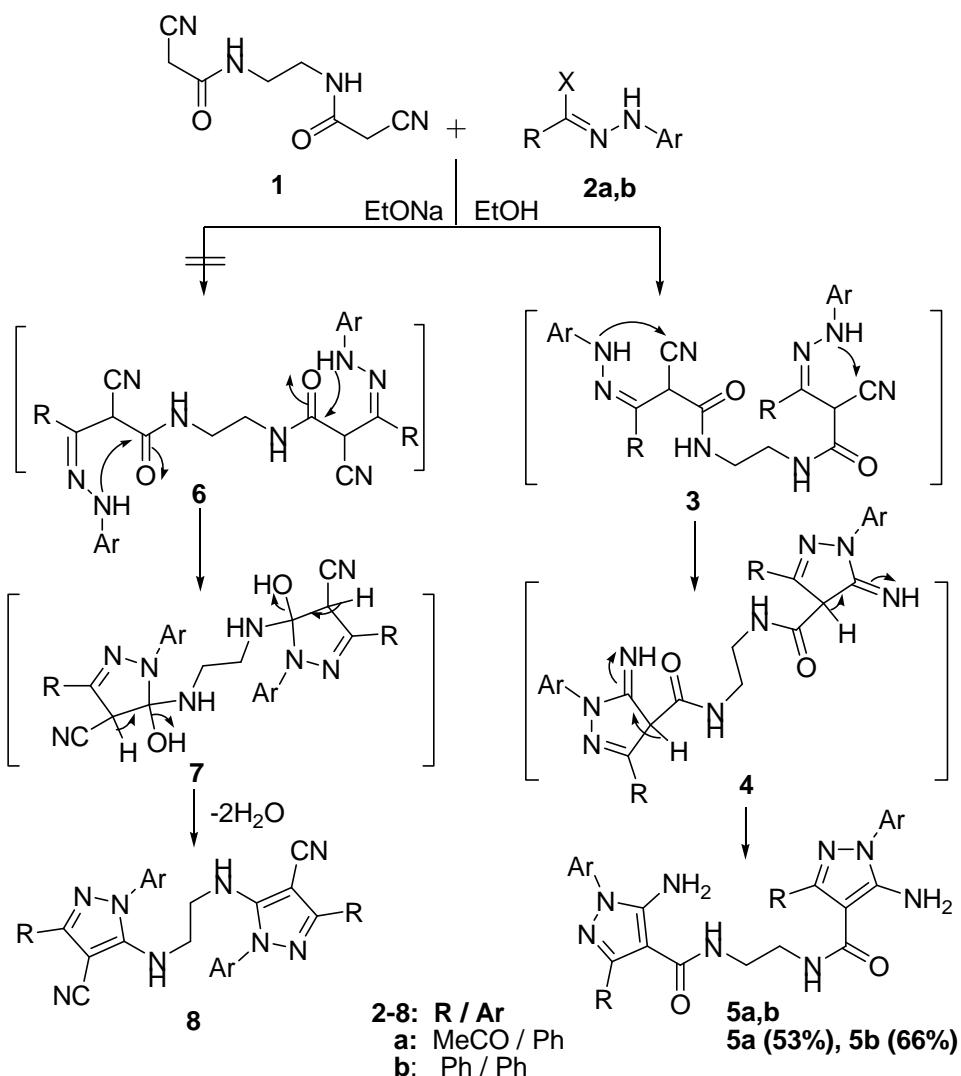


HETEROCYCLES, Vol. 78, No. 7, 2009, pp. 1815 - 1822. © The Japan Institute of Heterocyclic Chemistry
Received, 5th February, 2009, Accepted, 27th March, 2009, Published online, 31st March, 2009
DOI: 10.3987/COM-09-11676

