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Grazing Behavior of Scatter and Propagation
Above Any Rough Surface

Donald E. Barrick

Abstract—At grazing, propagation and scatter become inex- For vertically polarized backscatter (VV), perturbation theory
tricably connected. For sufficiently low source/observer heights, predicts a rapid fall-off with grazing angle—this behavior
free-space inverse-distance propagation no longer applies andpqing evident near and below the Brewster angle. Yet dozens
plane-wave descriptions of scatter give way to surface-wave f tal ial HE t . d . th
modes. Concepts like surface radar cross section must be re-0 Coa_s al, Comme_rCIQ current-mapping radars view the
interpreted; lack of awareness of these facts in attempts to Sea with VV polarization above, at, and below the Brewster
correlate measurements with grazing-angle laws has led to con- angle—even tens of kilometers beyond the horizon where
tradictions. When plane-wave depictions hold, a regime is entered grazing angle is meaningless. In some cases, the observed

where backscatter follows a grazing angle-to-the-fourth power backscatter coefficient is the classic value for a “perfectly
dependence for surfaces of any roughness scales for both po

larizations and for perfectly conducting as well as impedance conducting” sea, which the water is not. In other cases,
boundaries above penetrable media. Propagation is described c° is lower than this value, but still finite rather than the

in terms of a roughness-modified effective impedance/admittance predicted zero value. What has happened? And, if conventional
that approaches a constant at grazing for all roughness profiles. predictions appear to fail at HF (where they are amenable to

These facts are first explored with numerical examples, after : .
which we establish universal laws that confirm these suspicions. perturbation solution), why should we assume we can apply

We derive expressions for the first Taylor-series expansion terms concepts of free-space plane waves and Qerived or measured
for scatter and impedance/admittance versus grazing angle. Sta- values ofcs® at UHF or X-band near grazing? Surely there

tistics are neither required nor excluded—the laws hold for is no single radar frequency above which these quandaries
single arbitrary deterministic profiles as well as averages over suddenly disappear.

ensembles of random surface samples. Proofs of these claims are This state of disarray is reflected in the literature, where the
based on two-dimensional (2-D) fields over one-dimensional (1-D) y !

impedance/admittance boundaries. number of mutually contradictory claims is myriad for grazing

propagation and scatter. Perturbation theory results (strictly
valid only for small-scale roughness whose height is much
less than a wavelength) show grazing angle to the fourth power
|. INTRODUCTION (o) for backscattered energy (plane wave incidence) for both

S GRAZING is approached above any arbitrary rOugpola}rizations_vvhe_zn the surface is finitely conducting,ddtifor _
surface, physical concepts like propagation and scatigtical p_olarlzanon when the surface is perfectl_y conducting
become interrelated; it is difficult to isolate one from the othell: [2]- Kim and Stoddart [3] note the problems with perturba-
Although solutions are often derived (and may be exact) f§Pn theory for VV scatter from perfectly conducting surfaces
the scatter response to an incident plane wave, these free-sjgdbconclude that it cannot be used at grazing angles less than
plane wave depictions may not suffice to describe how enerb?’- _Yet Barrick uses it heuristically to explain ql_ute precisely
gets from the radar to and from the scattering cell. Descriptiod§2Zing measurements at HF for both propagation [4] as well
of radar scenarios involving both propagation and scatter oftéf Scatter [5] above the sea. Tatarskii and Charnotsii [6] present
lead to contradictions, as illustrated below. Clearly a unifying derivation for perfectly conducting surfaces, obtainirigor
treatment is in order. It should be possible to find limitingiH and a” for VV, claiming this holds for any roughness
relations that apply for both propagation and scatter femy Scale (including perturbation [3] as a subset). Voronovich
surfaceif one properly separates the relevant interactions. [7], on the other hand, finds theoretically that describes
Consider the following quandary: HF/VHF scatter fronkackscatter when small roughness waves ride on a large-scale
the sea; its roughness is simple, it has a continuous Smg%l.rface with curvature, either concave or convex, regardless of
valued surface, its average slopes are small. Sea water gugface medium properties; when the underlying surface is flat,
good—but not perfect—conductor (at 30 MHz, its Brewstdtowever, he finds that backscatter reverts baek*tbehavior.
angle is~1.17 above grazing). At HF, its root mean squar&hawet al. [8] use a Kirhhoff theory derivation to prediaf
(rms) heights are small in terms of wavelength and pertu#ependence for VV backscatter hut for HH. Thus, one has
bation theory should provide convergent and accurate resuftgarly every imaginable permutation of power-law dependence
on grazing angle. Unfortunately, measurements by various
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support that prediction. And finally, none of these resultwatrix inversion at very high frequencies and/or at steep

answers the question raised earlier—what value of graziagrface slopes.

angle and/or power law should be used for VV backscatter inExamples from this approach suggest that for sea-like

the simple case of HF surface wave radar scatter from beyawdighnesses at frequencies well above HF (up to 500

the horizon? MHz), the following “grazing laws” appear to hold for
Propagation near a rough surface (the sea being the miagbedance/admittance rough boundaries (of which perfectly

ubiquitous example) is equally beset by quandaries. Ignaenducting surfaces are a limiting subset).

ing atmospheric refractive effects, derivation of propagation 1) Backscattered power depends on grazing angle to the
normally begins with an electromagnetic boundary condition  fourth power ¢*) for both polarizations regardless of
for a locally plane interface. An impedance or admittance  frequency, roughness details, underlying curvature, sur-
boundary condition is appropriate when the medium below  face material, surface statistics, even whether or not the
the interface is dense/conducting, as is the sea belgw K power is averaged.

band. Conventional derived models that cast the interaction in2) The roughness-modified impedance and admittance tend

terms of a space wave (direct and reflected rays) and surface to constants as grazing angle is approached for both
wave often express the Fresnel specular reflection coefficients polarizations.

