1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 1, January 1998

Table of Contents for this issue

Complete paper in PDF format

A Numerical Study of Low-Grazing-Angle Backscatter from Ocean-Like Impedance Surfaces with the Canonical Grid Method

Joel T. Johnson

Page 114.

Abstract:

A numerical study of 14-GHz low-grazing-angle (LGA) backscattering from ocean-like surfaces described by a Pierson-Moskowitz spectrum is presented. Surfaces rough in one dimension are investigated with Monte Carlo simulations performed efficiently through use of the canonical grid expansion in an iterative method of moments. Backscattering cross sections are illustrated at angles from 81^{irc} to 89^{irc} from normal incidence under the impedance boundary condition (IBC) approximation with the efficiency of the numerical model enabling sufficiently large profiles (8192 \lambda) to be considered so that angular resolution problems can be avoided. Variations with surface spectrum low-frequency cutoff (ranging over spatial lengths from 175.5 m to 4.29 cm) at 3 m/s wind speed are investigated and initial assessments of the small perturbation method (SPM), composite surface theory, operator expansion method (OEM), small slope approximation (SSA), and curvature corrected SPM predictions are performed. Numerical results show an increase in horizontal (HH) backscatter returns as surface low-frequency content is increased while vertical (VV) returns remain relatively constant, as expected, but none of the approximate models considered are found to produce accurate predictions for the entire range of grazing angles. For the cases considered, HH scattering is always observed to be below VV, further demonstrating the importance of improved hydrodynamical models if "super-event" phenomena are to be modeled.

