

HETEROCYCLES, Vol. 80, No. 2, 2010, pp. 1027 - 1045. © The Japan Institute of Heterocyclic Chemistry
Received, 27th July, 2009, Accepted, 4th September, 2009, Published online, 8th September, 2009
DOI: 10.3987/COM-09-S(S)79

SYNTHETIC STUDY DIRECTED TOWARD DERIVATIVES OF BIOLOGICALLY ACTIVE INDOLO[2,3-*a*]CARBAZOLE¹‡

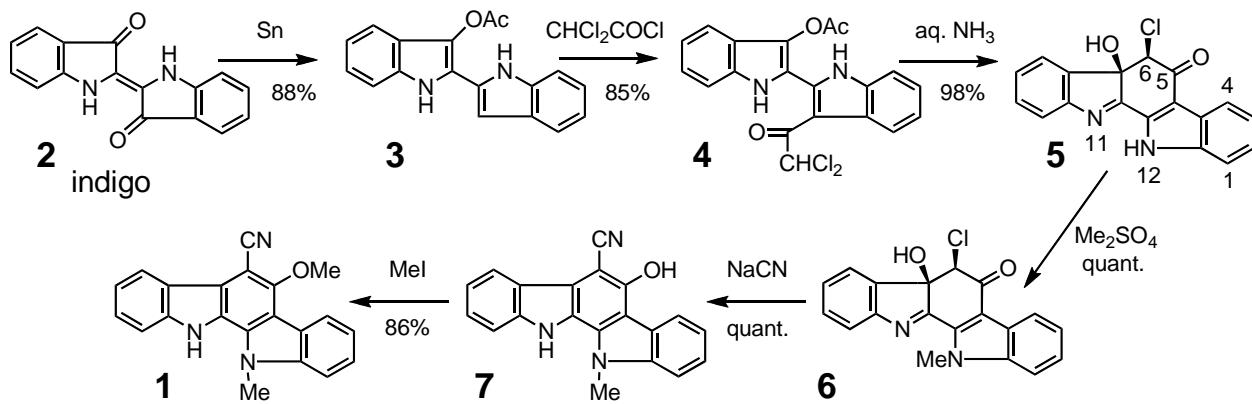
Masako Sato, Yoshiaki Suzuki, Fumio Yamada, and Masanori Somei*‡

Faculty of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
e-mail address: somei.home@topaz.plala.or.jp

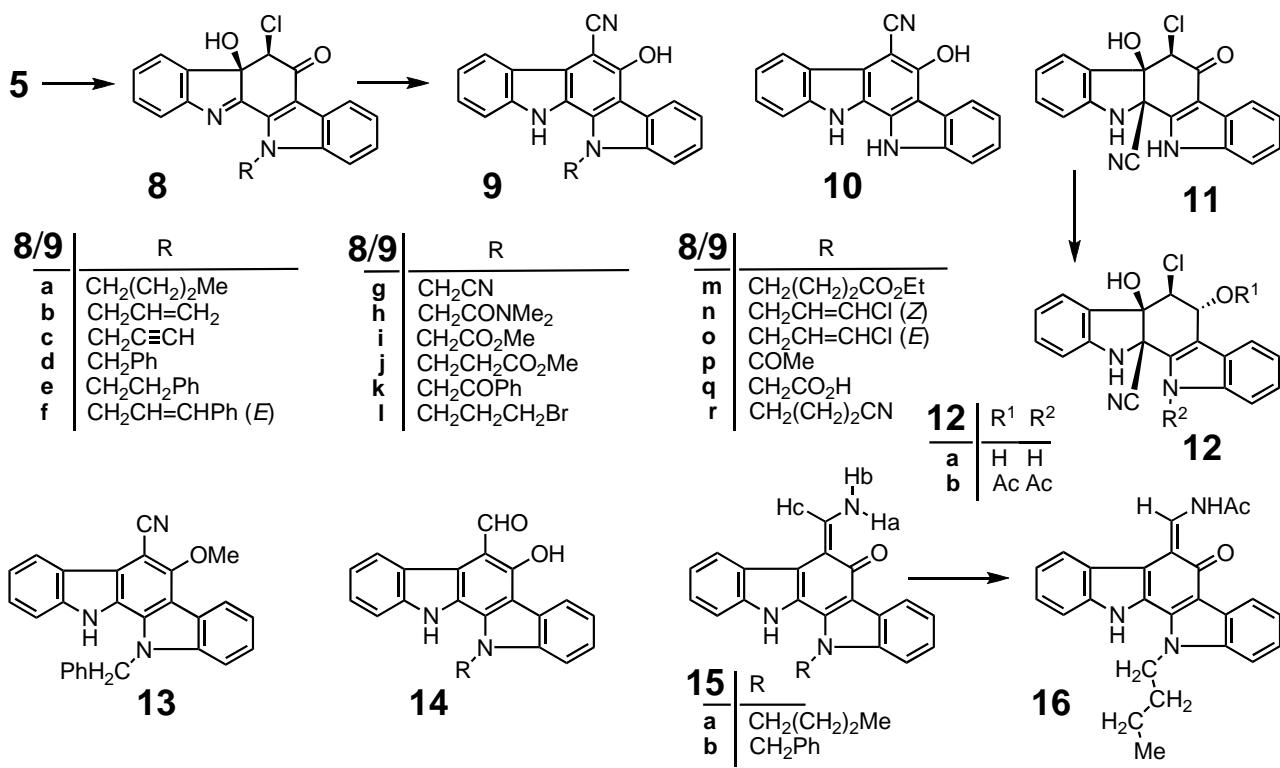
Abstract – Various derivatives of (6*R*^{*,6*aR*^{*})-6-chloro-6*a*-hydroxy-5,6,6*a*,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (**8**) and 6-cyano-5-hydroxyindolo[2,3-*a*]carbazole (**9**) are prepared. Preparations of (6*R*^{*,6*aR*^{*},11*aR*^{*})-6-chloro-11*a*-cyano-6*a*-hydroxy- (**11**) and 12-substituted 6-(*Z*)-aminomethylidene-5,6,6*a*,11,11*a*,12-hexahydroindolo[2,3-*a*]carbazole-5-ones (**15**) are also reported.}}

We have proposed a new concept for evaluating originality and efficiency of synthetic method introducing three measures such as originality rate, intellectual property factor, and application potential factor and defined an ideal synthetic method.² In our continuing research, we have created a synthetic method,³ as one of the concrete example of the ideal synthesis, for 6-cyano-5-methoxy-12-methylindolo[2,3-*a*]carbazole (**1**, Scheme 1) isolated from blue-green alga *Nostoc sphaericum* (strain EX-5-1) by Moore and co-workers.⁴ The synthesis starts from indigo (**2**) and consists of six steps. Every compound involved in the synthesis has either a useful function or a biological activity. Thus, starting material is a widely used dye⁵ and the target **1** is a cytotoxic and antiviral alkaloid.⁴ The compound **3** exhibits potent biological activity against telomerase.⁶ In addition, we have discovered as intellectual properties that **4**, **6**, and **7** are potent inhibitors of blood platelet aggregation⁷ while **5** is a promising α_2 -blocker.⁸

It is natural, therefore, that we would expect to discover a compound becoming medicine in the future among derivatives of biologically active **5** and **7**. Now, we wish to report the synthesis of various derivatives of **5** and **7**. Interesting formations of (6*R*^{*,6*aR*^{*},11*aR*^{*})-6-chloro-11*a*-cyano-6*a*-hydroxy-}



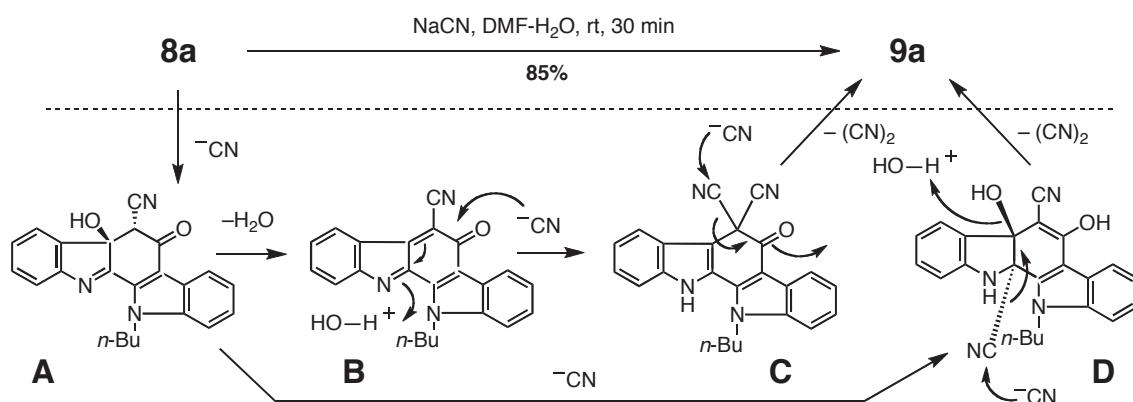
Dedicated to the 80th birthday of Prof. Emeritus, Akira Suzuki, Hokkaido University.


‡ Professor Emeritus of Kanazawa University. Present address: 56-7 Matsuhidai, Matsudo-shi, Chiba 270-2214, Japan.

5,6,6a,11,11a,12-hexahydro- (11) and 12-substituted (Z)-6-aminomethylidene-5,6,11,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (15) are also reported.

Scheme 1

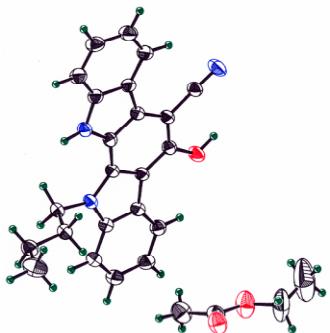
Scheme 2

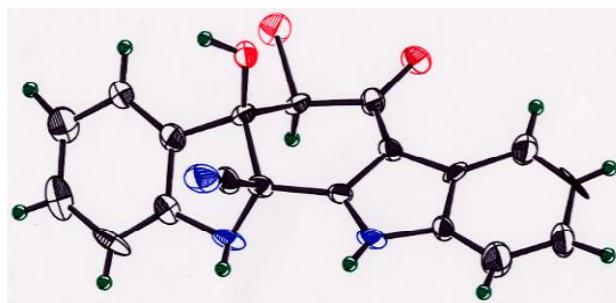

First, the compound 5 was prepared according to our procedures³ from indigo in three steps in 73% overall yield. Subsequent treatment of 5 in *N,N*-dimethylformamide (DMF) in the presence of K_2CO_3 with *n*-butyl iodide, allyl bromide, propargyl bromide, benzyl bromide, phenethyl bromide, and (*E*)-cinnamyl bromide provided 8a, 8b, 8c, 8d, 8e, and 8f in the respective yields of 71, 96, 50, 78, 57, and 96% (Scheme 2). Similar treatment of 5 with reagents having a cyano or a carbonyl group such as

chloroacetonitrile, *N,N*-dimethyl-2-chloroacetamide, methyl bromoacetate, methyl acrylate, and phenacyl bromide afforded **8g**, **8h**, **8i**, **8j**, and **8k** in the respective yields of 62, 90, 72, 26, and 97%. Although the reaction of 1,3-dibromopropane with **5** similarly proceeded to give **8l** in 45% yield, ethyl 4-bromobutyrate did not react with **5** at all. To overcome the problem, change of the base from K_2CO_3 to NaH in anhydrous DMF was successful to obtain the desired **8m** in 59% yield.

In the reaction of **5** with an *E,Z* mixture of 1,3-dichloropropene, NaH in anhydrous DMF was the reaction conditions of choice, providing 12-(*Z*)-**8n** and 12-(*E*)-(3-chloroallyl) derivatives **8o** in 42 and 24% yields, respectively. Under similar reaction conditions, **5** reacted with acetyl chloride to produce 12-acetyl compound **8p** in 41% yield.

With various 12-substituted (*6R*,6aR**)-6-chloro-6a-hydroxy-5,6,6a,12-tetrahydroindolo[2,3-*a*]-carbazole-5-one in hand, we next employed our reductive cyanation which realized transformation of **6** to **7**. Thus, the treatment of **8a** with NaCN in DMF-H₂O provided 12-*n*-butyl-6-cyano-5-hydroxyindolo[2,3-*a*]carbazole (**9a**) in 85% yield. A possible reaction mechanism is shown in Scheme 3. The initial step would be a nucleophilic substitution for 6b-chloride by cyanide from the back side to give **A**. After dehydration, the resultant **B** can form **C** by general acid promoted cyanide addition to the 6-position. Subsequent cyanide attack at one of the geminal cyano groups of **C** achieves the reductive cyanation with the liberation of dicyan and an enolate of **9a**. The other possible route is the enolization of 5-carbonyl of **A**, followed by the addition of cyanide at the imine carbon (C_{11a}) from the less sterically hindered *a*-side culminating in the formation of **D**. Subsequent cyanide attack at the 11a-cyano group and concomitant general acid promoted elimination of 6ab-hydroxy group liberates dicyan and **9a**.