SYNTHESIS OF SOME NOVEL BIS(PYRAZOLE), BIS(PYRIDINE) AND BIS(PYRAZOLO[5,1-*c*]-1,2,4-TRIAZINE DERIVATIVES

Nabila A. Kheder*

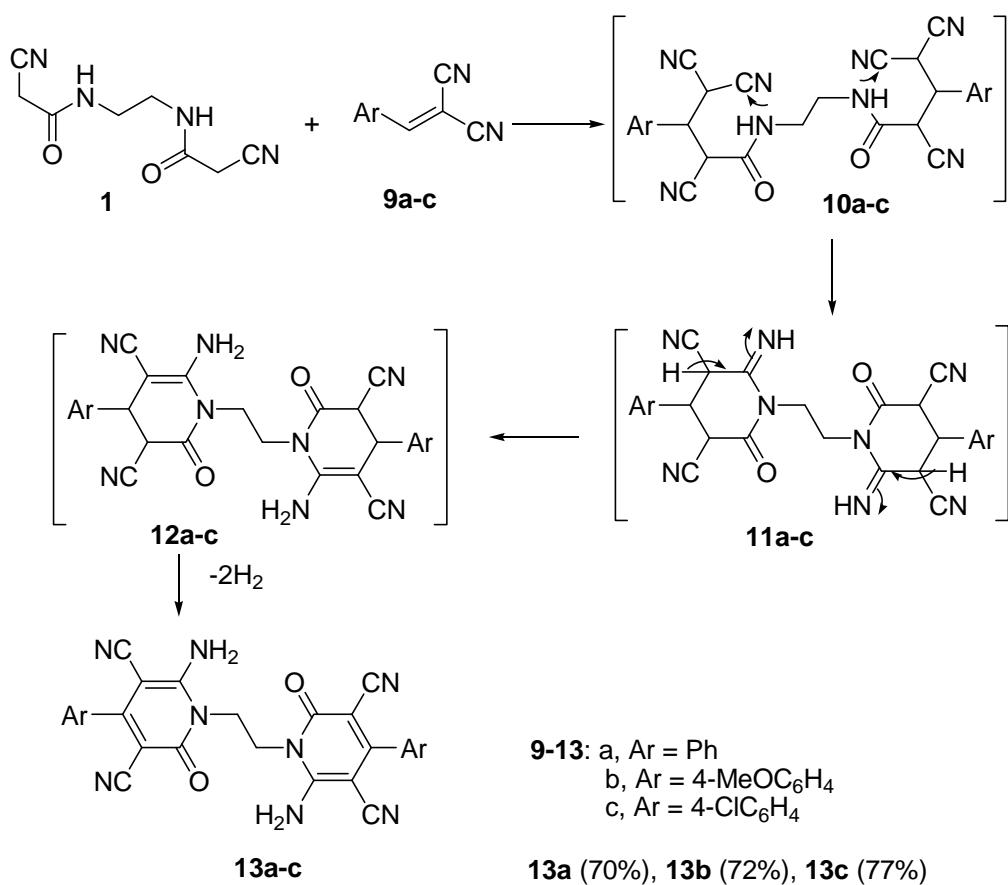
Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt


E-mail: nabila_abdelshafy@yahoo.com

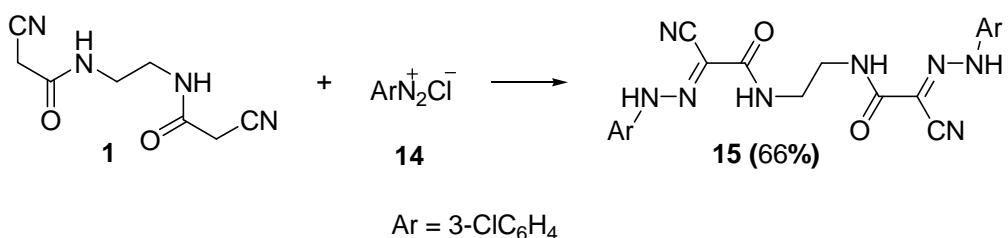
Abstract – Treatment of *N,N'*-(ethane-1,2-diyl)bis(cyanoacetamide) (**1**) with hydrazoneoyl chlorides **2a,b** afforded bis(aminopyrazoles) **5a,b**. Heating of compound **1** with arylmethylenepropanedinitrile **9a-c** afforded bis(pyridine) derivatives **13a-c**. Also, compound **1** coupled smoothly with the arenediazonium salt generated from 3-chloroaniline or 5-amino-4-methyl-3-phenylpyrazole (**16**) to afford the corresponding hydrazones **15** or bis(pyrazolo[5,1-*c*]-1,2,4-triazine-3-carboxamide) **19**. Refluxing of compound **1** with *N,N*-dimethylformamide dimethyl acetal (DMF-DMA) in xylene afforded bis(2-cyano-3-(dimethylamino)-acrylamide) (**20**) which reacted with hydrazine hydrate to afford the novel bis(cyanoopyrazole) **23**.