and surface wave asymptotics in terms of an effective surface3) For surface scales sufficiently large in terms of wave-
impedance or admittance (Wait [13], [14]). Feynberg [15] length, a roughness-dependent “Brewster-angle” dip in
followed by Barrick [4] showed that roughness on the locally  the effective Fresnel reflection coefficient appears for
plane interface “modifies” the value of the lower medium HH polarization as well as VV, even for perfectly
impedance and derived specific values for this effective VV  conducting surfaces.
impedance for the sea at HF using perturbation theory. Thes§ye gemonstrate these claims in Sections Il and 11l with nu-
results produce an effective impedance that is independ@iérical solutions for surfaces with ocean-type roughness sta-
of grazing angle in the limit, resembling the impedance fstics. Prodded by these numerical examples, we then employ
admittance for a flat surface above an homogeneous mediggrick’s [18] formulation in Section IV to establish general
in this respect. _ _laws for backscatter and the modified impedance/admittance
Modern numerical methods such as the Fourier split-st@aar grazing. Numerical solution of specific surface examples
solution of the parabolic wave equation (Dockery and Kuttigg not required to arrive at our power-law dependences, thereby
[16]) that include the atmosphere require estimates for th@passing any equation-set truncation approximation and/or
surface impedance. Above HF, for lack of a better modghatrix ill-conditioning inconveniences. Nor do we need to
the “Miller—Brown” optics result [17] has been used fossume arbitrary statistical properties or even averaging. Our
both VV and HH propagation. This simple model essentialyasyiting general laws validate the three grazing-angle features
multiplies the Fresnel smooth-surface reflection coefficient Bygted above.
an exponential “Rayleigh roughness factor.” Resulting imped- Arrayed with these tools, in Section V, we revisit the
ances and admittances at X-band, for example, then becog@ndary presented earlier: nonvanishing VVV backscatter from
highly dependent on grazing angle. Yet this disappointingijie sea for coastal HF radars. A perturbation reduction of our
reduces the desirability of an approach like the split-stgfpdal approach in the Appendix is applied to this example,
algorithm, which implicitly bypasses the complexity of rayz|iowing us to define a radar cross section for surface wave
trace modeling that carries along the angles of each ray. Th@pagation (the actual source may be below the horizon where

Miller—Brown approach requires an independent method pfane wave incidence and “negative” grazing angle have no
estimating the grazing angle for a different impedance at eagfaaning).

range step of the algorithm. Not only is this cumbersome,

but it defies sense and intuition: there has never been apy Grazing SCATTER EXAMPLES EROM SEA-TYPE SURFACES
evidence (theoretical or experimental) that the roughness- . _
e consider examples of backscatter near grazing by nu-

modified surface impedance should be angle-dependent neaw _ ) i _
grazing at any frequency. merically solving for random sea-like profiles using the modal

Barrick [18] presented a unified modal approach to proﬁpproaCh of Barrick [18]. These will illustrate the trends versus
fazing angle that spur our general attack of Section V.

agation and scatter above a one-dimensionally (1-D) rou§
surface describable by an impedance/admittance boundary like ) o ]

the sea. Inherently exact, the only approximation introducéd The Modal Formulation for a Periodic Profile

is the truncation of an infinite set of equations to solve for the We briefly review the essential equations derived in [18]
fields at the surface. Unlike moment methods, these surfaoetreat VV and HH interaction with 1-D rough surfaces.
fields/currents are expressed as Fourier harmonic coefficiefite equations below modify and improve on some indexing
of some arbitrary surface period. The method obtains rieconsistencies in the original work [18]. Lé} represent the
sults for both scatter and propagation. Scatter arises frontirected component of the H-field for VV polarization or the
re-radiation by surface currents/fields, while a roughneds-field component for HH polarization, where propagation is
modified effective impedance/admittance is included in themntained in the—: plane. For a plane wave with wavenumber
specular (or forward) mode. Numerical solutions with thig incident on the periodic surfacg(x) with fundamental
method sometimes become unstable because of ill-conditiomeavenumber: = 27 /L (L is spatial period) at grazing angle
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« from the —x direction, the incident field is represented by miRml(@) Z R J hich
" = q; rom whic

]_—OO

¢ = IFFT; (e (@) ) (Sb)

fi — e—ik cos ax—tk sin az—iwt (1)
Y
where we, henceforth, omit the time dependence. The

directed component of the scattered field modes is then glveﬂere IFFT(¢, N) denotes the standard IEEE inversé
9,

by point fast Fourier transform of function whose output is
= , , , arrayed as a vector over indey.” As a check, when the
Z Feinro—ikcosavtiing, for 2> Cumax (2)  profile is sinusoidal(x) = A cos(xx), then the modal surface

n=Tee coefficients become the familiar cylindrical Bessel functions

where, for a surface satisfying impedance/admittance bound#fy = 7 Jj(km A).
conditions, the coefficients (modal scattering amplitudés)

are solutions to the exact equation sets B. Far-Field Scatter from a Finite-Length Observation Cell
[Prn] [Sn] = [25in 6" ] (3a) Far-field scatter from the roughness profile inside a finite
and radar cell (e.g., pulse limited) of lengthis treated as follows.

First, this cell profile is repeated at intervals making the

[Qmn] [Sn] = [2xm Fim]- (3b)  surface periodic with fundamental wavenumber= 27/ L.
Then the exact modal scattered field of (2) along a strip at
BEIghtzT above the highest point on the profile is substituted
a two-dimensional (2-D) far-zone radiation or aperture

The unknown surface-field Fourier coefficient vector is
found from solving (3a) and inserting this into (3b), where th
infinite systems of equations represented in (3) are truncat
as discussed in [18]. Heré", is the Kronecker delta function mtggral (for example Hoylday ®t al. (30) [25]), which is
(equal to one only whem = 0) and the vector/matrix index- Valid whenr > 2(sin FL)" /A
ing runs over positive and negative integers for propagating . VL2
and evanescent modes, respectively. The known input matrices Fi(r) = L iei(w—%/ﬁt) / de(k" x &)

r

required in (3) are given by 4V Tk —-L/2
- y tkw cosB—ikzysin f
1— fle (6a)
Pm,n = ﬁ—i—z qu—m
§ Aom : Vertical Polarization wherek® = (k cos 3, ksin ) is the radio wavevector pointing
OQpon = L —&mén | g in the scatter directio, which, like «, is measured from the
r Xm | —z axis. Substituting the modal scattered field of (2) into (6)
(4a) and integrating gives
-1 — A4min
Fimn = % 1| oo 2 ithr—3n/4)
YAm . ) i s _ i(kr—37 :
:1 ey ) Horizontal Polarization 17 (*) = 2V ¢ kLsin 3 Z Fa
L YXm . sin(nk —kcosa+ kcosB)= .
(4b) . L2 ez(\mn—ksm ﬁ)zr. (6b)
where (nk — kcos o + k cos 3) 3
mK
&n = cosa — T m = V1I=E& and &y = kxn. Let us now restrict attention to backscatter where=
(4c) T @ (so cos 3 = —cosa). For L sufficiently large, the