Scheme 3. Possible Mechanism


On the basis of above results, the reductive cyanation was applied to **8b**–**h** and **8m** resulting in the formations of **9b**, **9c**, **9d**, **9e**, **9f**, **9g**, **9h**, and **9m** in the respective yields of 91, 72, 98, 85, 80, 54, 95, and 72%. In the case of **8i**, the reductive cyanation formed **9i** and **9q** in 17 and 43% yields, respectively. Similar reaction of **8k** removed the 12-phenacyl group to afford **10** in 27% yield together with 16% yield of starting material.

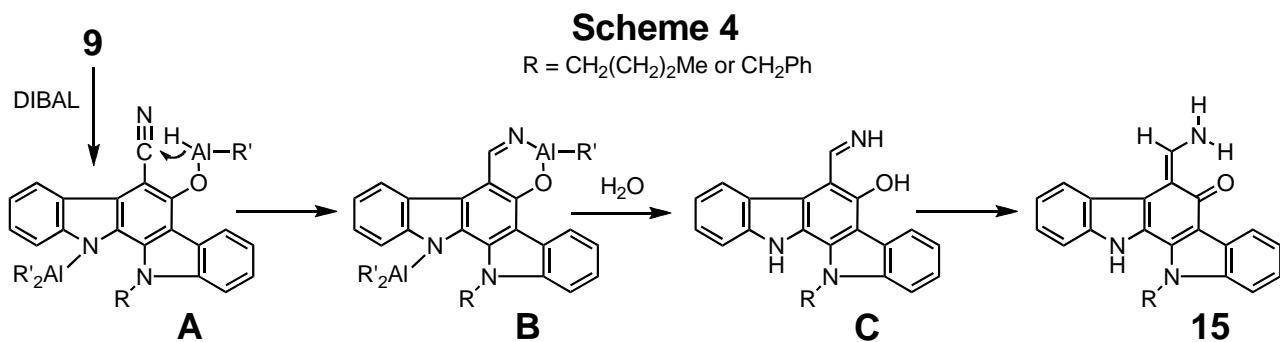
The structures of **9a–i** and **9m,q** were established unequivocally by pursuing X-ray single-crystal analysis of **9a** as a representative of them and the results are shown in Figure 1 and Table 1. It is interesting to note that this type of compounds **9** tends to involve a recrystallization solvent molecule in crystals. In fact, the ORTEP drawing of **9a** demonstrates EtOAc molecule.

Figure 1. ORTEP Drawing of **9a** (R=0.049)

Figure 2. ORTEP Drawing of **11** (R=0.085)

The reaction of **8l** with NaCN in DMF-H₂O provided **9l** and **9r** in 23 and 23% yields, respectively. The reaction of about 4:1 mixture of **8n** and **8o** produced **9n** and **9o** in 41 and 14% yields, respectively. It is interesting to note that the similar reaction of **8p** afforded **10** and the unexpected (6*R*^{*,}6a*R*^{*,}11a*R*^{*)}-6-chloro-11a-cyano-6a-hydroxy-5,6,6a,11,11a,12-hexahydroindolo[2,3-*a*]carbazole-5-one (**11**) in 22 and 74% yields, respectively, though formation of the desired **9p** was not observed at all.

Reduction of **11** with NaBH₄ proceeded slowly from the less hindered β -side to provide 5 *α* -hydroxy compound **12a** in 47% yield. Further treatment of **12a** with acetic anhydride gave 5 *α* -acetoxy compound **12b** in 30% yield. Comparing ¹H-NMR spectra of **12a** and **12b**, the coupling constant between H₅ and H₆ is shown to be 8.2 Hz, which proved their stereochemistries as shown in the Scheme 2.


It should be noted that the absorption bands of cyano group of **11**, **12a**, and **12b** were very weak or almost invisible in their infrared spectra. Therefore, X-ray single-crystal analysis of **11** was necessary for the determination of the structure. The results shown in Figure 2 and Table 2 demonstrate both the presence of the cyano group at the 11a-position and the stereochemistries of 6, 6a, and 11a positions being all *R*^{*}.

Methylation of **9d** with ethereal diazomethane smoothly proceeded to afford the corresponding methoxy compound **13** in 82% yield. All attempts to hydrolyze the 6-cyano group of **13** to 6-carboxy or 6-carbamoyl group with base were unsuccessful. Under severe conditions such as treatment of **13** with solid NaOH in refluxing ethylene glycol resulted in the methyl ether cleavage to afford **9d** in 62% yield.

Further attempt to obtain 6-formyl type compound **14** by the reaction of **9** with diisobutyl aluminum hydride (DIBAL) proceeded in an unexpected way. Thus the reduction of **9a** and **9d** with DIBAL afforded **15a** and **15b** in 73 and 47% yields, respectively. In the ¹H-NMR spectrum of **15a**, hydrogen bonded Ha was observed at lower δ 12.0 (1H, dd, *J*=13.8, 8.2 Hz), while Hb and Hc protons appeared at δ 8.60 (1H, brt, *J*=8.2 Hz) and 8.84 (1H, dd, *J*=13.8, 8.2 Hz), respectively. On the addition of D₂O, both

Ha and Hb protons disappeared and Hc collapsed to a singlet. Similar phenomena were observed in case of **15b**. Further treatment of **15a** with Ac₂O afforded *N*-acetyl compound **16** in 87% yield. These results prove the 6-aminomethylidene structures of **15a,b**.

A possible reaction mechanism for the transformation of **9** to **15** is shown in Scheme 4. The initial reaction of DIBAL with **9** forms aluminum complex **A**, followed by the intramolecular reduction of cyano group with hydride to afford **B**. Hydrolysis of **B** affords an enol form compound **C** which tautomerizes to a carbonyl form product **15** forming a stable enamide system.

In summary, we succeeded in preparing various derivatives of **8** and **9**, together with new classes of compound, **11** and **15**. Biological evaluations of new compounds in this report are in progress.

EXPERIMENTAL

Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. Infrared (IR) spectra were recorded with a Shimadzu IR-420 or Horiba FT-720 spectrophotometer and proton nuclear magnetic resonance (¹H-NMR) spectra with a JEOL GSX-500 spectrometer with tetramethylsilane as an internal standard. Mass spectra (MS) were recorded on a JEOL JMS-SX102A instruments. Column chromatography was performed on silica gel (SiO₂, 100—200 mesh, from Kanto Chemical Co., Inc.) throughout the present study.

(6*R*^{*,6*aR*^{*})-12-*n*-Butyl-6-chloro-6*a*-hydroxy-5,6,6*a*,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (8a) from (6*R*^{*,6*a**R*^{*})-6-Chloro-6*a*-hydroxy-5,6,6*a*,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (5) —}}**

General Procedure A: K₂CO₃ (72.1 mg, 0.52 mmol) and *n*-butyl iodide (0.34 mL, 2.90 mmol) were added to a solution of **5** (48.1 mg, 0.15 mmol) in DMF (3.0 mL), and the mixture was stirred for 20 min at rt. After addition of H₂O under ice cooling, the whole was extracted with EtOAc. The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with EtOAc–hexane (1:5, v/v) to give **8a** (40.1 mg, 71%). **8a:** mp 187—189°C (decomp., orange prisms, recrystallized from CHCl₃). IR (KBr): 3421, 1653, 1479, 1346, 1086, 754 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.97 (3H, t, *J*=7.4 Hz), 1.39—1.50 (2H, m), 1.87—2.00 (2H, m), 3.11 (1H, s, disappeared on addition of D₂O), 4.63 (1H, ddd, *J*=14.1, 8.2, 6.4 Hz), 4.76 (1H, s), 4.87 (1H, ddd, *J*=14.1, 8.2, 6.4 Hz), 7.35 (1H, td, *J*=7.7, 1.2 Hz), 7.39 (1H, td, *J*=7.7, 1.2 Hz), 7.47 (1H, td, *J*=7.7,

1.2 Hz), 7.50 (1H, d, J =7.7 Hz), 7.50 (1H, td, J =7.7, 1.2 Hz), 7.72 (1H, d, J =7.7 Hz), 7.92 (1H, d, J =7.7 Hz), 8.39 (1H, d, J =7.7 Hz). MS m/z : 380 and 378 (M^+). *Anal.* Calcd for $C_{22}H_{19}N_2O_2Cl \cdot 1/8H_2O$: C, 69.33; H, 5.09; N, 7.35. Found: C, 69.38; H, 5.11; N, 7.24.

(6*R,6*aR**)-12-Allyl-6-chloro-6*a*-hydroxy-5,6,6*a*,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (8b) from 5** — In the general procedure A, K_2CO_3 (754 mg, 5.44 mmol), allyl bromide (2.70 mL, 31.1 mmol), **5** (501 mg, 1.56 mmol), and DMF (10.0 mL) were used. The reaction time was 30 min. After column-chromatography, **8b** (540 mg, 96%) was obtained. **8b**: mp 202—203°C (decomp., yellow prisms, recrystallized from EtOAc). IR (KBr): 3400, 3110, 1665, 1562, 1457, 1333, 1140, 1087, 1017, 789, 747 cm^{-1} . 1H -NMR (DMSO-*d*₆) δ : 5.16 (1H, dd, J =17.1, 1.5 Hz), 5.22 (1H, dd, J =10.3, 1.5 Hz), 5.35 (1H, s), 5.36 (1H, dd, J =16.3, 5.4 Hz), 5.53 (1H, dd, J =16.3, 5.4 Hz), 6.07—6.16 (1H, m), 6.84 (1H, s), 7.39 (1H, t, J =8.1 Hz), 7.40 (1H, t, J =8.1 Hz), 7.50 (1H, t, J =7.5 Hz), 7.55 (1H, t, J =7.5 Hz), 7.75 (1H, d, J =8.1 Hz), 7.77 (1H, d, J =7.5 Hz), 7.84 (1H, d, J =7.5 Hz), 8.19 (1H, d, J =8.1 Hz). MS m/z : 364 and 362 (M^+). *Anal.* Calcd for $C_{21}H_{15}N_2O_2Cl$: C, 69.52; H, 4.17; N, 7.72. Found: C, 69.49; H, 4.17; N, 7.41.

(6*R,6*aR**)-6-Chloro-6*a*-hydroxy-12-propargyl-5,6,6*a*,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (8c) from 5** — In the general procedure A, K_2CO_3 (44.2 mg, 0.32 mmol), propargyl bromide (0.14 mL, 1.83 mmol), **5** (29.5 mg, 0.09 mmol), and DMF (2.0 mL) were used. The reaction time was 1 h. After column-chromatography, **8c** (16.5 mg, 50%) was obtained. **8c**: mp 248°C (decomp., dark yellow powder, recrystallized from EtOAc—hexane). IR (KBr): 3359, 3286, 1653, 1475, 1086, 791, 746 cm^{-1} . 1H -NMR (DMSO-*d*₆) δ : 3.48 (1H, t, J =2.5 Hz), 5.38 (1H, d, J =1.5 Hz, collapsed to s on addition of D_2O), 5.66 (1H, dd, J =17.9, 2.5 Hz), 5.78 (1H, dd, J =17.9, 2.5 Hz), 6.91 (1H, d, J =1.5 Hz, disappeared on addition of D_2O), 7.41 (1H, td, J =7.7, 1.3 Hz), 7.45 (1H, td, J =7.7, 1.3 Hz), 7.56 (1H, td, J =7.7, 1.3 Hz), 7.56 (1H, td, J =7.7, 1.3 Hz), 7.81 (1H, d, J =7.7 Hz), 7.84 (1H, d, J =7.7 Hz), 7.84 (1H, d, J =7.7 Hz), 8.19 (1H, d, J =7.7 Hz). MS m/z : 362 and 360 (M^+). *Anal.* Calcd for $C_{21}H_{13}N_2O_2Cl \cdot 1/2H_2O$: C, 68.21; H, 3.82; N, 7.58. Found: C, 68.00; H, 3.73; N, 7.33.