Recently, bis(heterocycles) have received grate deal of attention, not only for being model compounds for main chain polymers,¹⁻⁶ but also because many biologically active natural and synthetic products have molecular symmetry.⁷ On the other hand, the synthesis of combinatorial libraries of heterocyclic compounds permits the testing of the biological properties of a vast array of compounds. Routes to novel skeletons, which could be synthesized using combinatorial methods, are presently a major research objective. In continuation of our recent work aiming at the synthesis of bis(heterocyclic) systems,⁸⁻¹² it was found that compound **1**, is versatile and readily accessible building block for the synthesis of several new bis(pyrazole)-, bis(pyridine)- and bis(pyrazolo[5,1-*c*]-1,2,4-triazine) derivatives of expected biological potency.

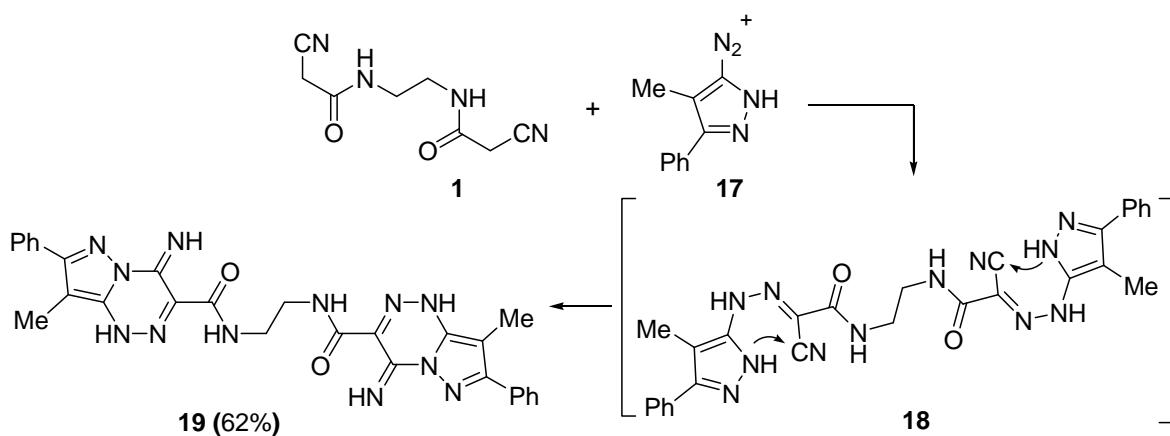
Treatment of compound **1**¹³ with hydrazoneoyl chloride **2a**¹⁴ in ethanolic sodium ethoxide solution at rt furnished a single product for which the two possible structures **5a** and **8a** can be envisaged (Scheme 1). However, elemental analyses and spectral data were in complete accordance with the bis(aminopyrazole)


structure **5a**. The IR spectrum of **5a** showed absorption bands at 3439, 3315, 3261, 1675 and 1639 cm^{-1} due to amino, amide-NH and two carbonyl groups, respectively. Its ^1H NMR spectrum showed signals at δ 2.49, 3.37 and two D_2O -exchangeable signals at δ 6.83 and 9.65 due to CH_3 , NCH_2 , amino and imino protons, respectively in addition to an aromatic multiplet in the region δ 7.53-7.62. Prompted by the foregoing results and to generalize this finding I also studied the reaction of the acetamide **1** with other hydrazoneyl chloride **2b**¹⁵ under the same experimental conditions and obtained the respective aminopyrazole derivative **5b**.

Scheme 1


Treatment of compound **1** with arylmethylenepropanedinitrile **9a-c**¹⁶ furnished 1, 1'-(ethane-1,2-diyl)-bis(6-amino-4-aryl-2-oxo-1,2-dihydropyridine-3,5-dicarbonitrile) **13a-c** (Scheme 2). The IR spectrum of compound **13a**, taken as a typical example of the prepared series, revealed absorption bands at 1631, 2206, 3317 and 3392 cm^{-1} corresponding to carbonyl group, nitrile function and amino group, respectively. Its ^1H NMR spectrum showed signals at δ 3.13 and D_2O -exchangeable signals at δ 4.18 due

to NCH_2 and NH_2 protons, respectively, in addition to an aromatic multiplet in the region δ 7.44-7.53. Compounds **13a-c** are assumed to be formed *via* an initial Michael type adducts **10** followed by an intramolecular cyclization and dehydrogenation to the final products **13a-c** (Scheme 2).