sin(«)/z function above becomes a Kronecker delta, selecting

The quantities: andy are the normalized impedance andhe integern® corresponding to backscatter such that =
admittance at the rough boundary. For a homogeneous low2k/«) cos «. Thus, one term remains in the summation—that
medium of relative complex dielectric constantthey apply for n = n*. Finally, we take the absolute square of the

when |s.| > 1, in which case they become field strength and multiply bgxr/L to get the dimensionless
backscatter width per unit surface leng#, to obtain
_ 2
2= 7”;0““ and y=1/s —cos’a.  (4d) ,
r SlIl «

o® =kL

Fpe]? 7
The shape and/or statistics of the rough surface profile e (7)
is contained in the modal Fourier expansion of the surface

characteristic function, defined as This methodology for transforming the modal solution for

a periodic surface to far-field scatter from a bounded radar
cell has been used since Rice [19] for nearly five decades
eirmelr Z pjle”"  from which and produced the first perturbation-limit rough-surface cross
j=—oo sections [1], [2], [4], [20], [21] that are now universally
Py = IFFT; (") N) (5a) accepted.
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Finitely conducting
sea: VV
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cenducting sea: HH
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Fig. 1. Samples from random ensemble of sea-surface-like profiles that
follow a Phillips spectral law for height spectral density versus spatial-140

wavenumber. Used for Monte Carlo numerical calculations at 500 MHz. 0.1° 0.2° 05¢ 1° 2° 5° 10°
Grazing Angle, degrees

L Fig. 2. Results for average normalized backscatter radar cross section from
C. Application to Backscatter from Random Monte Carlo calculations based on 2048 surface sample profiles resembling

Sea-Like Profiles near Grazing Fig. 1. Light curves: perfectly conducting surface; heavy curves: finitely
conducting sea water at 500 MHz. Dashed curves at left show slopes

We study ensembles of sea profiles using the above methowiresponding to square and fourth power of grazing angle.
ology by taking a radar frequency of 500 MHz (wavelength
60 cm) and a fundamental period for the sea and our ch . .
o . .“Shown as dashed (for reference) are line sections whose slopes
of L =2 9 m. As we are considering the region near grazm&)rrespond tov® anda? dependences
wherecos a ~ 1, we adjust the period shghtly W'th_ grazing When actual seawater properties are used, grazing-angle
angle so that ba_cks_catter oceurs preC|§er at mtgger moode%avior fora < 1° matches then* dependence for both
n* = 30. The profile is composed of spatial hgr_monlcs of thSolarizations. What is surprising is that VV for the perfectly
fundamental £ = 27/L) that follow a 1-D Phillips spectral conducting case is clearly tending towasd also, although

model: above 10 it plateaus. Classic perturbation theory (as well as
B . - " .
S(k) = =, for K, < K < 00 studies pf Tgtarskn and Charnotskii, [6]) predict aflat response
K3 as grazing is approached. Our modal approach is more exact
such that - than perturbation theory, although the latter approximation
X :/ S(k)dk = % (8) might have been expected to hold here_sirkofe: 0.178
Ko 2k for our surfaces. For a perfectly conducting sea whose 1-D

where B = 0.005 and %" is the rms sea waveheight. Thespectrum Is given by (8), the VV perturbation resultat- 0

_ . . . isc° = (7/2)B = —21 dB (see the Appendix), which is close
cutoff . is often given in terms of the surface wind speeé our I\/(Ior/1te) Carlo value il(’l Fig. 2 abp(?we: 1)00 (serving as

for fully developed seas. Since we are dealing with a Shoartcheck on that method and our modal solution). This tendency

piece of sea, we take. = 4« and include spectral harmonicstoward o* provides impetus for the general proofs presented
describing the profile that range from= 4 to n = 36 (beyond

. in Section IV establishing this grazing angle dependence as
backscatter at* = 30). Each spectral harmonic is a zero-mean _. 9 9 g ang P
iversal rough surface behavior.

Gaussian random variable whose variances are given by &35'
Our Monte Carlo modeling includes 2048 profile samples (two _
typical examples of which are shown in Fig. 1). For each &f- Does Underlying Curvature Matter?
these surface samples, we vary grazing angle betweearid  Voronovich [7] performed a theoretical study that produced
0.1°. Both VV and HH polarization are analyzed. two interesting and provocative assertions: 1) Smaller-scale
The sea, of course, is not perfectly conducting. It hasraughness riding on a large-scale profile with a given curvature
dielectric constant 81 and conductivity 4 mho/m. These apeoduces»? grazing-angle behavior independent of the value
used in (4d) to define the normalized surface impedance asfdcurvature and 2) the curvature-modified scatter—although
admittance at 500 MHz. For illustrative purposes, we alstifferent for VV and HH—depends very weakly on whether
allow the seato be perfectly conducting for these same profil#ise profile is convex or concave. He applied this to return at X-
The backscattered power is then computed and averagedifand from a sea with a dielectric constant= 51.4 4+ ¢39.1,
each of the 2048 surface samples. The resulting normalizegssuming a 1-D profile as we do herein. We study this in
backscatter coefficient® is shown in Fig. 2. the same manner as the previous example, using Monte Carlo
Light curves shows® for a perfectly conducting sur- modeling for the small-scale sea waves and superposing them
face, while the heavy curves represent the actual sea 1) a concave surface; 2) a flat surface; and 3) a convex
impedance/admittance at 500 MHz. The results for HH fa@urface. 2048 samples are averaged. Sizes are scaled from the
the perfectly/finitely conducting cases overlay each other. Alpoevious 500 MHz example to X-band at 10 GHz (20:1). For
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For a sea-type conducting medium, the normalized impedance
_Siopes at _.--=77 | =z is always much less than unity, while the admittance
R T edgesmaree - sl is correspondingly greater than unity [the two are nearly
reciprocals of each other—(4d)]. Hend®, is always negative
and close to—1 for any grazing anglex. For R,, there is
somec at which the numerator is minimum; this is called the
Brewster angleAbove this angleR, is close to+1 for small
z, but as grazing is approached below the Brewster arfgle,
tends to—1 just like HH polarization.
Suppose we define from the outset the surface as perfectly
conducting: a Neumann boundary for VV. This makes 0
so that®, = +1 for all « even down to grazing. If, however,
one admits even an infinitesimalmaking the surface almost
perfectly conducting), the above equation shows that=
- v —1 asa = 0. Does it not seem a bit more than coincidental
e 0.20 0.5° " 2 5 10c  that a very similar behavior attends VV backscattér as
Grazing Angle, degrees grazing is approached when one tries to bridge the seeming gap
Fig. 3. Backscatter cross sections for sea-like roughness of Fig. 1 superpddedween the constant’ dependence for perfectly conducting