(6*R,6*aR**)-12-Benzyl-6-chloro-6*a*-hydroxy-5,6,6*a*,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (8d) from 5** — In the general procedure A, K_2CO_3 (619 mg, 4.48 mmol), benzyl bromide (3.10 mL, 25.6 mmol), **5** (413 mg, 1.28 mmol), and DMF (8.0 mL) were used. The reaction time was 75 min. After column-chromatography, **8d** (411 mg, 78%) was obtained. **8d**: mp 219.5—221.5 °C (yellow prisms, recrystallized from EtOAc—hexane). IR (KBr): 3356, 1685, 1577, 1473, 1142, 771 cm^{-1} . 1H -NMR (DMSO-*d*₆) δ : 5.41 (1H, s), 5.99 (1H, d, J =15.8 Hz), 6.18 (1H, d, J =15.8 Hz), 6.91 (1H, br s, disappeared on addition of D_2O), 7.26 (1H, t, J =7.2 Hz), 7.30 (2H, t, J =7.2 Hz), 7.37 (2H, d, J =7.2 Hz), 7.40 (1H, td, J =7.4, 1.2 Hz), 7.42 (1H, td, J =7.4, 1.2 Hz), 7.42 (1H, td, J =7.4, 1.2 Hz), 7.54 (1H, td, J =7.4, 1.2 Hz), 7.64 (1H, d, J =7.4 Hz), 7.75 (1H, d, J =7.4 Hz), 7.86 (1H, d, J =7.4 Hz), 8.19 (1H, d, J =7.4 Hz). MS m/z : 414 and 412 (M^+). *Anal.* Calcd for $C_{25}H_{17}N_2O_2Cl \cdot 1/2H_2O$: C, 71.17; H, 4.30; N, 6.64. Found: C, 71.32; H,

4.25; N, 6.49.

(6*R*^{*,6a*R*^{*})-6-Chloro-6a-hydroxy-12-phenethyl-5,6,6a,12-tetrahydroindolo[2,3-*a*]carbazole-5-one}

(8e) from 5 — In the general procedure A, K₂CO₃ (45.0 mg, 0.33 mmol), phenethyl bromide (0.25 mL, 1.86 mmol), **5** (30.0 mg, 0.09 mmol), and DMF (2.0 mL) were used. The reaction time was 1 h. After column-chromatography, **8e** (22.6 mg, 57%) was obtained. **8e**: mp 183—184 °C (yellow needles, recrystallized from EtOAc—hexane). IR (KBr): 3361, 1655, 1477, 1146, 746 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ: 3.19 (2H, td, *J*=13.8, 6.8 Hz), 4.83 (1H, ddd, *J*=13.8, 8.6, 6.8 Hz), 5.04 (1H, ddd, *J*=13.8, 8.6, 6.8 Hz), 5.36 (1H, s), 6.84 (1H, br s, disappeared on addition of D₂O), 7.21 (1H, br t, *J*=7.4 Hz), 7.30 (2H, t, *J*=7.4 Hz), 7.35 (2H, d, *J*=7.4 Hz), 7.37 (1H, t, *J*=7.5 Hz), 7.41 (1H, t, *J*=7.5 Hz), 7.43 (1H, t, *J*=7.5 Hz), 7.58 (1H, t, *J*=7.5 Hz), 7.73 (1H, d, *J*=7.5 Hz), 7.84 (1H, d, *J*=7.5 Hz), 7.86 (1H, d, *J*=7.5 Hz), 8.15 (1H, d, *J*=7.5 Hz). MS *m/z*: 428 and 426 (M⁺). *Anal.* Calcd for C₂₆H₁₉N₂O₂Cl·1/2H₂O: C, 71.64; H, 4.62; N, 6.43. Found: C, 71.86; H, 4.43; N, 6.40.

(6*R*^{*,6a*R*^{*})-6-Chloro-12-(*E*)-cinnamyl-6a-hydroxy-5,6,6a,12-tetrahydroindolo[2,3-*a*]carbazole-5-one} (8f) from 5 — In the general procedure A, K₂CO₃ (157 mg, 1.14 mmol), cinnamyl bromide (0.79 mL, 6.49 mmol), **5** (105 mg, 0.32 mmol), and DMF (6.0 mL) were used. The reaction time was 1 h. After column-chromatography, **8f** (137 mg, 96%) was obtained. **8f**: mp 205—208°C (brown plates, recrystallized from EtOAc—hexane). IR (KBr): 3390, 1648, 1579, 1473, 1145, 757 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ: 5.36 (1H, d, *J*=1.5 Hz, collapsed to s on addition of D₂O), 5.51 (1H, ddd, *J*=16.5, 5.9, 1.2 Hz), 5.71 (1H, ddd, *J*=16.5, 5.9, 1.2 Hz), 6.53 (1H, dt, *J*=16.5, 5.9 Hz), 6.69 (1H, d, *J*=16.5 Hz), 6.85 (1H, d, *J*=1.5 Hz, disappeared on addition of D₂O), 7.22 (1H, t, *J*=7.4 Hz), 7.28 (2H, t, *J*=7.4 Hz), 7.37 (2H, d, *J*=7.4 Hz), 7.40 (1H, td, *J*=7.6, 1.2 Hz), 7.41 (1H, td, *J*=7.6, 1.2 Hz), 7.50 (1H, td, *J*=7.6, 1.2 Hz), 7.55 (1H, td, *J*=7.6, 1.2 Hz), 7.80 (1H, d, *J*=7.6 Hz), 7.85 (1H, d, *J*=7.6 Hz), 7.85 (1H, d, *J*=7.6 Hz), 8.20 (1H, d, *J*=7.6 Hz). MS *m/z*: 440 and 438 (M⁺). *Anal.* Calcd for C₂₇H₁₉N₂O₂Cl·1/2EtOAc: C, 72.12; H, 4.80; N, 5.80. Found: C, 71.84; H, 4.68; N, 5.83.

(6*R*^{*,6a*R*^{*})-6-Chloro-12-cyanomethyl-6a-hydroxy-5,6,6a,12-tetrahydroindolo[2,3-*a*]carbazole-5-one}

(8g) from 5 — In the general procedure A, K₂CO₃ (159 mg, 1.15 mmol), chloroacetonitrile (0.42 mL, 6.56 mmol), **5** (106 mg, 0.33 mmol), and DMF (3.0 mL) were used. The reaction time was 15 min. After column-chromatography, **8g** (72.6 mg, 62%) was obtained. **8g**: mp 249.5—251.5°C (decomp., yellow prisms, recrystallized from EtOAc). IR (KBr): 3350, 1648, 1615, 1574, 1472, 1345, 1083, 797, 780, 747 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ: 5.41 (1H, d, *J*=1.5 Hz, collapsed on addition of D₂O), 5.99 (1H, d, *J*=18.1 Hz), 6.10 (1H, d, *J*=18.1 Hz), 6.95 (1H, d, *J*=1.5 Hz, disappeared on addition of D₂O), 7.42 (1H, td, *J*=7.6, 1.1 Hz), 7.49 (1H, td, *J*=7.6, 1.1 Hz), 7.57 (1H, td, *J*=7.6, 1.1 Hz), 7.62 (1H, td, *J*=7.6, 1.1 Hz), 7.82 (1H, d, *J*=7.6 Hz), 7.85 (1H, d, *J*=7.6 Hz), 7.95 (1H, d, *J*=7.6 Hz), 8.21 (1H, d, *J*=7.6 Hz). *Anal.* Calcd for C₂₀H₁₂N₃O₂Cl: C, 66.40; H, 3.34; N, 11.61. Found: C, 66.70; H, 3.33; N, 11.37.

(6*R*^{*,6*a*₁^{*})-6-Chloro-12-*N,N*-dimethylcarbamoylmethyl-6*a*-hydroxy-5,6,6*a*,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (8h) from 5} — In the general procedure A, K₂CO₃ (89.2 mg, 0.65 mmol), *N,N*-dimethyl-2-chloroacetamide (0.66 mL, 6.46 mmol), **5** (104 mg, 0.32 mmol), and DMF (6.0 mL) were used. The reaction time was 1.5 h. After column-chromatography, **8h** (118 mg, 90%) was obtained. **8h**: mp 257—258°C (decomp., dark brown prisms, recrystallized from MeOH). IR (KBr): 3410, 1670, 1647, 1583, 1481, 775, 756 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ: 2.90 (3H, s), 3.24 (3H, s), 5.31 (1H, s), 5.64 (1H, d, *J*=16.8 Hz), 5.81 (1H, d, *J*=16.8 Hz), 6.83 (1H, s, disappeared on addition of D₂O), 7.37 (1H, td, *J*=7.5, 1.2 Hz), 7.39 (1H, td, *J*=7.5, 1.2 Hz), 7.47 (1H, td, *J*=7.5, 1.2 Hz), 7.52 (1H, td, *J*=7.5, 1.2 Hz), 7.66 (1H, d, *J*=7.5 Hz), 7.72 (1H, d, *J*=7.5 Hz), 7.82 (1H, d, *J*=7.5 Hz), 8.17 (1H, d, *J*=7.5 Hz). MS *m/z*: 409 and 407 (M⁺). *Anal.* Calcd for C₂₂H₁₈N₃O₃Cl·1/4H₂O: C, 64.08; H, 4.52; N, 10.19. Found: C, 64.21; H, 4.52; N, 10.00.

(6*R*^{*,6*a*₁^{*})-6-Chloro-6*a*-hydroxy-12-methoxycarbonylmethyl-5,6,6*a*,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (8i) from 5} — In the general procedure A, K₂CO₃ (68.2 mg, 0.48 mmol), methyl bromoacetate (0.16 mL, 1.61 mmol), **5** (51.8 mg, 0.16 mmol), and DMF (2.0 mL) were used. The reaction time was 30 min. After column-chromatography, **8i** (45.8 mg, 72%) was obtained. **8i**: mp 223—224.5°C (decomp., brown prisms, recrystallized from EtOAc). IR (KBr): 3415, 1749, 1655, 1479, 1342, 1086, 1012, 800, 777, 756 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ: 3.74 (3H, s), 5.36 (1H, s), 5.58 (1H, d, *J*=18.0 Hz), 5.81 (1H, d, *J*=18.0 Hz), 6.84 (1H, s, disappeared on addition of D₂O), 7.39 (1H, t, *J*=7.8 Hz), 7.42 (1H, t, *J*=7.8 Hz), 7.48—7.56 (2H, m), 7.73 (1H, d, *J*=7.8 Hz), 7.79 (1H, d, *J*=7.8 Hz), 7.82 (1H, d, *J*=7.8 Hz), 8.18 (1H, d, *J*=7.8 Hz). *Anal.* Calcd for C₂₁H₁₅N₂O₄Cl: C, 63.89; H, 3.83; N, 7.10. Found: C, 63.65; H, 3.84; N, 6.89.

(6*R*^{*,6*a*₁^{*})-6-Chloro-6*a*-hydroxy-12-[2-(methoxycarbonyl)ethyl]-5,6,6*a*,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (8j) from 5} — In the general procedure A, K₂CO₃ (68.7 mg, 0.47 mmol), methyl acrylate (0.29 mL, 3.16 mmol), **5** (50.8 mg, 0.16 mmol), and DMF (3.0 mL) were used. The reaction time was 30 min. After column-chromatography, **8j** (17.0 mg, 26%) and the unreacted **5** (18.5 mg, 36%) were obtained in the order of elution. **8j**: mp 216.5—218°C (decomp., yellow powder, recrystallized from EtOAc). IR (KBr): 3431, 1714, 1680, 1583, 1479, 1439, 1215, 1146, 773, 754 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ: 3.02 (2H, t, *J*=7.2 Hz), 3.58 (3H, s), 4.86 (1H, dt, *J*=14.2, 7.2 Hz), 5.14 (1H, dt, *J*=14.2, 7.2 Hz), 5.33 (1H, d, *J*=1.5, collapsed on addition of D₂O), 6.79 (1H, d, *J*=1.5, disappeared on addition of D₂O), 7.39 (1H, td, *J*=7.7, 1.2 Hz), 7.40 (1H, td, *J*=7.7, 1.2 Hz), 7.51 (1H, td, *J*=7.7, 1.2 Hz), 7.55 (1H, td, *J*=7.7, 1.2 Hz), 7.77 (1H, d, *J*=7.7 Hz), 7.83 (1H, d, *J*=7.7 Hz), 7.87 (1H, d, *J*=7.7 Hz), 8.17 (1H, d, *J*=7.7 Hz). *Anal.* Calcd for C₂₂H₁₇N₂O₄Cl: C, 64.59; H, 4.19; N, 6.66. Found: C, 64.63; H, 4.19; N, 6.85.