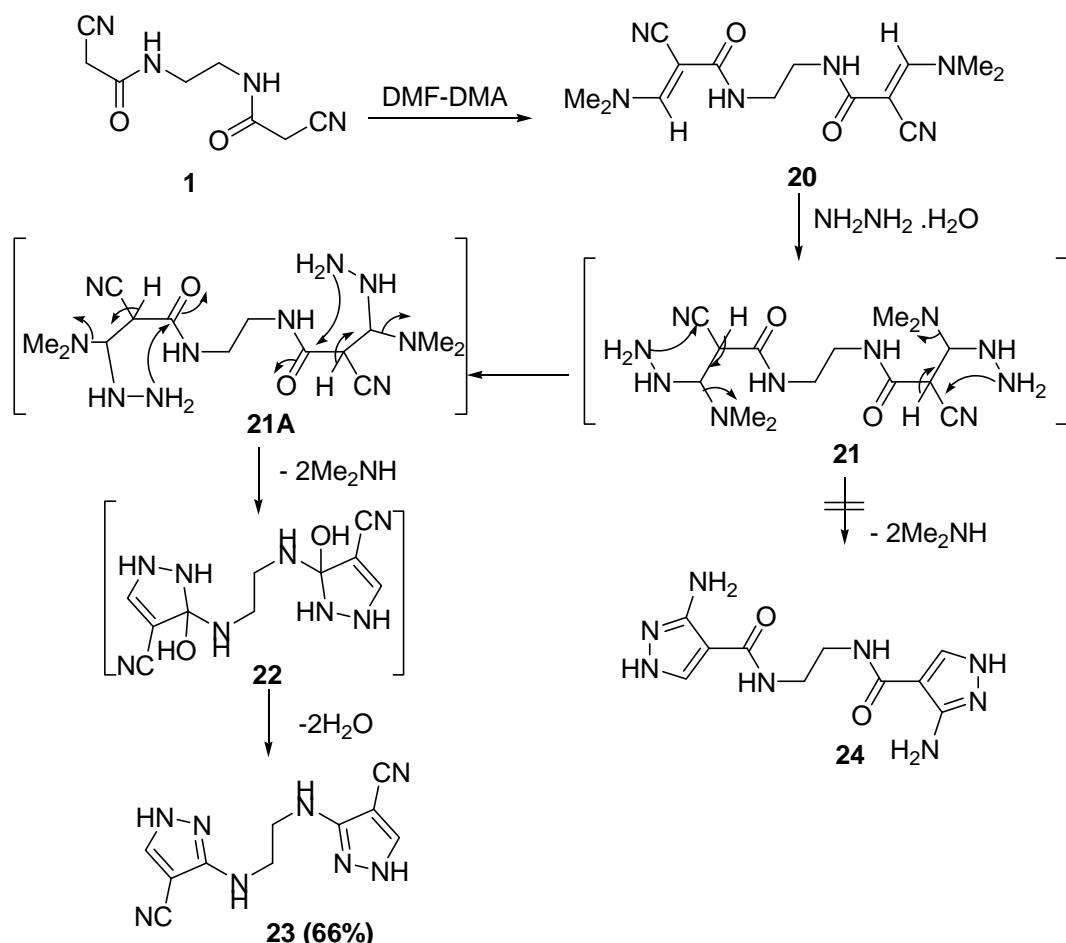

Scheme 2

Compound **1** coupled smoothly with the diazonium salt **14** generated from 3-chloroaniline in pyridine to afford *N,N'*-(ethane-1,2-diyl)bis[2-(*N*^{''}-4-chlorophenylhydrazoneyl)-2-cyanoacetamide] (**15**) (Scheme 3). The IR spectrum of **15** showed absorption bands at 1651 and 2222 cm^{-1} corresponding to carbonyl group and nitrile function, respectively. Its ¹H NMR spectrum showed signal at δ 3.39 due to NCH_2 and two D₂O-exchangeable signals at δ 8.65 and 14.39 due to two NH protons, in addition to an aromatic multiplet in the region δ 7.10-7.88.