on concave (dashed), convex (dash—dot), and flat underlying profiles. Ligl§rfaces and the”* behavior for finite but very smal? No
curves at top are for VV polarization; heavy at bottom are for HH. Short h diff for hori tal larizati betw
curve segments at left give square and fourth power grazing angle depend%@ ferences appear for horizontal polarization between

slopes. perfect and finite conductivity in both the scattering and
propagation cases, and for smal(largey), both are nearly

. . . . .identical in their behavior fromr/2 > « > 0.

comparison, we employ a circular arc with a normalized radius ) .

of curvature R/A = 24.5, as did Voronovich. To preclude Feyr!berg [15] was first tq note that_ slight roughn_ess on an

significant near-arazin ) éhadowin we set ';he eriod to BtherW|se perfectly conducting plane increases the impedance

45? em: slobes agtj the gell edaes agr’e then °L7I8 trl?e cases 2 From zero to a finite amount, thereby emulating the behavior

of add'ed clz)nvex and conca\?e curvatdde — 2.32. so that of a dielectric/conducting flat interface. Barrick [4] and Rice

those surfaces are not treatable by perturbation’theory' V\th] proceeded further, obtqining expressions for an additive

no curvaturek = 0.18, so perturbation theory should apply_|mpedance (from perturbation theory to second order) to

. S : o account for roughness for both perfect and finitely conducting
In our numerical matrix inversion, condition numbers always

stayed within six decimal digits of machine precision angou_ndaries. Although these perturbation results _have_a finite
results were checked for energy conservation. Fig. 3 plotsr lus of convergence (meaning they do not remain valid when
the output, ro_ughness height grows l_aeyond the radio Wavelength), one

We find that all averaged calculated values &r tend might expect a_contlnuanon of_thls gener_al behavior even
toward a* rather tham?. VV polarization always has higherthough one particular mathematical analysis method may no

values than HH. Finally, concave surfaces produce highlgllfefr_ a||3pI);]. _ i thy. A L
backscatter than convex (as seems intuitive), by 10 dB for ina’ pnenomenon 1s hoteworthy. As -grazing 1S ap-
VV to 15 dB for HH. Zero curvature gives even Slightlyproached, the sum of direct and reflected rays cancel and

lower power than the convex profile. This provides yet anothg}? f(_)rward ﬂ;ld oveL the surfaced IS elxtlngwshed fl(l)r both
example suggesting a universal trendntbat grazing. polarizations. Remember, one needs only a very small amount
of roughness on an otherwise perfectly conducting surface for

this to happen for VV and it always occurs for HH. If the
[ll. GRAZING PROPAGATION total forward-mode field is zero, there is nothing available to
EXAMPLES FROM SEA-TYPE SURFACES excite scatter. Nonetheless, one can propagate energy along a

As the incident plane-wave approaches grazimg=$ 0), finitely conducting (impedance) surface, especially for vertical

difficulties encountered with backscatter—especially for V\polarization; this is known as the surface wave. Clearlys it
polarization—appear also in the forward direction. not describable in terms of a direct and reflected plane wave.

Surface-wave models are appropriately formulated in terms of
the boundary impedance, which exhibits a stable behavior
near grazing. This subject is revisited later.

When field components lie perpendicular to the plane of
|nC|qunce (the pa_lge), the Fresnel refl_ectlon coefflc_lents for Vg. Impedance/Admittance at Grazing and
(H-field perpendicular) and HH (E-field perpendicular) at Bolati .

. : elation to Reflection

planar impedance/admittance boundary become

'20 N N N T

-40

-60

dB

-80

-100

SIopes at .= me, | e
edges = 17.8°

-120

A. Specular Reflection at a Planar Interface

Impedance or admittance boundary conditions are defined

in terms of the ratio of the field and its normal derivative at the

: _(9) Interface. For a planar interface, (9) express the V/H Fresnel
sino +y reflection coefficient in terms of the impedance/admittance

R(a)= 2272 and Ry(a)= 2%

sina +z’
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and the grazing angle. Conceivably, the impedance/admittanceg o.1s
could implicitly be a function of grazing angle also, but 5
in practice, these quantities approach a constant value atg ©?
grazing ¢ = 0). This is seen for a smooth interface over
a homogeneous lower medium from (4d) when > 1.

The works of Barrick [4] and Feynberg [15] show that the
impedance contributed by roughness is also independent of
« near grazing, suggesting a universal behaviok @fnd y
such that they both tend to constants at grazing. Examples ar
given below exhibiting this property, followed by a general
proof of this suspicion in Section IV for all rough surfaces
independent of frequency.

