharm. Bull.*, 2004, **52**, 89; (b) K. Hayashi, C. Sato, S. Hiki, T. Kumagai, S. Tamai, T. Abe, and Y. Nagao, *Tetrahedron Lett.*, 1999, **40**, 3761.
6. (a) Y. Kuramoto, Y. Ohshita, J. Yoshida, A. Yazaki, M. Shiro, and T. Koike, *J. Med. Chem.*, 2003,

46, 1905; (b) J. Frigola, D. Vañó, A. Torrens, A. Gómez-Gomar, E. Ortega, and S. García-Granda, *J. Med. Chem.*, 1995, **38**, 1203; (c) J. Frigola, A. Torrens, J. A. Castrillo, J. Más, D. Vañó, J. M. Berrocal, C. Calvet, L. Salgado, J. Redondo, S. García-Granda, E. Valentí, and J. R. Quintana, *J. Med. Chem.*, 1994, **37**, 4195; (d) J. Frigola, J. Parés, J. Corbera, D. Vañó, R. Merce, A. Torrens, J. Más, and E. Valentí, *J. Med. Chem.*, 1993, **36**, 801.

7. K. Hayashi, S. Hiki, T. Kumagai, and Y. Nagao, *Heterocycles*, 2002, **56**, 433.
8. K. Hayashi, T. Kumagai, and Y. Nagao, *Heterocycles*, 2000, **53**, 447.
9. (a) Y. Ikee, K. Hashimoto, M. Kamimoto, M. Nakashima, K. Hayashi, S. Sano, M. Shiro, and Y. Nagao, *Chem. Pharm. Bull.*, 2008, **56**, 346; (b) Y. Ikee, K. Hashimoto, M. Nakashima, K. Hayashi, S. Sano, M. Shiro, and Y. Nagao, *Bioorg. Med. Chem. Lett.*, 2007, **17**, 942.
10. (a) Y. Nagao, S. Miyamoto, K. Hayashi, A. Mihira, and S. Sano, *Chem. Pharm. Bull.*, 2002, **50**, 558; (b) Y. Nagao, W. M. Dai, M. Ochiai, S. Tsukagoshi, and E. Fujita, *J. Am. Chem. Soc.*, 1988, **110**, 289; (c) Y. Nagao, T. Kumagai, S. Tamai, T. Abe, Y. Kuramoto, T. Taga, S. Aoyagi, Y. Nagase, M. Ochiai, Y. Inoue, and E. Fujita, *J. Am. Chem. Soc.*, 1986, **108**, 4673; (d) Y. Nagao, T. Ikeda, M. Yagi, E. Fujita, and M. Shiro, *J. Am. Chem. Soc.*, 1982, **104**, 2079.
11. R. Bartnik, Z. Cebulska, and R. Faure, *J. Chem. Soc., Chem. Commun.*, 1993, 148.