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Abstract – 1,2-Rearrangement of a sulfonyl group occurs on treatment of 

1-sulfonyl-1,2,3-triazoles with a catalytic amount of 4-dimethylaminopyridine 

(DMAP) in acetonitrile to give an equilibrium mixture of 1-sulfonyl- and 

2-sulfonyl derivatives, with considerable predominance of the latter. Subsequent 

acidic treatment of the mixture caused selective hydrolysis of the 1-sulfonyl 

derivative, which led to the isolation of the 2-sulfonyl-1,2,3-triazole in good total 

yield in a pure form.

1,2,3-Triazoles are five-membered ring heterocycles containing three nitrogen atoms of mixed hybridized 

forms in array, and substituted 1,2,3-triazoles constitute an important class of heterocyclic compounds of 

a variety of utilities, the area of which covers from pharmaceutical chemistry to materials science.
1
 The 

synthesis of C,N-disubstituted 1,2,3-triazoles often suffers from a regiochemical issue. Thus, it has been 

the subject of particular interest in current heterocyclic chemistry to prepare them in a desired 

regiochemical form.
2
 The 1,3-dipolar cycloaddition reaction of alkyl (or aryl) azide with terminal alkynes 

is one of the most reliable procedures for the synthesis of C,N-disubstituted 1,2,3-triazoles. Either 1,4- or 

1,5-disubstituted 1,2,3-triazoles could be regioselectively prepared by the use of copper
3
 or ruthenium

4
 

catalysts, respectively (Figure 1). 

N N
N

N N
N 1

4

1,4-disubstituted 2,4-disubstituted

2

5
4

1

1,5-disubstituted

N
N

N

 

Figure 1. Spacial display of substituent in C,N-disubstituted 1,2,3-triazoles. 

HETEROCYCLES, Vol. 80, No. 1, 2010 177



 

However, methods for the synthesis of 2,4-disubstituted 1,2,3-triazoles remain relatively undeveloped.
5,6

 

A substitution reaction of 4-substituted 1,2,3-triazoles with electrophiles often produces a mixture of 

regioisomers, i.e., 1,4-disubstituted and 2,4-disubstituted 1,2,3-triazoles.
7
 Higher electron density is 

allocated on the N1 nitrogen atom, which reacts better with an electrophile giving 1,4-disubstituted 

1,2,3-triazoles under conditions of kinetic control.
8
 On the other hand, 2,4-disubstituted 1,2,3-triazoles 

experience less steric hindrance than 1,4-disubstituted 1,2,3-triazoles, and therefore, the 

thermodynamically more stable 2,4-disubstituted 1,2,3-triazoles predominate under conditions of 

equilibrium control.
9
 The thermodynamic preference for 2,4-disubstituted 1,2,3-triazoles was exploited by 

Fokin and co-workers in the regioselective synthesis of 4-substituted 2-hydroxymethyl-1,2,3-triazoles by 

a copper-catalyzed cycloaddition reaction of a terminal alkyne with sodium azide in the presence of 

formaldehyde.
10

 During the course of our study on the nickel-catalyzed denitrogenative reaction of 

4-substituted 1-sulfonyl-1,2,3-triazoles,
11

 we found that the sulfonyl group underwent rearrangement 

from the N1 position to the N2 position to give 4-substituted 2-sulfonyl-1,2,3-triazoles,
12

 which is the 

subject of the present communication. 

4-Phenyl-1-tosyl-1,2,3-triazole (1a) could be readily prepared according to the literature procedure of the 

copper-catalyzed azide/alkyne cycloaddition.
13

 The 1,2,3-triazole 1a thus obtained was treated with a 

catalytic amount of 4-dimethylaminopyridine (DMAP, 10 mol%) in MeCN at room temperature for 12 h. 

An extractive work-up afforded a regioisomeric mixture of 4-phenyl-2-tosyl-1,2,3-triazole (2a) and 1a 

(2a:1a = 88:12), suggesting that the sulfonyl group migrated from the N1 position to the N2 position 

(Table 1, entry 1).
14 

Table 1. Synthesis of 2-sulfonyl-1,2,3-triazoles.
a
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a
 Reaction conducted on a 0.5 mmol scale. 

b
 Determined by 

1
H NMR analysis. 

c
 Isolated yield. 

d
 20 mol% 

of DMAP was used. 
e
 The reaction was carried out with 50 mol% of DMAP at 60 °C, and then the 

isomeric mixture was heated at 70 °C. 
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Unfortunately, the regioisomeric mixture failed to be separated with flash column chromatography on 

silica gel. However, when the isomeric mixture was heated at 60 °C in AcOH/H2O (10/1), the N1 sulfonyl 

group of 1a was selectively hydrolyzed in preference to the N2 sulfonyl group of 2a. Subsequent 

chromatographic isolation readily afforded analytically pure 2a in 82% overall yield.
15

 The structure of 2a 

was unambiguously confirmed by X-ray crystallographic analysis. 

In order to gain a mechanistic insight, the isolated 2a was subjected to the identical reaction conditions 

for the rearrangement [DMAP (10 mol%), acetonitrile, room temperature, 12 h] (eq 1). A regioisomeric 

mixture of 2a and 1a was again formed with the former predominating by 90:10. This result indicated that 

the sulfonyl group rearrangement was reversible under the reaction conditions and that 2a was the 

thermodynamically more stable isomer. We presume that an N-sulfonyl(p-dimethylaminopyridinium) ion 

intermediate is involved in the rearrangement process as the intermediate. A computational study at the 

B3LYP/6-31G* level also suggested that 2a was more stable than 1a by 0.39 kcal/mol.
16 
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We examined the rearrangement reaction of 4-phenyl-1,2,3-triazoles 1b–1e having various sulfonyl 

groups (R
1
) at the N1 position. Substituted benzenesulfonyl groups as well as a naphthalenesulfonyl 

group rearranged from the N1 position to the N2 position (Table 1, entries 2–4). Even a butanesulfonyl 

group successfully participated in the reaction (Table 1, entry 5). Variation of the substituent (R
2
) at the 

C4 position was also examined. Aryl-and alkenyl-substituted substrates 1f–1i worked well to afford the 

corresponding products 2f–2i in yields ranging from 75% to 86% (Table 1, entries 6–9). The reaction of 

alkyl-substituted triazole 1j required more forcing conditions to afford the product 2j in 78% yield (Table 

1, entry 10). 

In summary, we have found a new base-promoted pathway starting from readily accessible 4-substituted 

1-sulfonyl-1,2,3-triazoles leading to 4-substituted 2-sulfonyl-1,2,3-triazoles. 
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