(6*R*^{*,6*a*₁^{*})-6-Chloro-6*a*-hydroxy-12-phenacyl-5,6,6*a*,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (8k) from 5} — In the general procedure A, K₂CO₃ (172 mg, 1.25 mmol), phenacyl bromide (1.42 g, 7.10

mmol), **5** (115 mg, 0.33 mmol), and DMF (6.0 mL) were used. The reaction time was 1.5 h. After column-chromatography, **8k** (152 mg, 97%) was obtained. **8k**: mp 217–219°C (yellow plates, recrystallized from EtOAc–hexane). IR (KBr): 3372, 1697, 1579, 1475, 1230, 752 cm^{-1} . $^1\text{H-NMR}$ ($\text{DMSO}-d_6$) δ : 5.36 (1H, d, $J=1.4$ Hz, collapsed to s on addition of D_2O), 6.38 (1H, d, $J=18.3$ Hz), 6.52 (1H, d, $J=18.3$ Hz), 6.84 (1H, d, $J=1.4$ Hz, disappeared on addition of D_2O), 7.34 (1H, td, $J=7.6, 1.3$ Hz), 7.42 (1H, td, $J=7.6, 1.3$ Hz), 7.45 (1H, td, $J=7.6, 1.3$ Hz), 7.47 (1H, td, $J=7.6, 1.3$ Hz), 7.51 (1H, d, $J=8.3$ Hz), 7.67 (2H, t, $J=8.3$ Hz), 7.76 (1H, d, $J=7.6$ Hz), 7.77 (1H, t, $J=8.3$ Hz), 7.80 (1H, d, $J=7.6$ Hz), 8.17 (1H, d, $J=7.6$ Hz), 8.18 (1H, d, $J=7.6$ Hz), 8.21 (1H, d, $J=7.6$ Hz). MS m/z : 442 and 440 (M^+). *Anal.* Calcd for $\text{C}_{26}\text{H}_{17}\text{N}_2\text{O}_3\text{Cl}$: C, 70.83; H, 3.89; N, 6.35. Found: C, 70.67; H, 3.91; N, 6.24.

(6*R*^{*,6a*R*^{*})-12-(3-Bromopropyl)-6-chloro-6a-hydroxy-5,6,6a,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (8l) from 5} — In the general procedure A, K_2CO_3 (45.7 mg, 0.33 mmol), 1,3-dibromopropane (0.19 mL, 1.89 mmol), **5** (30.5 mg, 0.09 mmol), and DMF (2.0 mL) were used. The reaction time was 50 min. After column-chromatography, **8l** (18.9 mg, 45%) was obtained. **8l**: mp 148–150°C (orange plates, recrystallized from CHCl_3). IR (KBr): 3400, 1651, 1581, 1479, 1080, 758 cm^{-1} . $^1\text{H-NMR}$ (CDCl_3) δ : 2.51–2.63 (2H, m), 3.12 (1H, br s, disappeared on addition of D_2O), 3.46 (1H, ddd, $J=10.4, 6.9, 5.7$ Hz), 3.52 (1H, ddd, $J=10.4, 6.9, 5.7$ Hz), 4.76 (1H, s), 4.80 (1H, ddd, $J=14.2, 7.6, 6.5$ Hz), 5.02 (1H, dt, $J=14.4, 7.1$ Hz), 7.36 (1H, td, $J=7.8, 1.1$ Hz), 7.41 (1H, td, $J=7.8, 1.1$ Hz), 7.50 (1H, td, $J=7.8, 1.1$ Hz), 7.52 (1H, td, $J=7.8, 1.1$ Hz), 7.62 (1H, d, $J=7.8$ Hz), 7.73 (1H, d, $J=7.8$ Hz), 7.92 (1H, d, $J=7.8$ Hz), 8.39 (1H, d, $J=7.8$ Hz). HR-MS (FAB⁺): Calcd for $\text{C}_{21}\text{H}_{16}\text{N}_2\text{O}_2^{81}\text{Br}^{37}\text{Cl}$: 447.0112. Found: 447.0084. $\text{C}_{21}\text{H}_{16}\text{N}_2\text{O}_2^{79}\text{Br}^{37}\text{Cl}$: 445.0132. Found: 445.0109. $\text{C}_{21}\text{H}_{16}\text{N}_2\text{O}_2^{81}\text{Br}^{35}\text{Cl}$: 445.0141. Found: 445.0109. $\text{C}_{21}\text{H}_{16}\text{N}_2\text{O}_2^{79}\text{Br}^{35}\text{Cl}$: 443.0162. Found: 443.0132. *Anal.* Calcd for $\text{C}_{21}\text{H}_{16}\text{N}_2\text{O}_2\text{BrCl}\cdot 1/4\text{H}_2\text{O}$: C, 56.27; H, 3.71; N, 6.25. Found: C, 56.33; H, 3.65; N, 5.95.

(6*R*^{*,6a*R*^{*})-6-Chloro-12-[3-(ethoxycarbonyl)propyl]-6a-hydroxy-5,6,6a,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (8m) from 5} — **General Procedure B:** A solution of **5** (28.9 mg, 0.09 mmol) in anhydrous DMF (2.0 mL) was added to 60% NaH (3.7 mg, 0.09 mmol) at 0°C with stirring under argon atmosphere. After additional stirring at rt, ethyl 4-bromobutyrate (0.26 mL, 1.79 mmol) was added and the mixture was stirred for 1 h at rt. After addition of EtOAc, the whole was washed successively with H_2O , brine, and dried over Na_2SO_4 , then evaporated under reduced pressure to leave an oil, which was column-chromatographed repeatedly on SiO_2 with EtOAc–hexane (1:2, v/v) to give **8m** (23.2 mg, 59%) and unreacted **5** (2.80 mg, 10%) in the order of elution. **8m**: (brown viscous oil). IR (film): 3367, 1707, 1672, 1579, 1481, 1200, 750 cm^{-1} . $^1\text{H-NMR}$ (CDCl_3) δ : 1.15 (3H, t, $J=7.1$ Hz), 2.17 (2H, q, $J=7.1$ Hz), 2.38–2.43 (2H, m), 4.04 (2H, q, $J=7.1$ Hz), 4.70 (1H, dt, $J=14.2, 7.1$ Hz), 4.91 (1H, dt, $J=14.2, 7.1$ Hz), 5.32 (1H, d, $J=1.3$ Hz, collapsed to s on addition of D_2O), 6.82 (1H, d, $J=1.3$ Hz, disappeared on addition of D_2O), 7.39 (1H, t, $J=7.8$ Hz), 7.41 (1H, t, $J=7.8$ Hz), 7.52 (1H, td, $J=7.8, 1.2$ Hz), 7.55 (1H, td, $J=7.8,$

1.2 Hz), 7.76 (1H, d, J =7.8 Hz), 7.84 (1H, d, J =7.8 Hz), 7.84 (1H, d, J =7.8 Hz), 8.19 (1H, d, J =7.8 Hz). HR-MS m/z : Calcd for $C_{24}H_{21}N_2O_4^{37}Cl$: 438.1160. Found: 438.1140. $C_{24}H_{21}N_2O_4^{35}Cl$: 436.1189. Found: 436.1184.

(6*R*^{*,6a*R*^{*})-6-Chloro-12-[(*Z*)-3-chloroallyl]- (8n) and -12-[(*E*)-3-chloroallyl]-6a-hydroxy-5,6,6a,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (8o) from 5} — In the general procedure B, **5** (63.5 mg, 0.20 mmol), anhydrous DMF (4.0 mL), 60% NaH (7.90 mg, 0.20 mmol), and (*E,Z*) mixture of 1,3-dichloropropene (0.36 mL, 3.94 mmol) were used. After repeated column-chromatography, **8n** (32.9 mg, 42%), **8o** (18.4 mg, 24%), and unreacted **5** (9.10 mg, 14%) were obtained in the order of elution. **8n**: mp 207—209°C (decomp., yellow powder, recrystallized from EtOAc). IR (KBr): 3381, 1649, 1616, 1581, 1475, 802, 754, 739 cm^{-1} . ¹H-NMR (DMSO-*d*₆) δ : 5.34 (1H, s), 5.48 (1H, ddd, J =16.1, 6.5, 2.3 Hz), 5.73 (1H, ddd, J =16.1, 6.5, 2.3 Hz), 6.17 (1H, q, J =6.5 Hz), 6.63 (1H, dt, J =6.5, 2.3 Hz), 6.84 (1H, br s, disappeared on addition of D₂O), 7.40 (1H, td, J =7.6, 1.1 Hz), 7.43 (1H, td, J =7.6, 1.1 Hz), 7.53 (1H, td, J =7.6, 1.1 Hz), 7.55 (1H, td, J =7.6, 1.1 Hz), 7.68 (1H, d, J =7.6 Hz), 7.78 (1H, d, J =7.6 Hz), 7.84 (1H, d, J =7.6 Hz), 8.19 (1H, d, J =7.6 Hz). MS m/z : 400, 398, and 396 (M⁺). Anal. Calcd for $C_{21}H_{14}N_2O_2Cl_2 \cdot 1/4H_2O$: C, 62.78; H, 3.64; N, 6.97. Found: C, 63.00; H, 3.58; N, 6.95. **8o**: brown oil. IR (film): 3417, 1653, 1577, 1471, 1146, 748 cm^{-1} . ¹H-NMR (DMSO-*d*₆) δ : 5.34 (1H, d, J =1.5 Hz, collapsed to s on addition of D₂O), 5.36 (1H, ddd, J =13.4, 6.8, 1.7 Hz), 5.53 (1H, ddd, J =13.4, 6.8, 1.7 Hz), 6.30 (1H, dt, J =13.4, 6.8 Hz), 6.74 (1H, d, J =13.4 Hz), 6.81 (1H, d, J =1.5 Hz, disappeared on addition of D₂O), 7.40 (1H, td, J =7.6, 1.1 Hz), 7.42 (1H, t, J =7.6 Hz), 7.52 (1H, td, J =7.6, 1.1 Hz), 7.55 (1H, td, J =7.6, 1.1 Hz), 7.80 (1H, d, J =7.6 Hz), 7.84 (1H, d, J =7.6 Hz), 7.87 (1H, d, J =7.6 Hz), 8.18 (1H, d, J =7.6 Hz). HR-MS m/z : Calcd for $C_{21}H_{14}N_2O_2^{37}Cl_2$: 400.0374. Found: 400.0339. $C_{21}H_{14}N_2O_2^{37}Cl^{35}Cl$: 398.0403. Found: 398.0406. $C_{21}H_{14}N_2O_2^{35}Cl_2$: 396.0433. Found: 396.0449.

(6*R*^{*,6a*R*^{*})-12-Acetyl-6-chloro-6a-hydroxy-5,6,6a,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (8p) from 5} — In the general procedure B, **5** (47.4 mg, 0.15 mmol), anhydrous DMF (2.0 mL), 60% NaH (5.80 mg, 0.15 mmol), and acetyl chloride (0.21 mL, 2.94 mmol) were used. After repeated column-chromatography, **8p** (22.2 mg, 41%) and unreacted **5** (10.9 mg, 23%) were obtained in the order of elution. **8p**: mp 209—211°C (decomp., yellow fine needles, recrystallized from EtOAc). IR (KBr): 3332, 1695, 1685, 1571, 1284, 1263, 760 cm^{-1} . ¹H-NMR (DMSO-*d*₆) δ : 2.92 (3H, s), 5.31 (1H, s), 7.08 (1H, br s, disappeared on addition of D₂O), 7.44 (1H, td, J =7.9, 1.3 Hz), 7.52 (1H, t, J =7.9 Hz), 7.58 (1H, td, J =7.9, 1.3 Hz), 7.61 (1H, td, J =7.9 Hz), 7.80 (1H, d, J =7.9 Hz), 7.83 (1H, d, J =7.9 Hz), 8.22 (2H, d, J =7.9 Hz). MS m/z : 366 and 364 (M⁺). Anal. Calcd for $C_{20}H_{13}N_2O_3Cl \cdot EtOAc$: C, 63.65; H, 4.67; N, 6.19. Found: C, 63.42; H, 4.53; N, 6.37.