References

  1. P. H. Y. Lee, J. D. Barter, K. L. Beach, C. L. Hindman, B. M. Lake, H. Rungaldier, J. C. Shelton, A. B. Williams, R. Yee, and H. C. Yueh, "X band microwave backscattering from ocean waves," J. Geophys. Res., vol. 100, no. C2, pp. 2591-2611, 1995.
  2. D. J. McLaughlin, N. Allan, E. M. Twarog, and D. B. Trizna, "High resolution polarimetric radar scattering measurements of low grazing angle sea clutter," IEEE J. Oceanic Eng., vol. 20, no. 3, pp. 166-178, 1995.
  3. D. B. Trizna, J. P. Hansen, P. Hwang, and J. Wu, "Laboratory studies of radar sea spikes at low grazing angles," J. Geophys. Res., vol. 96, no. 7, pp. 12529-12537, 1991.
  4. N. Ebuchi, H. Kawamura, and Y. Toba, "Physical processes of microwave backscattering from laboratory wind wave surfaces," J. Geophys. Res., vol. 98, no. C8, pp. 14669-14681, 1993.
  5. A. D. Rozenberg, D. C. Quigley, and W. K. Melville, "Laboratory study of polarized scattering by surface waves at grazing incidence: Part I--Wind waves," IEEE Trans. Geosci. Remote Sensing, vol. 33, no. 4, pp. 1037-1046, 1995.
  6. M. A. Sletten and J. Wu, "Ultrawideband, polarimetric radar studies of breaking waves at low grazing angles," Radio Sci., vol. 31, no. 1, pp. 181-192, 1996.
  7. R. Cointe and M. P. Tulin, "A theory of steady breakers," J. Fluid Mech., vol. 276, pp. 1-20, 1994.
  8. M. S. Longuet-Higgins and R. P. Cleaver, "Crest instabilities of gravity waves Part I: The almost highest wave," J. Fluid Mech., vol. 258, pp. 115-129, 1994.
  9. D. M. Milder, "The effect of truncation of surface wave Hamiltonians," J. Fluid Mech., vol. 216, pp. 249-262, 1990.
  10. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves From Rough Surfaces.New York: Pergamon, 1963.
  11. S. O. Rice, "Reflection of electromagnetic waves from slightly rough surfaces," Commun. Pure Appl. Math., vol. 4, pp. 361-378, 1951.
  12. J. W. Wright, "A new model for sea clutter," IEEE Trans. Antennas Propagat., vol. AP-16, pp. 217-223, 1968.
  13. G. R. Valenzuela, "Theories for the interaction of electromagnetic and oceanic waves: A review," Boundary Layer Meteorol., vol. 13, pp. 61-85, 1978.
  14. A. G. Voronovich, Wave Scattering from Rough Surfaces.Berlin, Germany: Springer-Verlag, 1994.
  15. A. Ishimaru and J. S. Chen, "Scattering from very rough surfaces based on the modified second order Kirchhoff approximation with angular and propagation shadowing," J. Acoust. Soc. Amer., vol. 88, pp. 1877-1888, 1990.
  16. D. M. Milder, "An improved formalism for wave scattering from rough surfaces," J. Acoust. Soc. Amer., vol. 89, pp. 529-541, 1991.
  17. R. Dashen and D. Wurmser, "A new theory of scattering from a surface," J. Math. Phys., vol. 32, pp. 971-985, 1991.
  18. E. Rodriguez and Y. Kim, "A unified pertubation expansion for surface scattering," Radio Sci., vol. 27, pp. 79-93, 1992.
  19. A. K. Fung, Z. Li, and K. S. Chen, "Backscattering from a randomly rough dielectric interface," IEEE Trans. Geosci. Remote Sensing, vol. 30, pp. 356-369, 1992.
  20. R. E. Collin, "Full wave theories for rough surface scattering: An updated assessment," Radio Sci., vol. 29, pp. 1237-1254, 1994.
  21. S. T. McDaniel, "A small-slope theory of rough surface scattering," J. Acoust. Soc. Amer., vol. 95, pp. 1858-1864, 1994.
  22. C. Macaskill, and B. J. Kachoyan, "Numerical evaluation of the statistics of acoustic scattering from a rough surface," J. Acoust. Soc. Amer., vol. 84, pp. 1826-1835, 1988.
  23. S. L. Durden, and J. F. Vesecky, "A numerical study of the separation wavenumber in the two scale scattering approximation," IEEE Trans. Geosci. Remote Sensing, vol. 28, pp. 271-272, 1990.
  24. E. I. Thorsos, "Acoustic scattering from Pierson-Moskowitz sea surfaces," J. Acoust. Soc. Amer., vol. 88, pp. 335-349, 1990.
  25. C. L. Rino, T. L. Crystal, A. K. Koide, H. D. Ngo, and H. Guthart, "Numerical simulation of backscatter from linear and nonlinear ocean surface realizations," Radio Sci., vol. 26, pp. 51-71, 1991.
  26. E. Rodriguez, Y. Kim, and S. L. Durden, "A numerical assessment of rough surface scattering theories: Horizontal polarization," Radio Sci., vol. 27, pp. 497-513, 1992.
  27. Y. Kim, E. Rodriguez, and S. L. Durden, "A numerical assessment of rough surface scattering theories: Vertical polarization," Radio Sci., vol. 27, pp. 515-527, 1992.
  28. R. Chen and J. C. West, "Analysis of scattering from rough surfaces at large incidence angles using a periodic-surface moment method," IEEE Trans. Geosci. Remote Sensing, vol. 33, pp. 1206-1213, 1995.
  29. C. L. Rino and H. D. Ngo, "Application of beam simulation to scattering at low grazing angles: Oceanlike surfaces," Radio Sci., vol. 29, pp. 1381-1391, 1994.