Because an impedance/admittance boundary condition is
useful in propagation problems, in particular, the numerical
solution of a reduced parabolic version of the wave equation
(Dockery and Kuttler, [16]), this grazing-angle dependence
(or lack thereof) becomes critical. It has been the practice (for
lack of an alternative) to multiply the reflection coefficients
of (9) by the “Miller—Brown” factor [17] that supposedly
accounts for roughness. This factor is similar to the exponential € o+ IR s SE T TR E TR -
“Rayleigh roughness factor” that is found in Beckmann and
Spizzichino [22], but is multiplied by a zero-order cylindrical
Bessel function. Both factors (given below) are based on
optics/Kirchhoff scattering models, which are both physically
and mathematically untenable for rough surfaces close to g - ; , ‘ ‘ ‘ ‘ . .
grazing (see Voronovich, [7]). Equation (9) is then multiplied ¢ T ® Grazing Angle, o, degrees | o
by this factor and solved for impedaneeand admittance, (b)
which become highly dependent on grazing angle above V'ﬂé 4. (a) Normalized surface impedance for random finitely conducting sea

asa = 0, in contrast with the behavior expected herein  with Phillips spectrum at 500 MHz based on Monte Carlo simulations (400
samples) for vertical polarization. Significant waveheight is 4.3 ft (1.3 m)

m
|

0.051

otk

x Impedance of S

Q.08 ccmmmmmmem e m e

-0.1- ¥

Normalized @omple

-0.15
0

Grazing Angle, o, degrees

@

1ce of Sea Surface

lized Complex Ac

No

Rayleigh Roughness Factor: and dominant period is 50 m (5.6 s temporal period). Solid curves: real part;
—9(kh sin a)? dashed curves: imaginary part. Heavy curves are calculated from exact modal
Ra=e (103) theory; light curves are Miller-Brown factor applied to flat-plane Fresnel
Miller—Brown Roughness Factor: freflec:ti(_)n coefficient_. (b_) Same as (a), but plots normalized surface admittance
or horizontal polarization.
MB = Ra- Jy[i2(khsin )?]. (10b)

To study this problem further, we examine 1-D ocean wave

profiles at 500 MHz, using the same Monte Carlo modeli azing angle for_ VV. In fact, the two results agree_reasonably
approach described in Section II. Here, however, we empl I, although this good agreement does not continue to hold

more realistic sea wave statistics: a dominant ocean graviﬂf- one approaches X-band for VV. For HH, however, the

wave period of 50 m (spatial) or 5.6 s (temporal). With th@greer_nent is poor. The modal solution reSL_JIt bec_omes flat but
Phillips spectral model of (8) to define the variances of tH8€ Miller—Brown results change very rapidly with. This
random ocean wave spectral height components, the signific3gfavior is not realistic and can only lead to inaccuracies if
wave height for our 400 surface-sample ensemble averagr'ﬂ{fh anv-dependent adml_ttance is used in numerical modeling
turns out to be 4.3 ft (1.3 m). The impedance/admittance f8f near-surface propagation.
sea water at 500 MHz is used in the modal solutions. GrazingOPbserve that sea state (or roughness) has a moderate effect
angles below 10 are studied and the impedance/admittan@ impedance at 500 MHz, but produces a dramatic change to
are determined from the specularly reflected mode term (i.6e admittance over that for sea water alone. The principal
R, » = I) for each polarization using (9) above. The&onclusion suggested by these examples is that roughened
results of the modal theory are shown in Fig. 4 as the healpjerfaces modify the effective impedance/admittance, but they
curves. For comparison, we plot the impedance/admittareeth remain flat near grazing.
obtained by the Miller—Brown factor multiplying the flat-plane An interesting observation is that the “roughness-modified”
reflection coefficient as the light curves. Note for referenggmittance resembles an impedance in that it actually be-
that the impedance and admittance of a smooth interfag@mes less than unity! If this flat behavior with persists
above sea water from (4d) aee= 0.0672 — i0.0390 and at higher grazing angles, one will see a “Brewster-angle” dip
y = 11.0625 4 i6.5082 (compared ta: = 0.0746 — i0.0497 in Ry(«) assin « becomes equal to Re@) after which the
andy = 0.4261 — ¢0.4374 from modal theory atr = 0°). reflection-coefficient phase becomes less thgfl as nadir

First note that at 500 MHz, both the Miller—Brown approxiis approached. This phenomenon is uncharacteristic of flat
mation and the exact modal solution, predict flat behavior witurfaces reflections for HH polarization.
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V. TAYLOR-SERIES EXPANSION OF BACKSCATTER Substitute this into (11b) to obtain the surface field mode-
AND IMPEDANCEHADMITTANCE IN GRAZING ANGLE coefficient vectors, and then into (3b) with@ similarly

Prodded by the examples above, we demonstrate in tfpanded through first order to obtain the scattered-field mode-
section that the backscattered field and impedance/admittaf@gfficient vectorr:,

have Taylor-series expansionsir{grazing angle) that support [S]=2{[P]~" = [P~ (P[P 1% Je  (14)
our claims. This is established for any arbitrary surface pro- [ F] 2 ([Qu] [P~ + {[QL)[P] "

file, lower-medium impedance/admittance (including perfectly AL e 0 _01 o

conducting interfaces), frequency-roughness scales; it holds = [Qo][Po] ™ [Fo][Po] ™ Ye)[85, ). (15)

whether or not statistical averaging is introduced. The modghseryve that only one matrix inverse is requirb;]~!. We

matrix formulation of Barrick [18], summarized in Section ll,need not worry how to find this inverse numerically or its size

is employed in this proof. for now—only that it exists. It exists because the surface-field

) ) ) ) ~vector I, exists as discussed above and is defined by (11).

A. Binomial Inversion of Two-Term Taylor Matrix Expansiongyr formulation is still general so it can apply to any surface
The essence of our attack is: 1) to expand all the knovatofile. Our claims will be proven based on (14) and (15).

matrices and vectors in Taylor series versus grazing angle

«; 2) to retain only the lowest two terms i and 3) to solve B. Particulars of the Angle-Independent

for the desired backscattered field and impedance/admittafieglor-Series Matrices

dependence om by a simple binomial expansion for the 1y ponward/Backscatter Geometry Symmetry Adjustment:

required matrix inversion. With no sacrifice in generality, we choose the fundamental