12-*n*-Butyl-6-cyano-5-hydroxyindolo[2,3-*a*]carbazole (9a) from 8a — General Procedure C: NaCN (239 mg, 5.72 mmol) was added to a solution of **8a** (61.5 mg, 0.16 mmol) in DMF (4.0 mL) and H₂O (2.0

mL), and the mixture was stirred for 0.5 h at rt. After addition of H₂O, the whole was extracted with EtOAc. The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with EtOAc–hexane (1:3, v/v) to give **9a** (48.9 mg, 85%). **9a**: mp 251–253°C (pale gray powder, recrystallized from EtOAc). IR (KBr): 3311, 2206, 1705, 1630, 1576, 1414, 737 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ: 0.81 (3H, t, *J*=7.4 Hz), 1.28 (2H, sex, *J*=7.4 Hz), 1.82 (2H, quin, *J*=7.4 Hz), 4.86 (2H, t, *J*=7.4 Hz), 7.27 (1H, t, *J*=7.7 Hz), 7.31 (1H, t, *J*=7.7 Hz), 7.48 (1H, t, *J*=7.7 Hz), 7.50 (1H, t, *J*=7.7 Hz), 7.72 (1H, d, *J*=7.7 Hz), 7.74 (1H, d, *J*=7.7 Hz), 8.39 (1H, d, *J*=7.7 Hz), 8.45 (1H, d, *J*=7.7 Hz), 10.7 (1H, s, disappeared on addition of D₂O), 11.5 (1H, s, disappeared on addition of D₂O). MS *m/z*: 353 (M⁺). *Anal.* Calcd for C₂₃H₁₉N₃O: C, 78.16; H, 5.42; N, 11.89. Found: C, 77.95; H, 5.47; N, 11.69.

12-Allyl-6-cyano-5-hydroxyindolo[2,3-*a*]carbazole (9b) from 8b — In the general procedure C, NaCN (1.50 g, 28.9 mmol), **8b** (349 mg, 0.96 mmol), DMF (18.0 mL), and H₂O (9.0 mL) were used. After column-chromatography, **9b** (294 mg, 91%) was obtained. **9b**: mp 236.5–238°C (decomp., pale gray cotton fibers, recrystallized from Et₂O–hexane). IR (KBr): 3440, 2110, 1625, 1458, 1416, 1354, 1168, 916, 736 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ: 4.75 (1H, d, *J*=17.4 Hz), 5.06 (1H, d, *J*=10.5 Hz), 5.49–5.53 (2H, m), 6.10–6.20 (1H, m), 7.26 (1H, t, *J*=7.6 Hz), 7.33 (1H, t, *J*=7.6 Hz), 7.47 (1H, t, *J*=7.6 Hz), 7.49 (1H, t, *J*=7.6 Hz), 7.69 (2H, d, *J*=7.6 Hz), 8.39 (1H, d, *J*=7.6 Hz), 8.44 (1H, d, *J*=7.6 Hz), 10.73 (1H, br s, disappeared on addition of D₂O), 11.53 (1H, s, disappeared on addition of D₂O). MS *m/z*: 337 (M⁺). *Anal.* Calcd for C₂₂H₁₅N₃O: C, 78.32; H, 4.48; N, 12.46. Found: C, 78.08; H, 4.47; N, 12.29.

6-Cyano-5-hydroxy-12-propargylindolo[2,3-*a*]carbazole (9c) from 8c — In the general procedure C, NaCN (112 mg, 2.29 mmol), **8c** (27.5 mg, 0.08 mmol), DMF (2.0 mL), and H₂O (1.0 mL) were used. After column-chromatography, **9c** (18.5 mg, 72%) was obtained. **9c**: mp 268–270°C (decomp., pale brown powder, recrystallized from CHCl₃). IR (KBr): 3454, 3263, 2206, 1633, 1460, 1242, 742 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ: 3.30–3.31 [1H, m, clearly appeared at 3.23 (1H, t, *J*=2.2 Hz) on addition of D₂O], 5.75 (2H, d, *J*=2.2 Hz), 7.28 (1H, t, *J*=7.8 Hz), 7.36 (1H, t, *J*=7.8 Hz), 7.49 (1H, t, *J*=7.8 Hz), 7.54 (1H, t, *J*=7.8 Hz), 7.72 (1H, d, *J*=7.8 Hz), 7.81 (1H, d, *J*=7.8 Hz), 8.39 (1H, d, *J*=7.8 Hz), 8.46 (1H, d, *J*=7.8 Hz), 10.8 (1H, s, disappeared on addition of D₂O), 11.7 (1H, s, disappeared on addition of D₂O). MS *m/z*: 335 (M⁺). *Anal.* Calcd for C₂₂H₁₃N₃O·1/2H₂O: C, 76.73; H, 4.10; N, 12.20. Found: C, 76.86; H, 3.91; N, 11.96.

12-Benzyl-6-Cyano-5-hydroxyindolo[2,3-*a*]carbazole (9d) from 8d — In the general procedure C, NaCN (123 mg, 3.06 mmol), **8d** (32.9 mg, 0.08 mmol), DMF (2.0 mL), and H₂O (1.0 mL) were used. After column-chromatography, **9d** (30.1 mg, 98%) was obtained. **9d**: mp 243–244°C (decomp., gray needles, recrystallized from EtOAc). IR (KBr): 3282, 2200, 1635, 1576, 1169, 739 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ: 6.13 (2H, s), 7.14–7.25 (5H, m), 7.27 (1H, td, *J*=7.7, 1.7 Hz), 7.32 (1H, td, *J*=7.7, 1.7

Hz), 7.43 (1H, td, $J=7.7$, 1.7 Hz), 7.46 (1H, td, $J=7.7$, 1.7 Hz), 7.64 (1H, d, $J=7.7$ Hz), 7.65 (1H, d, $J=7.7$ Hz), 8.40 (1H, d, $J=7.7$ Hz), 8.46 (1H, d, $J=7.7$ Hz), 10.8 (1H, br s, disappeared on addition of D_2O), 11.7 (1H, s, disappeared on addition of D_2O). MS m/z : 387 (M^+). *Anal.* Calcd for $C_{26}H_{17}N_3O$: C, 80.60; H, 4.42; N, 10.85. Found: C, 80.46; H, 4.47; N, 10.78.

12-Benzyl-6-cyano-5-hydroxyindolo[2,3-*a*]carbazole (9d) from 13 — Crushed NaOH powder (675 mg, 16.9 mmol) was added to a solution of **13** (9.6 mg, 0.02 mmol) in ethylene glycol (3.0 mL), and the mixture was refluxed for 2 h with stirring. After addition of H_2O , the whole was extracted with EtOAc. The extract was washed with H_2O and brine, dried over Na_2SO_4 , and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_2 with EtOAc–hexane (1:3, v/v) to give **9d** (5.7 mg, 62%).

6-Cyano-5-hydroxy-12-phenethylindolo[2,3-*a*]carbazole (9e) from 8e — In the general procedure C, NaCN (117 mg, 2.27 mmol), **8e** (32.3 mg, 0.08 mmol), DMF (2.0 mL), and H_2O (1.0 mL) were used. After column-chromatography, **9e** (25.8 mg, 85%) was obtained. **9e**: mp 255–257°C (decomp., pale brown powder, recrystallized from acetone). IR (KBr): 3282, 2212, 1628, 1410, 1238, 742, 700 cm^{-1} . 1H -NMR (DMSO- d_6) δ : 3.10 (2H, t, $J=7.2$ Hz), 5.12 (2H, t, $J=7.2$ Hz), 7.04–7.08 (1H, m), 7.11 (4H, d, $J=4.4$ Hz), 7.26 (1H, t, $J=7.9$ Hz), 7.27 (1H, t, $J=7.9$ Hz), 7.38 (1H, td, $J=7.9$, 0.98 Hz), 7.48 (1H, td, $J=7.9$, 0.98 Hz), 7.54 (1H, d, $J=7.9$ Hz), 7.72 (1H, d, $J=7.9$ Hz), 8.34 (1H, d, $J=7.9$ Hz), 8.45 (1H, d, $J=7.9$ Hz), 10.7 (1H, br s, disappeared on addition of D_2O), 11.6 (1H, s, disappeared on addition of D_2O). MS m/z : 401 (M^+). *Anal.* Calcd for $C_{27}H_{19}N_3O \cdot H_2O$: C, 77.31; H, 5.05; N, 10.02. Found: C, 77.37; H, 4.85; N, 9.81.

12-(*E*)-Cinnamyl-6-Cyano-5-hydroxyindolo[2,3-*a*]carbazole (9f) from 8f — In the general procedure C, NaCN (159 mg, 3.23 mmol), **8f** (47.3 mg, 0.10 mmol), DMF (3.0 mL), and H_2O (1.5 mL) were used. After column-chromatography, **9f** (35.8 mg, 80%) was obtained. **9f**: yellow viscous oil. IR (film): 3467, 2216, 1631, 1414, 1173, 741 cm^{-1} . 1H -NMR (DMSO- d_6) δ : 5.66 (2H, d, $J=5.1$ Hz), 6.44 (1H, d, $J=15.9$ Hz), 6.56 (1H, dt, $J=15.9$, 5.1 Hz), 7.17 (1H, t, $J=7.4$ Hz), 7.22 (2H, t, $J=7.4$ Hz), 7.26 (2H, d, $J=7.4$ Hz), 7.28 (1H, t, $J=7.7$ Hz), 7.34 (1H, t, $J=7.7$ Hz), 7.47 (1H, td, $J=7.7$, 0.88 Hz), 7.50 (1H, td, $J=7.7$, 0.88 Hz), 7.71 (1H, d, $J=7.7$ Hz), 7.77 (1H, d, $J=7.7$ Hz), 8.41 (1H, d, $J=7.7$ Hz), 8.45 (1H, d, $J=7.7$ Hz), 10.8 (1H, br s, disappeared on addition of D_2O), 11.6 (1H, s, disappeared on addition of D_2O). HR-MS m/z : Calcd for $C_{28}H_{19}N_3O$: 413.1528. Found: 413.1529.

6-Cyano-12-cyanomethyl-5-hydroxyindolo[2,3-*a*]carbazole (9g) from 8g — In the general procedure C, NaCN (1.45 g, 27.8 mmol), **8g** (333 mg, 0.93 mmol), DMF (24.0 mL), and H_2O (12.0 mL) were used. After column-chromatography, **9g** (168 mg, 54%) was obtained. **9g**: mp 272.5–275°C (decomp., pale gray powder, recrystallized from EtOAc–hexane). IR (KBr): 3300, 2230, 1630, 1580, 1414, 1320, 1178, 902, 745 cm^{-1} . 1H -NMR (DMSO- d_6) δ : 6.17 (2H, s), 7.31 (1H, t, $J=8.0$ Hz), 7.42 (1H, t, $J=8.0$ Hz), 7.53

(1H, t, $J=8.0$ Hz), 7.56 (1H, t, $J=8.0$ Hz), 7.73 (1H, d, $J=8.0$ Hz), 7.88 (1H, d, $J=8.0$ Hz), 8.41 (1H, d, $J=8.0$ Hz), 8.47 (1H, d, $J=8.0$ Hz), 10.93 (1H, s, disappeared on addition of D_2O), 11.90 (1H, s, disappeared on addition of D_2O). MS m/z : 336 (M^+). *Anal.* Calcd for $C_{21}H_{12}N_4O \cdot 1/8H_2O$: C, 74.49; H, 3.65; N, 16.55. Found: C, 74.70; H, 3.62; N, 16.25.

6-Cyano-12-N,N-dimethylcarbamoylmethyl-5-hydroxyindolo[2,3-*a*]carbazole (9h) from 8h — In the general procedure C, NaCN (119 mg, 2.43 mmol), **8h** (33.1 mg, 0.81 mmol), DMF (2.0 mL), and H_2O (1.0 mL) were used. After column-chromatography, **9h** (29.6 mg, 95%) was obtained. **9h**: mp $>300^\circ C$ (gray powder, recrystallized from MeOH). IR (KBr): 3311, 2216, 1651, 1635, 1412, 742 cm^{-1} . 1H -NMR (DMSO- d_6) δ : 2.86 (3H, s), 3.33 (3H, s), 5.75 (2H, s), 7.27 (1H, t, $J=7.8$ Hz), 7.31 (1H, t, $J=7.8$ Hz), 7.45 (1H, t, $J=7.8$ Hz), 7.47 (1H, t, $J=7.8$ Hz), 7.59 (1H, d, $J=7.8$ Hz), 7.67 (1H, d, $J=7.8$ Hz), 8.38 (1H, d, $J=7.8$ Hz), 8.45 (1H, d, $J=7.8$ Hz), 10.7 (1H, br s, disappeared on addition of D_2O), 11.5 (1H, s, disappeared on addition of D_2O). HR-MS m/z : Calcd for $C_{23}H_{18}N_4O_2$: 382.1430. Found: 382.1421.