  30. P. J. Kaczkowski and E. I. Thorsos, "Application of the operator expansion method to scattering from one-dimensional moderately rough Dirichlet random surfaces," J. Acoust. Soc. Amer., vol. 96, pp. 957-968, 1994.
  31. D. A. Kapp and G. S. Brown, "A new numerical method for rough surface scattering calculations," IEEE Trans. Antennas Propagat., vol. 44, pp. 711-721, 1996.
  32. L. Tsang, C. H. Chan, K. Pak, and H. Sangani, "Monte Carlo simulations of large scale problems of random rough surface scattering and applications to grazing incidence with the BMIA/canonical grid method," IEEE Trans. Antennas Propagat., vol. 43, pp. 851-859, 1995.
  33. J. T. Johnson, "An extension of the canonical grid method for two-dimensional scattering problems," IEEE Trans. Antennas Propagat., to be published.
  34. J. T. Johnson, R. T. Shin, J. Eidson, L. Tsang, and J. A. Kong, "A method of moments model for VHF propagation," IEEE Trans. Antennas Propagat., vol. 45, pp. 115-125, Jan. 1997
  35. J. T. Johnson, R. T. Shin, J. A. Kong, L. Tsang, and K. Pak, "A numerical study of the composite surface model for ocean scattering," IEEE Trans. Geosci. Remote Sensing, to be published.
  36. W. D. Burnside, C. L. Yu, and R. J. Marhefka, "A technique to combine the geometrical theory of diffraction and the moment method," IEEE Trans. Antennas Propagat. vol. AP-23, pp. 551-558, 1975.
  37. J. C. West, J. M. Sturm, and M. A. Sletten, "Small grazing angle scattering from a breaking water wave: Demonstration of Brewster angle damping," in IGARSS'96, Conf. Proc., Lincoln, NE, 1996, vol. IV, pp. 2207-2209.
  38. D. Holliday, L. L. Deraad, and G. J. St-Cyr, "Forward-backward: A new method for computing low grazing angle scattering," IEEE Trans. Antennas Propagat., vol. 44, pp. 722-729, 1996.
  39. A. G. Voronovich, "On the theory of electromagnetic waves scattering from the sea surface at low grazing angles," Radio Sci., vol. 31, pp. 1519-1531, 1996.
  40. J. R. Apel, "An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter," J. Geophys. Res., vol. 99, pp. 16269-16291, 1994.
  41. E. I. Thorsos and D. R. Jackson, "The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acoust. Soc. Amer., vol. 86, pp. 261-277, 1989.
  42. S. L. Broschat and E. I. Thorsos, "An investigation of the small slope approximation for scattering from a rough surface: Part II--Numerical studies," J. Acoust. Soc. Amer., vol. 101, pp. 2615-2625, 1997.
  43. E. I. Thorsos, "The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acoust. Soc. Amer., vol. 83, pp. 78-92, 1988.
  44. K. M. Mitzner, "An integral equation approach to scattering from a body of finite conductivity," Radio Sci., vol. 2, pp. 1459-1470, 1967.
  45. L. A. Klein and C. T. Swift, "An improved model for the dielectric constant of sea water at microwave frequencies," IEEE Trans. Antennas Propagat., vol. AP-25, pp. 104-111, 1977.
  46. "Maui high-performance computing center world wide web site," World Wide Web, http:www.mhpcc.edu, 1995.
  47. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, "PVM 3 user's guide and reference manual," Oak Ridge Nat. Lab., Oak Ridge, TN, Rep. ORNL/TM-12187, 1994.
  48. L. B. Wetzel, "Sea clutter," in Radar Handbook, M. Skolnik, Ed., 2nd ed.New York: McGraw-Hill, 1990, ch. 13.
  49. --, "On microwave scattering by breaking waves," in Wave Dynamics and Radio Probing of the Sea Surface, O. M. Phillips and K. Hasselmann, Eds.New York: Plenum, 1986.
  50. --, "Electromagnetic scattering from the sea at low grazing angles," in Surface Waves and Fluxes: Current Theory and Remote Sensing, G. L. Geernaert and W. J. Plant, Eds.Norwell, MA: Reidel, 1990, ch. 13.
  51. D. R. Lyzenga, A. L. Maffett, and R. A. Shuchman, "The contribution of wedge scattering to to the radar cross section of the ocean," IEEE Trans. Geosci. Remote Sensing, vol. GRS-21, pp. 502-505, 1983.
  52. K. Pak, L. Tsang, C. H. Chan, and J. T. Johnson, "Backscattering enhancement of electromagnetic waves from two dimensional perfectly conducting random rough surfaces based on Monte Carlo simulations," J. Opt. Soc. Amer., vol. 12, pp. 2491-2499, 1995.
  53. J. T. Johnson, L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru, and Y. Kuga, "Backscattering enhancement of electromagnetic waves from two dimensional perfectly conducting random rough surfaces: A comparison of Monte Carlo simulations with experimental data," IEEE Trans. Antennas Propagat, vol. 44, pp. 748-756, 1996.
  54. J. T. Johnson, R. T. Shin, J. A. Kong, L. Tsang, and K. Pak, "A numerical study of ocean polarimetric thermal emission," IEEE Trans. Geosci. Remote Sensing, to be published.