The unknown quantities that are the heart of the proof at@ioq near grazing so the backscatter direction is represented
the fields or equivalent currents on the surface. These #F anintegermode, i.e., at indexn* = 2k cos a/k. Let the

represented by the vectdf, in (3), which are the harmonic mper of elements in our square matrices be odd so that a
coefficients of these currents written as a Fourier series Oyeliir scattered mode ab* /2 bisects the forward mode at
the fundamental spatial period of the surface profile. First, _ ¢ and the backscatter mode @at — m*. Forward and

we note that these coefficients exist because the surfacgscatter now have a useful symmetry about the nadir.
field exists. Furthermore, in practice, only a finite number 2) Grazing-Limit Matrix Values:

of these are appreciably different from zero. They fall off "4y Thep @, matrices: All elements of these matrices
rapidly in magnitude at spatial harmonics beyond twice thgq easily obtained by setting = 0 in the defining (4) and
radio wavenumber because rapid variation of currents/fielg< exceptfor the m = 0 andm = m* rows Here, one must

on spatial scales much less than a wavelength is difficult {&e |imits of both numerator and denominator in (4) because
excite with an incident plane wave. Hence, in principle, bo = xm+ = sina = a = 0. These terms then become

the forward version and the inverse versions of (3a) exist and . .
are exact; we rewrite these here (for brevity) as Polmeo = { —iknz_, + =0, (VV)

_ _ —iknz_, [y + 6% (HH)
[P][S] = 2[E] (direct), [S]=[P]"'2[E] (inverse) (11) znq

where the excitation vectdr contains only one elementin « Qolm=0 = —Po|m=0 (16)
at them = 0 position.
Expand the matrice® and £ of (11a) in Taylor series in
a (i.e., expand every matrix element thusly), retaining ter
through first order inx and writing them as oo ) teo )
) : ((x) = Z 2,5 and (*(z) = Z v, e,
{[Po] + [Po]a}[S] = 2[Ep]er (12) nE"to nE"to
17
where prime means differentiation with respeciatoand the Owing to our forward/back symmetry, the = m* row 05‘ Po)
“0” subscript meang: = 0 has been substituted into the resuhi,5 obtained in the following way: 1) <':entered on the= n*
It is evident from (3a) that the right side is linear in grazm%lement pivot then = 0 row béckward around its = 0

H / — £0
angle, with £y = 6, element; 2) in place of the first termiknz_,, above, use

We now find an expression for the inver@]~* through +iknz* ; and 3) negate the second term withabove. The
first order inc. We do this by analogy with the scalar binomiab0 rov;?or m* is the negative of that faP,, like (16b) above.
expansion._ In the equatiop + ?a)r =1, ris the _in\(erse_ of b) The P}, @ derivative matrices:All elements  of
(P + o), e, r = (p+qa)”". In the smglla limit, th's_ these matrices are identically zero except the= 0 and
becomesr = p='(1 — a/p) + O(«?). Castin that form, it o, — 0 rows. The elements of the = 0 row are
elucidates its matrix counterpart (below) 80— kwnv_, /2 + k== (V)

/ —_ / n
[P 2[R = [P PP e+ O(a?).  (13)  Tolm=o = Q0|m=°{ &y — krnv_p 2y +ikz_, (HH)'
The easiest way to convince oneself of this relation is fbhem = m* row elements are obtained by the same symmetry
multiply it by the P-expansion factor on the left side of (12)pivoting described above, but taking complex conjugates of
thereby obtaining the identity matrix to second orderxin the first termkxny_, /2.

wherez, andv,, are Fourier coefficients of the surface profile
r_{bseight and its square

(18)
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3) The Forward and Backscattered Mode®le study only the roughness. By inspection of the classic planar Fresnel
two of the scattered mode coefficients derived in (¥5)and coefficient of (9), we define anew normalized effective
F,,~. In this limit, the y multiplying both F;; and F,,,- on the impedance/admittancg, Y at grazing §in o = «)
left side of (15) becomes, canceling thex-factor common

: ; 1—Fp
to the right side 7Y =« .
1+ F

~ —1ym=0 or m™ row -1
Fy or mr Z{{Qo)[Po]™ 1050 i+ O‘{[Qf)] [£5] The first term ofF}, from (19) is—1, which negates the1 in
— [Qo][Po)™ ' [P][Po]™ ' YrEy b 7. (19)  the denominator so that its remainingdependence cancels

) o o _ the multiplicative«; the numerator becomes?2 in the limit
Hence, proof of our claims lies in establishing the following, _. ¢ 5o that

values for the first term in the above equation: 1) iti$ for

(21)

2

m = 0 (forward/specular scatter) and 2) it is O for = m* Z,Y = - — — 5 — . (22)
(backscatter). We do this in two ways—by mathematical proof {Qa)[Pa] =" = [Qo][Fo] = ' [Fe][Fo] ™" o0

and by physical arguments that elucidate the merging Qence, the result that the impedance/admittance is always
propagation and scatter in the grazing limit. constant in the grazing limit.

a) Mathematical proof:If the first matrix factor@, had
_been_PO, the_product _rgpresentin_g the first term would be tk_@_ Where Does the Grazing Regime Begin?
identity matrix by definition. In this case, the (0, 0) element is _ o
the diagonal value-1 and the 2*, 0) off-diagonal elementis  HOW close to grazing must one be before the limiting
zero. In fact, however, the: = 0 andm = m* rows of the), €XPressions derived above apply? Consider two cases.

matrix are identical—but with elements negated—from thesel) When the modulus of, Y is less than unity, a tran-

same rows of thé”, matrix as demonstrated in (16b), above. Sitiij occurs near a “pseudo-Brewster_ angle”oat= _

Hence, the contribution té} is —1, and the contribution to aresin(|Z, Y]). Atangles greater than this value, the in-

F,+ is 0. teractions resemble VV above a homogeneous medium:
b) Physical proof/interpretation:Note from (14) that the the Fresnel specular reflection has positive phase and the

surface fields/currents, as represented by their Fourier mode backscattered power is flat versus as paradoxically
coefficientsS,, go to zero in the grazing limit because they are ~ predicted by perturbation theory above perfectly con-
directly proportional ta. This is true forall modesn for both ducting surfaces [1], [3], [5], [6]. At values af much
polarizations, regardless of whether the surface is perfectly or lower than our pseudo-Brewster angle, the reflection
finitely conducting. If these surface fields are zero, then the  coefficient phase tends to 18@nd backscattered power
scattered or reradiated fields they produce must be zero. This decays asv!.