Scheme 3

In a similar manner, compound **1** coupled smoothly with the diazonium salt **17** generated from 5-amino-4-methyl-3-phenylpyrazole (**16**) in pyridine, at room temperature to afford a single product identified as *N,N'*-(ethane-1,2-diyl)bis(4-imino-8-methyl-7-phenyl-1,4-dihydropyrazolo[5,1-*c*]-1,2,4-triazine-3-carboxamide) (**19**) (Scheme 4).

Scheme 4


The IR spectrum of **19** revealed the absence of a band corresponding to nitrile function. Its ¹H NMR spectrum showed signals at δ 2.48, 3.59 due to CH_3 and NCH_2 protons, and three D_2O -exchangeable signals at δ 9.01, 9.12 and 9.2 due to three NH protons, in addition to aromatic multiplet in the region 7.30-7.89.

Treatment of compound **1** with *N,N*-dimethylformamide-dimethylacetal (DMF-DMA) in refluxing xylene afforded *N,N'*-(ethane-1,2-diyl)bis[2-cyano-3-(dimethylamino)acrylamide] (**20**). The ¹H NMR spectrum of compound **20** showed signals at δ 3.19, 3.22, 3.33, 7.19 and 7.68 due to *N,N*-dimethylamino, NCH_2 , $\text{C}=\text{CH}-\text{N}$ and amide-*NH* protons, respectively. When compound **20** was treated with hydrazine hydrate in refluxing EtOH, the novel 3,3'-(ethane-1,2-diyl)bis(azanediyl)bis(1*H*-pyrazole-4-carbonitrile) (**23**) was produced (Scheme 5). The IR spectrum of the isolated product showed absorption bands at 3314 and 2217 cm^{-1} characteristic for NH and nitrile function, respectively. Its ¹H NMR spectrum showed signals at δ 3.35, 8.40, 10.2 and 11.0 corresponding to NCH_2 , CH and two D_2O -exchangeable signals corresponding to two NH protons. The foregoing spectral data supported the proposed structure **23** and ruled out the other possible pyrazole structure **24** (Scheme 5).

In conclusion, the reactivity of *N,N'*-(ethane-1,2-diyl)bis(cyanoacetamide) (**1**) was investigated as a versatile and readily accessible building block for the synthesis of new bis(heterocycles) of biological and pharmaceutical importance.

EXPERIMENTAL

All melting points were measured on a Gallenkamp melting point apparatus. The infrared spectra were recorded in potassium bromide disks on a Pye Unicam SP 3300 and Shimadzu FT IR 8101 PC infrared spectrophotometers. The NMR spectra were recorded on a Varian Mercury VX-300 NMR spectrometer.

Scheme 5

^1H spectra were run at 300 MHz and ^{13}C spectra were run at 75.46 MHz in deuterated dimethyl sulfoxide ($\text{DMSO}-d_6$). Chemical shifts were related to that of the solvent. Mass spectra were recorded on a Shimadzu GCMS-QP 1000 EX mass spectrometer at 70 e.V. Elemental analyses were carried out at the Microanalytical Center of Cairo University, Giza, Egypt. *N,N'*-(Ethane-1,2-diyl)bis[cyanoacetamide] (**1**),¹³ hydrazoneoyl halides **2a**,¹⁴ **2b**,¹⁵ arylmethylenepropanedinitrile **9a-c**¹⁶ and 5-amino-4-methyl-3-phenyl-pyrazole (**16**)¹⁷ were prepared following the literature procedure.

Reaction of N,N'-(Ethane-1,2-diyl)bis(cyanoacetamide)(1) with hydrazoneoyl halides.

General procedure:

Compound **1** (0.194 g, 1 mmol) was added to an ethanolic sodium ethoxide solution [prepared from sodium metal (46 mg, 2 mmol) and absolute EtOH (20 mL)] with stirring. After stirring the resulting

solution for 15 min., the appropriate hydrazoneoyl halide **2a,b** (2 mmol) was added portionwise and the reaction mixture was stirred further for 12 h at rt. The solid product that formed was filtered off, washed with water and dried. Recrystallization from the proper solvent afforded the corresponding bis(pyrazole) derivatives **5a,b**.