6-Cyano-5-hydroxy-12-methoxycarbonylmethyl- (9i) and 12-Carboxymethyl-6-cyano-5-hydroxyindolo[2,3-*a*]carbazole (9q) from 8i — In the general procedure C, NaCN (395 mg, 7.64 mmol), **8i** (100 mg, 0.25 mmol), DMF (4.0 mL), and H_2O (2.0 mL) were used. After column-chromatography, **9i** (15.5 mg, 17%) was obtained. The aqueous layer was made acidic by adding aq. 8% HCl and extracted with EtOAc. The extract was washed with brine, dried over Na_2SO_4 , and evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO_2 with $CHCl_3$ –MeOH–AcOH (46:5:0.5, v/v) to give **9q** (38.6 mg, 43%). **9i**: mp $>300^\circ C$ (pale gray powder, recrystallized from EtOAc–hexane). IR (KBr): 3410, 2220, 1720, 1630, 1458, 1417, 1240, 1177, 737 cm^{-1} . 1H -NMR (DMSO- d_6) δ : 3.69 (3H, s), 5.80 (2H, s), 7.28 (1H, t, $J=7.3$ Hz), 7.35 (1H, t, $J=7.3$ Hz), 7.45–7.52 (2H, m), 7.65 (1H, d, $J=7.3$ Hz), 7.66 (1H, d, $J=7.3$ Hz), 8.39 (1H, d, $J=7.7$ Hz), 8.44 (1H, d, $J=7.7$ Hz), 10.79 (1H, s, disappeared on addition of D_2O), 11.65 (1H, s, disappeared on addition of D_2O). HR-MS m/z : Calcd for $C_{22}H_{15}N_3O_3$: 369.1114. Found: 369.1114. **9q**: mp 198–200°C (decomp., gray powder, recrystallized from MeOH– H_2O). IR (KBr): 3367, 2208, 1724, 1631, 1462, 1412, 1323, 1173, 741, 428 cm^{-1} . 1H -NMR (DMSO- d_6) δ : 5.64 (2H, s), 7.26 (1H, t, $J=7.8$ Hz), 7.33 (1H, t, $J=7.8$ Hz), 7.41–7.51 (2H, m), 7.63 (1H, d, $J=8.3$ Hz), 7.65 (1H, d, $J=8.3$ Hz), 8.38 (1H, d, $J=7.8$ Hz), 8.43 (1H, d, $J=7.8$ Hz), 10.74 (1H, br s, disappeared on addition of D_2O), 11.70 (1H, s, disappeared on addition of D_2O). MS m/z : 355 (M^+). *Anal.* Calcd for $C_{21}H_{13}N_3O_3 \cdot 1/2H_2O$: C, 69.22; H, 3.87; N, 11.53. Found: C, 69.20; H, 3.92; N, 11.27.

12-(3-Bromopropyl)-6-cyano- (9l) and 6-Cyano-12-(3-cyanopropyl)-5-hydroxyindolo[2,3-*a*]-carbazole (9r) from 8l — In the general procedure C, NaCN (107 mg, 2.18 mmol), **8l** (32.2 mg, 0.07 mmol), DMF (2.0 mL), and H_2O (1.0 mL) were used. After column-chromatography, **9l** (6.9 mg, 23%) and **9r** (6.1 mg, 23%) were obtained in the order of elution. **9l**: (brown viscous oil). IR (film): 3423, 2210,

1633, 1454, 1246, 746 cm^{-1} . $^1\text{H-NMR}$ (DMSO-*d*₆) δ : 2.40 (2H, q, *J*=6.9 Hz), 3.56 (2H, t, *J*=6.9 Hz), 4.95 (2H, t, *J*=6.9 Hz), 7.28 (1H, t, *J*=7.7 Hz), 7.34 (1H, t, *J*=7.7 Hz), 7.49 (1H, td, *J*=7.7, 1.2 Hz), 7.53 (1H, td, *J*=7.7, 1.2 Hz), 7.73 (1H, d, *J*=7.7 Hz), 7.78 (1H, d, *J*=7.7 Hz), 8.40 (1H, d, *J*=7.7 Hz), 8.46 (1H, d, *J*=7.7 Hz), 10.8 (1H, br s, disappeared on addition of D₂O), 11.6 (1H, s, disappeared on addition of D₂O). HR-MS *m/z*: Calcd for C₂₂H₁₆N₃O⁸¹Br: 419.0456. Found: 419.0491. C₂₂H₁₆N₃O⁷⁹Br: 417.0477. Found: 417.0451. **9r**: (brown viscous oil). IR (film): 3342, 2262, 2210, 1633, 1452, 1400, 756 cm^{-1} . $^1\text{H-NMR}$ (DMSO-*d*₆) δ : 2.19 (2H, q, *J*=7.3 Hz), 2.61 (2H, t, *J*=7.3 Hz), 4.89 (2H, t, *J*=7.3 Hz), 7.28 (1H, t, *J*=8.0 Hz), 7.34 (1H, t, *J*=7.7 Hz), 7.49 (1H, t, *J*=8.0 Hz), 7.53 (1H, t, *J*=8.0 Hz), 7.72 (1H, d, *J*=8.0 Hz), 7.77 (1H, d, *J*=8.0 Hz), 8.40 (1H, d, *J*=8.0 Hz), 8.46 (1H, d, *J*=8.0 Hz), 10.8 (1H, s, disappeared on addition of D₂O), 11.6 (1H, s, disappeared on addition of D₂O). HR-MS *m/z*: Calcd for C₂₃H₁₆N₄O: 364.1324. Found: 364.1324.

6-Cyano-12-[3-(ethoxycarbonyl)propyl]-5-hydroxyindolo[2,3-*a*]carbazole (9m) from 8m — In the general procedure C, NaCN (301 mg, 5.83 mmol), **8m** (84.8 mg, 0.19 mmol), DMF (4.0 mL), and H₂O (2.0 mL) were used. After column-chromatography, **9m** (53.3 mg, 72%) was obtained. **9m**: mp 258—260°C (pale brown powder, recrystallized from CHCl₃). IR (KBr): 3292, 2210, 1711, 1633, 1242, 1169, 741 cm^{-1} . $^1\text{H-NMR}$ (DMSO-*d*₆) δ : 1.07 (3H, t, *J*=7.1 Hz), 2.13 (2H, quin, *J*=7.2 Hz), 2.41 (2H, t, *J*=7.2 Hz), 3.95 (2H, q, *J*=7.1 Hz), 4.86 (2H, t, *J*=7.2 Hz), 7.28 (1H, t, *J*=7.8 Hz), 7.33 (1H, t, *J*=7.8 Hz), 7.49 (1H, td, *J*=7.8, 1.7 Hz), 7.51 (1H, td, *J*=7.8, 1.7 Hz), 7.72 (1H, d, *J*=7.8 Hz), 7.76 (1H, d, *J*=7.8 Hz), 8.39 (1H, d, *J*=7.8 Hz), 8.46 (1H, d, *J*=7.8 Hz), 10.7 (1H, br s, disappeared on addition of D₂O), 11.6 (1H, s, disappeared on addition of D₂O). MS *m/z*: 411 (M⁺). *Anal.* Calcd for C₂₅H₂₁N₃O₃·1/2H₂O: C, 71.41; H, 5.27; N, 9.99. Found: C, 71.58; H, 5.28; N, 9.78.

12-(Z)-3-Chloroallyl- (9n) and 12-(E)-3-Chloroallyl)-6-cyano-5-hydroxyindolo[2,3-*a*]carbazole (9o) from 8n and 8o — In the general procedure C, NaCN (208 mg, 4.25 mmol), about 2:1 mixture of **8n** and **8o** (56.2 mg, 0.14 mmol), DMF (3.0 mL), and H₂O (1.5 mL) were used. After repeated column-chromatography, **9n** (21.5 mg, 41%) and **9o** (7.3 mg, 14%) were obtained in the order of elution. **9n**: >300 °C (gray powder, recrystallized from EtOAc). IR (KBr): 3454, 2208, 1628, 1412, 742 cm^{-1} . $^1\text{H-NMR}$ (DMSO-*d*₆) δ : 5.64 (2H, d, *J*=6.6 Hz), 6.12 (1H, q, *J*=6.6 Hz), 6.58 (1H, d, *J*=6.6 Hz), 7.28 (1H, t, *J*=7.9 Hz), 7.35 (1H, t, *J*=7.9 Hz), 7.48 (1H, t, *J*=7.9 Hz), 7.52 (1H, t, *J*=7.9 Hz), 7.59 (1H, d, *J*=7.9 Hz), 7.70 (1H, d, *J*=7.9 Hz), 8.40 (1H, d, *J*=7.9 Hz), 8.46 (1H, d, *J*=7.9 Hz), 10.8 (1H, br s, disappeared on addition of D₂O), 11.7 (1H, s, disappeared on addition of D₂O). HR-MS (FAB⁺) *m/z*: Calcd for C₂₂H₁₅N₃O³⁷Cl: 374.0874. Found: 374.0908. C₂₂H₁₅N₃O³⁵Cl: 372.0903. Found: 372.0892. **9o**: (pale pink viscous oil). IR (film): 3448, 2218, 1630, 1464, 1417, 742 cm^{-1} . $^1\text{H-NMR}$ (DMSO-*d*₆) δ : 5.53 (2H, br d, *J*=6.3 Hz), 6.25 (1H, dt, *J*=12.9, 6.3 Hz), 6.51 (1H, d, *J*=12.9 Hz), 7.28 (1H, t, *J*=7.8 Hz), 7.34 (1H, t, *J*=7.8 Hz), 7.48 (1H, td, *J*=7.8, 1.7 Hz), 7.51 (1H, td, *J*=7.8, 1.7 Hz), 7.71 (1H, d, *J*=7.8 Hz), 7.77 (1H, d,

J=7.8 Hz), 8.40 (1H, d, *J*=7.8 Hz), 8.45 (1H, d, *J*=7.8 Hz), 10.8 (1H, br s, disappeared on addition of D₂O), 11.6 (1H, br s, disappeared on addition of D₂O). HR-MS *m/z*: Calcd for C₂₂H₁₄N₃O³⁷Cl: 373.0796. Found: 373.0790. C₂₂H₁₄N₃O³⁵Cl: 371.0825. Found: 371.0819.

6-Cyano-5-hydroxyindolo[2,3-*a*]carbazole (10) and (6*R*^{*,6*S*^{*,6*a*R^{*,11*a*R^{*}}})-6-chloro-11*a*-cyano-6*a*-hydroxy-5,6,6*a*,11,11*a*,12-hexahydroindolo[2,3-*a*]carbazole-5-one (11) from 8p} — In the general procedure C, NaCN (109 mg, 2.23 mmol), **8p** (27.1 mg, 0.74 mmol), DMF (2.0 mL), and H₂O (1.0 mL) were used. After repeated column-chromatography with EtOAc–hexane (1:2, v/v) and CHCl₃–MeOH (99:1, v/v), **10** (19.2 mg, 74%) and **11** (5.6 mg, 22%) were obtained in the order of elution. **10**: mp >300°C (pale gray powder, recrystallized from CHCl₃). IR (KBr): 3373, 2208, 1646, 1569, 1389, 1351, 1324, 1236, 743 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ : 7.25 (1H, td, *J*=0.9, 7.8 Hz), 7.28 (1H, d, *J*=7.8 Hz), 7.42–7.47 (2H, m), 7.73 (2H, ddd, *J*=0.9, 5.9, 6.7 Hz), 8.33 (1H, d, *J*=7.8 Hz), 8.39 (1H, d, *J*=7.8 Hz), 10.62 (1H, br s, disappeared on addition of D₂O), 11.62 (1H, br s, disappeared on addition of D₂O), 11.59 (1H, s, disappeared on addition of D₂O). *Anal.* Calcd for C₁₉H₁₁N₃O: C, 76.76; H, 3.73; N, 14.13. Found: C, 76.81; H, 3.63; N, 14.12. **11**: mp 231–233°C (yellow prisms, recrystallized from CHCl₃). IR (KBr): 3465, 2219 (very weak), 1673, 1468, 773 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ : 5.17 (1H, br s, disappeared on addition of D₂O), 6.79 (1H, d, *J*=7.7 Hz), 6.85 (1H, td, *J*=7.7, 1.2 Hz), 7.20 (1H, td, *J*=7.7, 1.2 Hz), 7.27 (1H, td, *J*=7.7, 1.2 Hz), 7.35 (1H, td, *J*=7.7, 1.2 Hz), 7.37 (1H, s, disappeared on addition of D₂O), 7.42 (1H, s, disappeared on addition of D₂O), 7.47 (1H, d, *J*=7.7 Hz), 7.63 (1H, d, *J*=7.7 Hz), 7.95 (1H, d, *J*=7.7 Hz), 12.6 (1H, br s, disappeared on addition of D₂O). HR-MS (FAB⁺) *m/z*: Calcd for C₁₃H₁₂N₃O₂³⁷Cl: 352.0667. Found: 352.0701. C₁₃H₁₂N₃O₂³⁵Cl: 350.697. Found: 350.0703. *Anal.* Calcd for C₁₃H₁₂N₃O₂Cl·1/2CHCl₃: C, 57.20; H, 3.08; N, 10.26. Found: C, 56.94; H, 3.12; N, 9.99.