demands allf}, (for n # 0, including the F,- backscatter ~2) The case where the modulus &f Y is greater than
mode) go to zero at least as fast @asSo what happens to unity resembles HH over homogeneous media, with the
the incident plane wave field with defined unity amplitude as ~ Fresnel reflection phase always negative over the upper
grazing is approached? It is extinguished upon combination half space. WhenZ, Y is much greater than unity,
with the forward reflected modé}, which, therefore, must backscattered power tends teia“ « law everywhere.
have—1 amplitude. This is exactly what happens near any flat

interface above a homogeneous medium at grazing for eithey. REsoLuTION OF HF SEA-SCATTER PARADOX FOR VV:
polarization: the Fresnel reflection coefficient becomels THE SURFACE WAVE

canceling the incident plane wave. As shown by Feynberg [15],

liaht h foct ducti | I d Why does the sea appear to defy tielaw set forth above,
slight roughness on a perfect conducting plane aiso produggs greeing also with perturbation theory for VV backscatter
a sm_al_l effective surface impedance a_ccompamed by a Fre a finitely conducting surface at grazing? The reason has
coefficient that must go te-1 at grazing. Hence, the sam

. . T do with the use of plane waves to represent the radiated field.
near-grazing behavior grazing is caused by roughness on

: . . {fth waves describe local fields in the far zone of a source that
interface as well as nonperfect electrical properties of the lower with di b interf ith |
medium. propagate as t/with distance. Above an interface with low

4) Backscatter Behavior at GrazingSince we have prov- normalized impedance, the direct and reflected modes rapidly

. ) . cancel below the Brewster angle, leaving a radiated field that
en that the first term of (19) vanishes, we can write the p N

: . ; as been referred to as the “Norton surface wave” above a
normalized backscattering width of (7) as

flat homogeneous medium [26]-[28], “lateral waves” above

. o , . stratified media [29], and the “diffracted field” near and below
Tpack = kL ZH[Qo][PO] the horizon of a spherical earth interface [28], [30], [3H.
—[QullP) " [P[Po]™ Yomr o (20) all cases, these forms of surface-wave fields do not follow the

1/r distance dependence from the source.
establishing our claim of grazing-angle-to-the-fourth depen- Focusing our attention on the above example (VV backscat-
dence for backscatter from all rough interfaces. ter above the sea at HF), the following two-step procedure
5) Effective Surface Impedance/Admittance at Grazings outlined to calculate the backscattered power level: 1) use
Note thatF; (the mode in the forward direction) is identicallythe appropriate method to explain the propagation from the
the Fresnel reflection coefficient above a plane that includeslar source to and from the sea cell (e.g., residue series [30])
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and 2) take the surface within the cell to be locally perfectigross section for VV
conducting and use the resulting perturbatidh backscatter

° . . . 0 . . 2
law for o : Although this seems to justify the” law, which o° = 7k3S (k) sin o 11— cosacos § — 27|
we have just shown to fail for plane wave backscatter, the sina + 7
arguments below suggest how it becomes reasonable when

(24)

. 2

propagation is grouped together with scatter. : Sms%%‘ .
a) Propagation to the cell:Barrick [5] applied the com-

pensation theorem of Monteath [23], [24] to VV surface wavRere 5(x ) is the 1-D wave height spatial spectrum evaluated
backscatter from the sea at HF. We review the procedWgine gragg wavenumber. This result has critical dependences
here in order to justify the “perfectly conducting” assumptiogy, finite surface impedancgé (which can include the rough-
for the backscatter return. This integral-equation form of thgyss effects) as the first and third absolute-value factors. If
compensation theorem expresses the “perturbed” field at @i jetsz = 0, these factors become unity; this is the classic
observation point due to scatter from a surface cell in termss it for \VV scatter from the perfectly conducting surface we

of an “unperturbed” re-radiating source at the same poiRkferred to in the preceding section. Note the importance of
The equation is integrated over the imperfect surface Withe order for limits near grazing: if we takin o orsin 5 = 0

normalized impedancé. The “unperturbed source” producesrs;, the cross section is zero at grazing, and it is too late to
its field at the observation point above a perfectly conductingen setz — 0.

surface; for a vertical dipole re-radiator near the surface, thiscast in the above form (24) when compared to (23) reveals
is the sum of its free-space and image fields. Solution gfire satisfying definition of the “unperturbed” cross section
the integral equation for the “perturbed” field then correctgg ;o — 47k?S(kp) (after reducing to backscatter where
the unperturbed field by the Norton surface-wave attenuatig(ggof = —cosf = 1 and 1—cosacos B — Z? = 2). The
factor. In other words, without invoking the Sommerfeld; st and third squared factors are identically the attenuation
radiation integrals, one ends up with the same result by anoth@tions required for plane-wave propagation if the effects of
route, starting with re-radiation above perfectly conductinghite surface impedance are grouped with propagation rather

media. than with scatter! For in this case, the sum of the direct and

Instead of the dipole, replace it with a cell that re-radiates t@ecylarly reflected rays on a plane surface [divided by two to
vertically polarized field scattered by a perfectly conducting..ommodate our definition in (23)] become
version of the sea roughness within the cell. One may think

of this as a collection of vertical dipoles in the cell with the
appropriate currents to excite the equivalent unperturbed fields.
This unperturbed re-radiated field is generated by ttital
incoming vertical E-field from the transmitter arriving at thevith an analogous expression fbg in terms of3. Thus, when
cell by a surface-wave mode. This unperturbed re-radiatigifie plane wave picture no longer describes propagation near
then gets multiplied by a surface-wave attenuation factor thgitazing, e.g., in the surface wave zone, one merely replaces
accounts for propagation back to the receiver. these factors for plane wave propagation with the appropriate
Quantifying this approach, we write the “radar equation” asitenuation factor. This is an heuristic way of explaining

F2 . F2 pRIem the more rigorous compensation theorem approach discussed
Pr={PrGr} I {ozA} IR, yp above.