N,N'-(Ethane-1,2-diyl)bis(3-acetyl-5-amino-1-phenyl-1H-pyrazole-4-carboxamide)(5a). Yield (53%), mp > 300 °C (DMF); IR (KBr) ν 1639 (C=O), 1675 (C=O), 3261 and 3315 (NH₂), 3439 (NH) cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 2.49 (s, 6H, 2CH₃), 3.37 (s, 4H, 2NCH₂), 6.83 (s, 4H, D₂O-exchangeable 2NH₂), 7.53-7.62 (m, 10H, Ar-H), 9.65 (s, 2H, D₂O-exchangeable 2NH); MS *m/z* (%) 271 (6.91), 258 (1.47), 257 (M⁺/2, 2.64). Anal. Calcd for C₂₆H₂₆N₈O₄: C, 60.69; H, 5.09; N, 21.78. Found: C, 60.61; H, 5.02; N, 21.72%.

N, N'-(Ethane-1,2-diyl)bis(5-amino-1,3-diphenyl-1H-pyrazole-4-carboxamide) (5b).

Yield (66%), mp > 300 °C (DMF); IR (KBr) ν 1632 (C=O), 3055 (NH), 3314 and 3422 (NH₂) cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 3.20 (s, 4H, 2NCH₂), 6.29 (s, 4H, D₂O-exchangeable 2NH₂), 7.18-7.62 (m, 20H, Ar-H), 9.57 (s, 2H, D₂O-exchangeable 2NH). Anal. Calcd for C₃₄H₃₀N₈O₂: C, 70.09; H, 5.19; N, 19.23. Found: C, 70.01; H, 5.24; N, 19.25%.

Synthesis of 1,1'-(ethane-1,2-diyl)bis[6-amino-4-aryl-2-oxo-1,2-dihydropyridine-3,5-dicarbonitrile] 13a-c.

General procedure:

To a solution of the appropriate arylmethylenepropanedinitrile **9a-c** (2 mmol) in EtOH (20 mL) was added compound **1** (0.194 g, 1 mmol), and few drops of piperidine and the reaction mixture was heated under reflux for 2 h. The solid product that formed was collected by filtration, washed with EtOH and then crystallized from a proper solvent to afford the corresponding bis(pyridine) derivatives **13a-c**.

1,1'-(Ethane-1,2-diyl)bis(6-amino-2-oxo-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile)(13a). Yield (70%), mp > 300 °C (DMF); IR (KBr) ν 3392 and 3317 (NH₂), 2206 (C≡N), 1631 (C=O) cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 3.13 (s, 4H, 2NCH₂), 4.18 (s, 4H, D₂O-exchangeable 2 NH₂), 7.44-7.53 (m, 10H, Ar-H); ¹³C NMR (DMSO-*d*₆) δ 43.92, 76.92, 83.28, 117.15, 117.49, 127.79, 128.40, 129.72, 135.34, 158.02, 159.33, 160.39. Anal. Calcd for C₂₈H₁₈N₈O₂: C, 67.46; H, 3.64; N, 22.48. Found: C, 67.41; H, 3.60; N, 22.51%.

1,1'-(Ethane-1,2-diyl)bis(6-amino-4-(4-methoxyphenyl)-2-oxo-1,2-dihydropyridine-3,5-dicarbonitrile) (13b). Yield (72%), mp > 300 °C (DMF); IR (KBr) ν 3333 and 3179 (NH₂), 2214 (C≡N), 1651 (C=O) cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 3.02 (s, 4H, 2NCH₂), 3.83 (s, 6H, 2OCH₃), 4.21 (s, 4H, D₂O- exchangeable 2 NH₂), 7.06 (d, 4H, ArH's, *J* = 8.7 Hz), 7.4 (d, 4H, ArH's, *J* = 8.7 Hz). Anal. Calcd for C₃₀H₂₂N₈O₄: C, 64.51; H, 3.97; N, 20.06. Found: C, 64.57; H, 3.92; N, 20.10%.