6-Cyano-5-hydroxyindolo[2,3-*a*]carbazole (10) from 8k — In the general procedure C, NaCN (11.2 mg, 3.23 mmol), **8k** (47.3 mg, 0.10 mmol), DMF (2.0 mL), and H₂O (0.1 mL) were used. After column-chromatography, unreacted **8k** (5.5 mg, 16%) and **10** (6.1 mg, 27%) were obtained in the order of elution.

(5*R*^{*,6*S*^{*,6*a*R^{*,11*a*R^{*}}})-6-Chloro-11*a*-cyano-5,6,6*a*,11,11*a*,12-hexahydroindolo[2,3-*a*]carbazole (12a) from 11} — NaBH₄ (4.5 mg, 0.12 mmol) was added to a solution of **11** (14.1 mg, 0.04 mmol) in MeOH (2.0 mL), and the mixture was stirred for 1.5 h at rt. After addition of H₂O, the whole was extracted with EtOAc. The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO₂ with EtOAc–hexane (1:3, v/v) to give **12a** (6.6 mg, 47%) and unreacted **11** (7.5 mg, 53 %) in the order of elution. **12a**: yellow viscous oil. IR (film): 3342, 2235 (almost invisible), 1655, 1585, 748 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ : 3.93 (1H, d, *J*=8.5 Hz), 5.06 (1H, t, *J*=8.5 Hz, collapsed to d on addition of D₂O), 5.72 (1H, t, *J*=8.5 Hz, disappeared on addition of D₂O), 6.83 (1H, d, *J*=7.5 Hz), 6.87 (1H, td, *J*=7.5, 1.3 Hz), 7.06 (1H, t, *J*=7.5

Hz), 7.13 (1H, s, disappeared on addition of D₂O), 7.15 (1H, s, disappeared on addition of D₂O), 7.19 (1H, td, *J*=7.5, 1.3 Hz), 7.21 (1H, td, *J*=7.5, 1.3 Hz), 7.48 (1H, d, *J*=7.5 Hz), 7.51 (1H, d, *J*=7.5 Hz), 7.81 (1H, d, *J*=7.5 Hz), 11.3 (1H, s, disappeared on addition of D₂O). HR-MS (FAB⁺) *m/z*: Calcd for C₁₉H₁₅N₃O₂³⁷Cl: 354.0824. Found: 354.0871. C₁₉H₁₅N₃O₂³⁵Cl: 352.0853. Found: 352.0846.

(5R*,6S*,6aR*,11aR*)-6-Chloro-11a-cyano-5,12-diacetyl-6a-hydroxy-5,6,6a,11,11a,12-hexahydro-indolo[2,3-*a*]carbazole (12b) from 12a — Ac₂O (1.0 mL) was added to a solution of **12a** (10.0 mg, 0.03 mmol) in pyridine (2.0 mL), and the mixture was stirred for 14 h at rt. After evaporation of the solvent under reduced pressure, the residue was column-chromatographed on SiO₂ with EtOAc–hexane (1:3, v/v) to give **12b** (3.7 mg, 30%) and unreacted **12a** (5.7 mg, 57 %) were obtained in the order of elution. **12b**: pale yellow oil. IR (film): 3390, 1749, 1705, 1610, 1373, 744 cm⁻¹. ¹H-NMR (DMSO-*d*₆ + 5% D₂O, 90°C) δ : 2.13 (3H, s), 2.96 (3H, s), 4.41 (1H, d, *J*=8.3 Hz), 6.56 (1H, d, *J*=8.3 Hz), 6.90 (1H, td, *J*=7.5, 1.7 Hz), 6.97 (1H, d, *J*=7.5 Hz), 7.24 (1H, td, *J*=7.5, 1.7 Hz), 7.37–7.42 (2H, m), 7.48 (1H, d, *J*=7.5 Hz), 7.52 (1H, td, *J*=7.5, 1.7 Hz), 7.94 (1H, d, *J*=7.5 Hz). HR-MS (FAB⁺) *m/z*: Calcd for C₂₃H₁₉N₃O₄³⁷Cl: 438.1035. Found: 438.1040. C₂₃H₁₉N₃O₄³⁵Cl: 436.1004. Found: 436.1051.

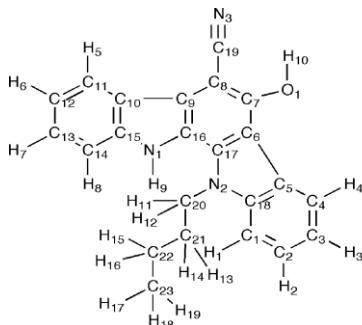
12-Benzyl-6-cyano-5-methoxyindolo[2,3-*a*]carbazole (13) from 9d — Excess amount of ethereal CH₂N₂ was added to a solution of **9d** (88.0 mg, 0.22 mmol) in MeOH (6.0 mL) and the mixture was stirred for 1.5 h at rt. The solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CHCl₃–MeOH–28% aq. NH₃ (46:0.5:0.05, v/v) to give **13** (75.1 mg, 82%). **13**: mp 228.0–228.5°C (colorless needles, recrystallized from EtOAc). IR (KBr): 3338, 2208, 1628, 1560, 1390, 741 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ : 4.26 (3H, s), 6.16 (2H, s), 7.19 (2H, t, *J*=7.7 Hz), 7.20 (1H, t, *J*=7.7 Hz), 7.24 (1H, d, *J*=7.7 Hz), 7.26 (1H, d, *J*=7.7 Hz), 7.33 (1H, t, *J*=7.4 Hz), 7.38 (1H, t, *J*=7.4 Hz), 7.50 (1H, td, *J*=7.4, 1.9 Hz), 7.51 (1H, td, *J*=7.4, 1.9 Hz), 7.69 (1H, d, *J*=7.4 Hz), 7.71 (1H, d, *J*=7.4 Hz), 8.29 (1H, d, *J*=7.4 Hz), 8.48 (1H, d, *J*=7.4 Hz), 11.9 (1H, s, disappeared on addition of D₂O). MS *m/z*: 401 (M⁺). Anal. Calcd for C₂₇H₁₉N₃O·1/2H₂O: C, 79.00; H, 4.91; N, 10.24. Found: C, 79.09; H, 4.90; N, 9.99.

6-(Z)-Aminomethylidene-12-*n*-butyl-5,6,11,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (15a) from 9a — General Procedure D: A 1.0 M solution of DIBAL in toluene (2.7 mL, 2.67 mmol) was added to a solution of **9a** (31.4 mg, 0.09 mmol) in anhydrous THF (2.0 mL) under ice cooling and the mixture was stirred under N₂ atmosphere at rt for 3 h. After addition of MeOH and aq. Rochelle salt, the whole was extracted with EtOAc. The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CHCl₃–MeOH (99:1, v/v) to give **15a** (23.0 mg, 73%). **15a**: mp 170–172°C (decomp., dark yellow prisms, recrystallized from EtOAc). IR (KBr): 3400, 1628, 1610, 1577, 1560, 1421, 737 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ : 0.82 (3H, t, *J*=7.4 Hz), 1.29 (2H, sex, *J*=7.4 Hz), 1.81 (2H, quin, *J*=7.4 Hz), 4.77 (2H, t, *J*=7.4 Hz), 7.14 (1H, td,

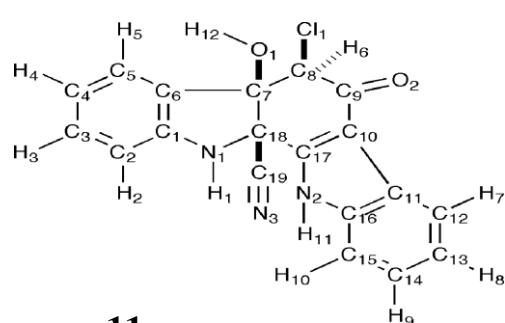
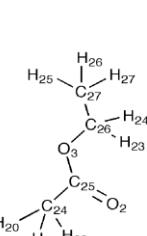
J=7.8, 1.2 Hz), 7.22 (1H, t, *J*=7.8 Hz), 7.29 (1H, t, *J*=7.8 Hz), 7.31 (1H, td, *J*=7.8, 1.2 Hz), 7.62 (1H, d, *J*=7.8 Hz), 7.63 (1H, d, *J*=7.8 Hz), 8.02 (1H, d, *J*=7.8 Hz), 8.47 (1H, d, *J*=7.8 Hz), 8.60 (1H, br t, *J*=8.2 Hz, disappeared on addition of D₂O), 8.84 (1H, dd, *J*=13.8, 8.2 Hz, collapsed to s on addition of D₂O), 11.1 (1H, s, disappeared on addition of D₂O), 12.0 (1H, dd, *J*=13.8, 8.2 Hz, disappeared on addition of D₂O). HR-MS *m/z*: Calcd for C₂₃H₂₁N₃O: 355.1685. Found: 355.1693.

6-(Z)-Aminomethylidene-12-*n*-benzyl-5,6,11,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (15b) from 9d — In the general procedure D, DIBAL (1.4 mL, 1.45 mmol), **9d** (18.7 mg, 0.05 mmol), THF (2.0 mL) were used. The reaction time was 19 h. After column-chromatography, **15b** (6.9 mg, 47%) was obtained. **15b**: mp 207—209°C (decomp., yellow powder, recrystallized from EtOAc). IR (KBr): 3450, 1628, 1610, 1577, 1560, 1410, 742 cm⁻¹. ¹H-NMR (DMSO-*d*₆) δ : 6.04 (2H, s), 7.12—7.28 (9H, m), 7.53 (1H, d, *J*=7.5 Hz), 7.54 (1H, d, *J*=7.5 Hz), 8.04 (1H, d, *J*=7.5 Hz), 8.49 (1H, dd, *J*=7.5, 1.7 Hz), 8.68 (1H, br t, *J*=8.4 Hz, disappeared on addition of D₂O), 8.88 (1H, dd, *J*=13.6, 8.4 Hz, collapsed to s on addition of D₂O), 11.2 (1H, s, disappeared on addition of D₂O), 12.1 (1H, dd, *J*=13.6, 8.4 Hz, disappeared on addition of D₂O). HR-MS (FAB⁺) *m/z*: Calcd for C₂₆H₂₀N₃O: 390.1606. Found: 390.1631.

6-Acetoaminomethylidene-12-*n*-butyl-5,6,11,12-tetrahydroindolo[2,3-*a*]carbazole-5-one (16) from 15a — Ac₂O (0.75 mL) was added to a solution of **15a** (16.1 mg, 0.05 mmol) in pyridine (1.5 mL), and the mixture was stirred for 1.5 h at rt. After evaporation of the solvent under reduced pressure, the residue was column-chromatographed on SiO₂ successively with EtOAc–hexane (1:3, v/v) and CHCl₃–MeOH–28% aq. NH₃ (46:0.5:0.05, v/v) to give **16** (15.7 mg, 87%). **16**: red viscous oil. IR (film): 3354, 1685, 1620, 1610, 1552, 1415, 1273, 752, 739 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.92 (3H, t, *J*=7.5 Hz), 1.37 (2H, sex, *J*=7.5 Hz), 1.81 (2H, quin, *J*=7.5 Hz), 2.28 (3H, s), 4.02 (2H, t, *J*=7.5 Hz), 7.17 (1H, dd, *J*=7.3, 1.6 Hz), 7.25 (1H, td, *J*=7.3, 1.6 Hz), 7.30 (1H, td, *J*=7.3, 1.6 Hz), 7.32 (1H, td, *J*=7.3, 1.6 Hz), 7.34 (1H, td, *J*=7.3, 1.6 Hz), 7.42 (1H, d, *J*=7.3 Hz), 7.91 (1H, d, *J*=7.3 Hz), 8.24 (1H, s, disappeared on addition of D₂O), 8.44 (1H, dd, *J*=7.3, 1.6 Hz), 8.59 (1H, d, *J*=10.4 Hz, collapsed to s on addition of D₂O), 13.4 (1H, d, *J*=10.4 Hz, disappeared on addition of D₂O). HR-MS *m/z*: Calcd for C₂₅H₂₃N₃O₂: 397.1791. Found: 397.1790.