1+ R,(«)
2

(25)

Fr = =
T ‘ sino + 7

sin o ‘

<

(23)

where Py, Pg are the transmitted received powe€s;, G VI. CONCLUSIONS

are the transmit receive antenna gaiflg, Ry are distances We set out to establish limiting dependencies of backscatter
from scatterer to the transmitter receiveris the wavelength, and effective surface impedance/admittance for propagation
o? is the “unperturbed” target scatter cross section per unit angsrsus grazing angle. Our results show that backscattered
from a perfectly conducting sea profild, is the area within power depends on grazing angle to the fourth power; the
the surface cell, and’r, Fr are the “attenuation factors” impedance and admittance are constant as grazing is ap-
accounting for other than free-space propagation along theached. These relations hold true for both polarizations, for
two paths. The bracketing in the above equation separates ahlgitrary surface materials (including perfect conductors), for
propagation factors (second and fourth) from the remaindail frequency/roughness scales, and for a single deterministic
It is the factors Fr and Fr that are rigorously derived roughness profile as well as averages over surface ensembles.
from the compensation theorem approach, based on using amhe formulation employed here treated only 2-
unperturbed scatter cross section for a perfectly conductiBg scatter/propagation above 1-D surface profiles. An
rough interface. impedance/admittance boundary was assumed, of which a
b) Unperturbed re-radiation or scatter from the celhe perfect conductor (or Neumann-Dirichlet boundary) is a
Appendix obtains perturbation theory expressions for scatténiting case. Finally, we considered only backscatter rather
from our Section Il modal formulation. Leaving the scattethan arbitrary bistatic scatter. The latter was a chosen based
and incidence angleg( «) different for generality, we obtain on the overwhelming ubiquitousness of backscatter radars,
the following version of the normalized 1-D bistatic scatteringut the extension to bistatic scatter is obvious: as either the
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incidence or scattering angle alone approaches grazing, eetibh row of (3a) becomes
power decreases as grazing angle squared (6), (7). Finally,

7 (1=¢&mcosa)/xm +z
although unproven by the present approach, we are confiderit x,, 2., {(1 &, cosa)/( )+ 1 }So
that our grazing angle behavior applies to more general 2-D ” yXm
rough surfaces and lower r_nedm with d|el_ectr|c constants _|_{ Xm + = }Sm + ik Z
that are not amenable to impedance/admittance boundary Xm [y + 1
condition treatment.

The failure of these simple grazing-angle laws to explain - {(1(1_25”5%/)(/;;”” )—1__:1
many observations from HF through microwave is due to the e m
inadequacy of plane waves to represent radiation from source®er normal perturbation approaches, we group terms in
in the region very near or below the horizon. When the proparders of smallness. In (A.1) the first term is of “zero” order,
gation mode is properly separated from the scatter interactias, is the right side. Hencey, has zero-order and second-
we showed that even seeming paradoxical observations oader parts only. One solves (A.1) for the zero-order part of
be properly interpreted. Perhaps the profusion of differing, and substitutes it into (A.2). The first two terms of (A.2)
power-law claims based on measurements is due to lackapé then seen to be first order with the remainder second order
discrimination of near-grazing propagation modes (direct aahd, therefore, all remaining, (for n # 0) are first order
reflected plane rays, surface/lateral waves). or higher. Solutions for the zeroth-order part &f and the

Although our approach was primarily employed to establistoefficientsS,, are
general grazing-limit behavior, our simple angle-independent

n#0,m

}zm_nSn +0(3)=0. (A.2)

2 8in «
constants describing backscatter and propagation (20), (22) are Snata
useful in their own right. Instead of requiring re-calculation Séo) =9 9ysin az
for each angle near grazing, these expressions allow a single yﬁ

sinw +y

numerical evaluation to serve the entire near-grazing region
up to the Brewster angle. 28iney 1 —§&, cosa + 2y,

Interesting phenomena can be produced by roughness. For o — _ik sino +z Xn +z A3
VV over perfect conductors (Neumann boundary), we end up  =n~ = "% 9 gy q - & coSa+yyn | (A.3)
with Brewster-angle behavior (dip in the reflection coefficient) snaty Ynty

at a specific incidence angle. This can also happen for HH o _ _
for larger roughness scales, where the effective normalized/Ve perform similar expansions and groupings of (3b). By
“admittance” drops below unity, as it did in our exampldnspection, the left sides are written from (A.1) and (A.2)

plotted in Fig. 5. These are somewhat surprising results. above by changing the signs beforgy and beforei. Like
(A.3), Fy has zero-order and second-order parts whileis

first order. ThenS, and S,, from (A.3) are substituted into
APPENDIX these equations and they are solved to give
PERTURBATION LIMIT RESULTS

SIn&x — z

We apply perturbation theory to our modal formulation [8] (@ ) sina+z
for 1-D impedance/admittance profiles. This differs from the O T sina—y
usual perturbation approaches [5], [19], in that the Rayleigh sna+y
hypothesis (upgoing wave modes fitted directly to the rough
boundary) is not invoked. Our solution is a two-step process: 2sina 1-—¢, cosa —2°
first we solve (3a) for the surface current/field modes (not ;1) _ _ .. sina + z Xn Tz (A.4)
directly determined in the conventional Rayleigh approach); " "] 2sine 1—¢&,cosa—y2 '
then we substitute these into (3b) for the scattered-field modes. sina +y Yoty

With the assumption of small heights in terms of wavelength, .
the m = 0 row of (3a) becomes Several features are apparent in (A.4) above. To zero order,

the forward mode from a slightly rough surfaég is iden-

sin o + tically the Fresnel reflection coefficient for a smooth plane
Z . 2 . . L. N A _ N
{(Sina)/y—I— 1 }fl — (ksina) ] So + ik sina E (as originally noted by Rice [19]) and given earlier in (9).
n#£0 When we apply the geometry symmetry condition discussed in

. (1—¢,cosa)/sine + = Syz, +0(3) = 2sina Section 1V-B1) so that the integer backscatter mode becomes
(1—¢,cosa)/(ysina)+ 1 [7"77" o " identically n* = 2k cos o/, then F,« becomes

(A1) 2sina 1+ cos? o — 22
. . . O e sina + =z sin o + z (A5)
The upper/lower notation goes with VV/HH polarization. In n* = n Isina 1+ cos? o — y2 :

what follows—as well as other perturbation approachés—

is assumed small (and becomes the perturbation parameter),
butsin « is not assumed to be excessively snia@itms of order  An obvious variation of this expression was used in (24) for
two and higher in the perturbation parameter are included. Thistatic scatter toward grazing anglein (A.5) for backscatter

sino +y sino +y
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