1,1'-(Ethane-1,2-diyl)bis(6-amino-4-(4-chlorophenyl)-2-oxo-1,2-dihydropyridine-3,5-dicarbonitrile)

(13c). Yield (77%), mp > 300 °C (DMF); IR (KBr) ν 3333 and 3179 (NH₂), 2214 (C≡N), 1636 (C=O) cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 3.01 (s, 4H, 2NCH₂), 4.17 (s, 4H, D₂O-exchangeable 2 NH₂), 7.48 (d, 4H, ArH's, *J* = 8.4 Hz), 7.62 (d, 4H, ArH's, *J* = 8.4 Hz); ¹³C NMR (DMSO-*d*₆) δ 43.92, 76.93, 89.16, 117.03, 117.39, 128.59, 129.80, 134.19, 134.57, 157.97, 158.09, 160.28. Anal. Calcd for C₂₈H₁₆N₈Cl₂O₂: C, 59.27; H, 2.84; N, 19.75. Found: 59.32; H, 2.80; N, 19.70%.

Synthesis of *N,N'*-(ethane-1,2-diyl)bis[2-(*N''*-(4-chlorophenylhydrazoneoyl)-2-cyanoacetamide] (15) and *N,N'*-(ethane-1,2-diyl)bis(4-imino-8-methyl-7-phenyl-1,4-dihydropyrazolo[5,1-*c*]-1,2,4-triazine-3-carboxamide)(19).

General procedure.

To a cold solution of the compound **1** (0.194 g, 1 mmol) in pyridine (20 mL) was added the appropriate diazonium salt generated from 3-chloroaniline or 5-amino-4-methyl-3-phenylpyrazole (**16**) [prepared by diazotizing the appropriate amine (2 mmol) in hydrochloric acid (6M, 1.2 mL) with sodium nitrite solution (0.138 g, 2 mmol) in water (1.0 mL)]. The addition was carried out portionwise with stirring at 0-5 °C over a period of 30 min. After complete addition, the reaction mixture was stirred for further 4 h, then kept in an ice chest for 12 h, and finally diluted with water. The precipitated solid was collected by filtration, washed with water, dried and finally recrystallized from a proper solvent to afford the corresponding products **15** and **19**, respectively.

***N,N'*-(Ethane-1,2-diyl)bis[2-(*N''*-(4-chlorophenylhydrazoneoyl)-2-cyanoacetamide] (15).** Yield (66%), mp 270 °C (DMF); IR (KBr) ν 3356 (NH), 3074 (NH), 2222 (C≡N), 1651 (C=O) cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 3.39 (s, 4H, 2NCH₂), 7.10-7.88 (m, 8H, Ar-H), 8.65 (s, 2H, D₂O-exchangeable 2NH), 14.39 (s, 2H, D₂O-exchangeable 2NH); MS *m/z* (%) 473 (14.1), 472 (30.6), 470 (M⁺-1, 30.5), 248 (14.5), 112 (8.4), 111 (64.5). Anal. Calcd for C₂₀H₁₆Cl₂N₈O₂: C, 50.97; H, 3.42; N, 23.78. Found: C, 50.93; H, 3.47; N, 23.72%.

***N,N'*-(Ethane-1,2-diyl)bis(4-imino-8-methyl-7-phenyl-1,4-dihydropyrazolo[5,1-*c*]-1,2,4-triazine-3-carboxamide)(19).** Yield (62%), mp 283 °C (DMF); IR (KBr) ν 3306 (NH), 3209 (NH), 1659 (C=O) cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 2.48 (s, 6H, 2CH₃), 3.59 (s, 4H, 2NCH₂), 7.30 (m, 2H), 7.47 (m, 4H), 7.89 (d, 4H), 9.01 (s, 2H, D₂O-exchangeable 2NH), 9.12 (s, 2H, D₂O-exchangeable 2NH), 9.20 (s, 2H, D₂O-exchangeable 2NH). Anal. Calcd for C₂₈H₂₆N₁₂O₂: C, 59.78; H, 4.66; N, 29.88. Found: C, 59.72; H, 4.63; N, 29.83%.