X-Ray Crystallographic Analysis of 9a and 11 — All measurements were made on a Rigaku AFC5R diffract meter with graphite monochromated Cu-*K* α radiation (λ =1.54178 Å). The structure was solved by direct methods using MITHRIL.⁹ Non-hydrogen atoms were refined anisotropically.

9a: a single crystal (0.20x0.20x0.30 mm) was obtained by recrystallization from EtOAc. Crystal data: C₂₃H₁₉N₃O·C₄H₈O₂, *M*=441.53, triclinic, space group PT (#2), *a*=10.626 (1) Å, *b*=12.276 (1) Å, *c*=9.912 (1) Å, α =104.474 (8)°, β =110.402 (9)°, γ =81.84 (1)°, *V*=1431.8 (2) Å³, *Z*=2, *D*_{calc}=1.252 g/cm³, *F*(000)=468, and μ (CuK α)=6.26 cm⁻¹. The final cycle of full-matrix least-squares refinement was based on 2807 observed reflections (*I*>3.00 σ (*I*), 2 θ <120.2°) and 386 variable parameters. The final



refinement converged with $R=0.049$ and $Rw=0.059$.

11: a single crystal (0.20x0.10x0.20 mm) was obtained by recrystallization from CHCl_3 . Crystal data: $\text{C}_{19}\text{H}_{12}\text{N}_3\text{O}_2$, $M=349.78$, monoclinic, space group $P2_1/a$ (#14), $a=14.408$ (5) Å, $b=14.096$ (3) Å, $c=17.928$ (4) Å, $\beta=93.60$ (2)°, $V=3634$ (2) Å³, $Z=8$, $D_{\text{calc}}=1.278$ g/cm³, $F(000)=1440$, and $\mu(\text{CuK}\alpha)=20.08$ cm⁻¹.

The final cycle of full-matrix least-squares refinement was based on 2139 observed reflections ($I > 3.00\sigma$ (I), $2\theta < 120.4$ °) and 583 variable parameters. The final refinement converged with $R=0.085$ and $Rw=0.091$.

9a

11

Table 1. Positional parameters and B (eq) for 9a

atom	x	y	z	B (eq)	atom	x	y	z	B (eq)
O (1)	0.1896 (2)	0.0654 (1)	0.2830 (2)	5.17 (7)	C (25)	0.8209 (3)	0.1822 (2)	0.4815 (3)	5.7 (1)
O (2)	0.8726 (2)	0.2458 (2)	0.4463 (2)	6.8 (1)	C (26)	0.8428 (5)	0.0413 (4)	0.2759 (6)	13.3 (3)
O (3)	0.7980 (3)	0.0789 (2)	0.4049 (3)	9.5 (1)	C (27)	0.7667 (9)	-0.0363 (6)	0.1729 (8)	21.5 (5)
N (1)	0.0708 (2)	0.5274 (2)	0.3777 (2)	4.45 (7)	H (1)	0.509 (2)	0.389 (2)	0.869 (3)	5.95 (2)
N (2)	0.2986 (2)	0.4020 (1)	0.6128 (2)	4.22 (7)	H (2)	0.623 (3)	0.213 (2)	0.915 (3)	6.40 (2)
N (3)	-0.0727 (2)	0.1111 (2)	-0.0436 (2)	6.4 (1)	H (3)	0.557 (3)	0.044 (2)	0.740 (3)	6.28 (2)
C (1)	0.4849 (2)	0.3141 (2)	0.7977 (3)	4.9 (1)	H (4)	0.384 (2)	0.038 (2)	0.528 (3)	5.15 (1)
C (2)	0.5501 (3)	0.2129 (2)	0.8240 (3)	5.4 (1)	H (5)	-0.157 (2)	0.342 (2)	-0.052 (3)	5.09 (1)
C (3)	0.5126 (3)	0.1118 (2)	0.7237 (3)	5.2 (1)	H (6)	-0.274 (3)	0.505 (2)	-0.126 (3)	6.00 (1)
C (4)	0.4083 (2)	0.1100 (2)	0.5931 (3)	4.6 (1)	H (7)	-0.242 (3)	0.687 (2)	0.028 (3)	6.98 (2)
C (5)	0.3407 (2)	0.2114 (2)	0.5630 (2)	3.99 (8)	H (8)	-0.081 (2)	0.706 (2)	0.267 (3)	5.72 (1)
C (6)	0.2318 (2)	0.2423 (2)	0.4405 (2)	3.86 (8)	H (9)	0.100 (3)	0.590 (2)	0.449 (3)	5.73 (2)
C (7)	0.1590 (2)	0.1778 (2)	0.3048 (2)	4.01 (8)	H (10)	0.141 (3)	0.023 (2)	0.199 (3)	6.84 (2)
C (8)	0.0627 (2)	0.2318 (2)	0.2019 (2)	3.86 (3)	H (11)	0.342 (2)	0.516 (2)	0.805 (3)	5.66 (1)
C (9)	0.0400 (2)	0.3508 (2)	0.2369 (2)	3.77 (8)	H (12)	0.221 (2)	0.560 (2)	0.670 (2)	5.14 (1)
C (10)	-0.0494 (2)	0.4286 (2)	0.1542 (2)	3.92 (8)	H (13)	0.387 (3)	0.586 (2)	0.563 (3)	5.93 (2)
C (11)	-0.1435 (2)	0.4178 (2)	0.0126 (3)	4.6 (1)	H (14)	0.500 (2)	0.522 (2)	0.674 (2)	4.98 (1)
C (12)	-0.2120 (3)	0.5135 (2)	-0.0309 (3)	5.4 (1)	H (15)	0.493 (3)	0.667 (2)	0.881 (3)	7.68 (2)
C (13)	-0.1906 (3)	0.6193 (2)	0.0626 (3)	5.5 (1)	H (16)	0.377 (3)	0.729 (2)	0.779 (3)	6.35 (2)
C (14)	-0.0988 (2)	0.6326 (2)	0.2020 (3)	5.1 (1)	H (17)	0.578 (4)	0.822 (3)	0.837 (4)	10.11 (3)
C (15)	-0.0274 (2)	0.5367 (2)	0.2456 (3)	4.11 (8)	H (18)	0.506 (3)	0.769 (3)	0.657 (4)	8.47 (2)
C (16)	0.1126 (2)	0.4148 (2)	0.3728 (2)	3.90 (8)	H (19)	0.636 (3)	0.706 (3)	0.750 (4)	8.73 (2)
C (17)	0.2103 (2)	0.3601 (2)	0.4755 (2)	3.85 (8)	H (20)	0.784 (4)	0.294 (3)	0.661 (4)	12.09 (4)
C (18)	0.3802 (2)	0.3122 (2)	0.6663 (2)	4.11 (8)	H (21)	0.818 (5)	0.169 (3)	0.677 (4)	12.49 (4)
C (19)	-0.0130 (2)	0.1663 (2)	0.0641 (3)	4.53 (9)	H (22)	0.690 (4)	0.194 (3)	0.585 (4)	9.56 (3)
C (20)	0.3138 (2)	0.5187 (2)	0.6928 (3)	4.3 (1)	H (23)	0.8414	0.1026	0.2341	15.7
C (21)	0.4179 (2)	0.5752 (2)	0.6672 (3)	4.5 (1)	H (24)	0.9349	0.0096	0.3072	15.7
C (22)	0.4549 (3)	0.6848 (2)	0.7781 (3)	5.3 (1)	H (25)	0.6867	-0.0365	0.1940	24.4
C (23)	0.5509 (4)	0.7498 (3)	0.7514 (5)	7.9 (2)	H (26)	0.7501	-0.0229	0.0803	24.4
C (24)	0.7723 (5)	0.2105 (4)	0.6095 (4)	7.6 (2)	H (27)	0.8146	-0.1098	0.1789	24.4

Table 2. Positional parameters and B (eq) for 11

atom	x	y	z	B (eq)	atom	x	y	z	B (eq)
O (1)	0.7922 (7)	0.2474 (7)	0.6700 (7)	3.4 (6)	C (14)	0.451 (1)	0.322 (1)	0.369 (1)	6 (1)
O (2)	0.7431 (8)	0.0971 (7)	0.4962 (6)	4.4 (6)	C (15)	0.503 (1)	0.304 (2)	0.408 (1)	6 (1)
N (1)	0.870 (1)	0.426 (1)	0.5746 (1)	3.8 (8)	C (16)	0.581 (1)	0.359 (1)	0.449 (1)	3.9 (9)
N (2)	0.648 (1)	0.406 (1)	0.4915 (8)	3.6 (8)	C (17)	0.713 (1)	0.349 (1)	0.5217 (8)	2.7 (8)
N (3)	0.721 (1)	0.479 (1)	0.6840 (9)	5.0 (9)	C (18)	0.794 (1)	0.378 (1)	0.5773 (9)	2.8 (8)
Cl (1)	0.9116 (3)	0.1120 (3)	0.5924 (3)	5.2 (3)	C (19)	0.752 (1)	0.434 (1)	0.639 (1)	3.4 (9)
C (1)	0.948 (1)	0.409 (1)	0.595 (1)	3.1 (8)	H (1)	0.864 (7)	0.469 (6)	0.539 (6)	-2 (3)
C (2)	1.032 (2)	0.455 (1)	0.599 (1)	5 (1)	H (2)	0.991 (7)	0.247 (7)	0.714 (6)	0 (2)
C (3)	1.104 (1)	0.418 (2)	0.649 (1)	5 (1)	H (3)	1.14 (1)	0.30 (1)	0.725 (8)	5 (4)
C (4)	1.091 (1)	0.339 (1)	0.692 (1)	5 (1)	H (4)	1.147 (8)	0.450 (8)	0.665 (6)	0 (3)
C (5)	1.005 (1)	0.295 (1)	0.685 (1)	3.3 (9)	H (5)	1.044 (6)	0.501 (6)	0.579 (5)	-2 (2)
C (6)	0.938 (1)	0.329 (1)	0.635 (1)	3.5 (9)	H (6)	0.889 (7)	0.230 (8)	0.522 (6)	1 (3)
C (7)	0.841 (1)	0.206 (1)	0.6145 (8)	2.5 (7)	H (7)	0.56 (1)	0.13 (1)	0.420 (9)	5 (5)
C (8)	0.847 (1)	0.212 (1)	0.5558 (8)	2.7 (8)	H (8)	0.444 (6)	0.194 (6)	0.360 (5)	-1 (2)
C (9)	0.759 (1)	0.102 (1)	0.5139 (9)	4 (1)	H (9)	0.382 (7)	0.333 (7)	0.342 (6)	1 (2)
C (10)	0.691 (1)	0.258 (1)	0.4996 (9)	2.8 (7)	H (10)	0.49 (1)	0.442 (9)	0.410 (8)	2 (4)
C (11)	0.612 (1)	0.263 (1)	0.4514 (8)	3.6 (8)	H (11)	0.658 (7)	0.453 (6)	0.497 (6)	-2 (2)
C (12)	0.555 (1)	0.196 (1)	0.413 (1)	6 (1)	H (12)	0.804 (6)	0.267 (6)	0.719 (5)	-1 (2)
C (13)	0.483 (1)	0.225 (1)	0.372 (2)	7 (1)					

REFERENCES AND NOTES

1. This report is Part 136 of a series entitled "The Chemistry of Indoles." Part 135: K. Yamada, Y. Tanaka, and M. Somei, *Heterocycles*, 2009, **79**, 635.
2. Review: M. Somei, *Heterocycles*, 2008, **75**, 1021 and references cited therein.
3. M. Somei, F. Yamada, Y. Suzuki, S. Ohmoto, and H. Hayashi, *Heterocycles*, 2004, **64**, 483; H. Hayashi, Y. Suzuki, and M. Somei, *Heterocycles*, 1999, **51**, 1233; H. Hayashi, S. Ohmoto, and M. Somei, *Heterocycles*, 1997, **45**, 1647.
4. G. Knübel, L. K. Larsen, R. E. Moore, I. A. Levine, and G. M. L. Patterson, *J. Antibiotics*, 1990, **43**, 1236.
5. Review of indigo dye: P. E. McGovern and R. H. Michel, *Acc. Chem. Res.*, 1990, **23**, 152 and references cited therein.
6. Potent biological activity of **3** and its derivatives was reported: T. Ebara, T. Takahashi, and M. Maeda, Abstract of Papers, No. 2, 120th Annual Meeting of Pharmaceutical Society of Japan, Gifu, March, 2000, p. 136.
7. M. Somei, J. Kimura, and S. Takano, JP Patent 4248814 (2009).
8. The invention is now under application for a patent.
9. C. J. Gilmore, *J. Appl. Cryst.*, 1984, **17**, 42.