Reaction of *N,N'*-(ethane-1,2-diyl)bis(cyanoacetamide) (1**) with DMF-DMA.**

A mixture of the compound **1** (1.94 g, 10 mmol) and *N,N*-dimethylformamide dimethyl acetal (DMF-DMA) (2.66 ml, 20 mmol) in dry xylene (30 mL) was refluxed for 3 h, then left to cool to rt. The yellow precipitated product was filtered off, washed with petroleum ether and dried. Crystallization from EtOH/ DMF gave *N,N'*-(ethane-1,2-diyl)bis[2-cyano-3-(dimethylamino)acrylamide] (**20**) in 54 % yield,

mp 224 °C; IR (KBr) ν 3348 (NH), 2195 (C≡N), 1655 (C=O) cm^{-1} ; ^1H NMR (DMSO-*d*₆) δ 3.19 (s, 6H, 2CH₃), 3.22 (s, 6H, 2CH₃), 3.33 (s, 4H, 2NCH₂), 7.19 (s, 2H, 2CH), 7.68 (s, 2H, D₂O-exchangeable 2NH); ^{13}C NMR (DMSO-*d*₆) δ 37.90, 46.69, 69.90, 119.49, 155.86, 164.81. Anal. Calcd for C₁₄H₂₀N₆O₂: C, 55.25; H, 6.62; N, 27.61. Found: C, 55.20; H, 6.67; N, 27.57%.

Reaction of *N,N'*-(ethane-1,2-diyl)bis[2-cyano-3-(dimethylamino)acrylamide] (20) with hydrazine hydrate.

To a solution of the compound **20** (0.30 g, 1 mmol) in EtOH (20 mL), hydrazine hydrate (80%, 0.2 mL, 2 mmol) was added and the reaction mixture was refluxed for 4 h, then left to cool. The solid product so formed was filtered off, washed with EtOH and dried. Recrystallized from DMF afforded 3,3'-(ethane-1,2-diyl)bis[1*H*-pyrazole-4-carbonitrile] (**23**), yield (66%), mp > 300 °C; IR (KBr) ν 3314 (NH), 2217 (C≡N) cm^{-1} ; ^1H NMR (DMSO-*d*₆) δ 3.35 (s, 4H, 2NCH₂), 8.40 (s, 2H, 2CH), 10.2 (s, 2H, D₂O-exchangeable 2NH), 11.0 (s, 2H, D₂O-exchangeable 2NH). Anal. Calcd for C₁₀H₁₀N₈: C, 49.58; H, 4.16; N, 46.26. Found: C, 49.52; H, 4.20; N, 46.21%.

REFERENCES

1. S. Furuya, H. Matsumoto, Y. Hayase, N. Suzuki, and T. Imada, PCT Int Appl. WO 97 41, 126 [Chem. Abstr., 1998, **128**, 13211f].
2. H. Vieweg, S. Leistner, J. Prantz, N. Bohm, and G. Wagner, *Pharmazie*, 1992, **47**, 841.
3. A. G. Griffin and T. R. Britt, *J. Am. Chem. Soc.*, 1981, **103**, 4957.
4. G. Galli, M. Laus, and A. S. Angeloni, *Makromol. Chem.*, 1986, **187**, 289.
5. H. Ringsdorf, B. Schlarh, and J. Venzmer, *Angew. Chem., Int. Ed. Engl.*, 1988, **27**, 115.
6. H. Finkelman, *Angew. Chem., Int. Ed. Engl.*, 1987, **26**, 816.
7. C. Aguilera, M. Parra, and G. Fuentes, *Z. Naturforsch.*, 1998, **53B**, 367.
8. N. A. Kheder, Y. N. Mabkhot, and A. M. Farag, *Heterocycles*, 2008, **75**, 887.
9. N. A. Kheder, Y. N. Mabkhot, and A. M. Farag, *Synth. Commun.*, 2008, **38**, 3170.
10. N. A. Kheder, Y. N. Mabkhot, and A. M. Farag, *Arkivoc*, 2008, **xvii**, 107.
11. N. A. Kheder, Y. N. Mabkhot, and A. M. Farag, *Heterocycles*, 2008, **75**, 2937.
12. N. A. Kheder, E. S. Darwish, and K. M. Dawood, *Heterocycles*, 2009, **78**, 177.
13. J. Guareschi, *Chem. Ber.*, 1892, **25**, 326.
14. W. Dieckmann and O. Platz, *Chem. Ber.*, 1906, **38**, 2989.
15. P. Wolkoff, *Can. J. Chem.*, 1975, **53**, 1333.
16. P. Shanthan Rao and R. V. Venkataratnam, *Tetrahedron Lett.*, 1991, **32**, 5821.
17. S. Checchi, P. Papini, and M. Ridi, *Gazz. Chim. Ital.*, 1955, **85**, 1160.