142 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 1, JANUARY 1998

Monte Carlo Simulations of Large-Scale One-
Dimensional Random Rough-Surface Scattering
at Near-Grazing Incidence: Penetrable Case

Chi Hou Chan, Leung Tsangrellow, IEEE and Qin Li

Abstract— Scattering from dielectric one-dimensional (1-D) Monte Carlo simulations thus requires a long surface. The
random rough surfaces at near grazing incidence is studied for yse of a long surface means that there are large numbers of

both TE and TM cases. To obtain accurate results at incidence surface unknowns and a more powerful numerical method
angles of 80-85, we use long surface lengths of up to 1000 wave

lengths. Numerical results are illustrated for dielectric surfaces becomes necessary. Ove_r t_he p_ast few years, we _have 9'9'
corresponding to soil surfaces with various moisture contents. Veloped the banded-matrix iterative approach/canonical grid
Results indicate that TM backscattering is much larger than that method (BMIA/CG) that permits the solution of large-scale
_Of TE backscatterlng._ The ratl_o of TM to TE backscattering random rough surface prob|em5 [14]_[18] The essence of
increases as a function of soil moisture and can be used asye method consists of decomposing the interaction into near-
an indicator of soil moisture in remote sensing applications. . . . . . .
However, the ratio of TM to TE backscattering is much lower and nonnear-field interactions. _The npnnea_r-ﬂe_ld mtergctlons
than that predicted by the small perturbation method. To facil- are then expanded on a canonical grid, which is a horizontal
itate computation of scattering by such long surfaces, the previ- surface in this case so that the fast Fourier transform (FFT) can
ously developed banded-matrix iteration approach/canonical grid pe applied. The ability to solve a large surface problem allows

method (BMIA/CG) has been extended to dielectric surfaces. us to tackle the near-grazing incidence problem [16], [18].
The numerical algorithm consists of translating the nonnear- ’

field interaction to a flat surface and the interaction subsequently | In thi; paper, we ex_tend the method to treat scattering from
calculated by fast Fourier transform (FFT). dielectric one-dimensional (1-D) random rough surfaces at
Index Terms—Electromagnetic scattering, Monte Carlo meth- near gr_azmg_mmdem_:e. Both .TE and TM cases are stu_dled.
ods, rough surfaces. Of particular interest is the ratio of TM to TE backscattering.
It is well known that the small perturbation method predicts a
large ratio of TM backscattering to TE backscattering [19]. In
. INTRODUCTION our numerical simulations, we illustrate results using surface
HE scattering of waves by random rough surfaces ngths of up to 1000 wavelengths and incidence angles
low-grazing angles (LGA's) has important applications ilketween 80 and 85 The dielectric constants of the dielectric
remote sensing of oceans and land [1]-[3]. At such large angigface are chosen to simulate rough soil surfaces with varying
of incidence, the shadowing effects are important, therefof®il moisture contents. Numerical results indicate that the ratio
the classical Kirchhoff method is not applicable. The smafif TM to TE backscattering, though large, is at a much smaller
perturbation method (SPM) has been used to analyze scatteiatye than that predicted by the small perturbation method. In
for such a problem. New analytic methods such as the sm@gction I, we give the formulation of the integral equation.
slope approximation [4] have also been used. Recently, Morfi@o unknowns are required for each sample point on the
Carlo simulations of direct solutions of the wave scatteringenetrable surface. We use an incident wave that is tapered in
problem have become a popular approach because of itgespectral domain. In Section 11, we present the extension of
advent of modern computers and the development of fds€ BMIA/CG method for the penetrable case. The nonnear-
numerical methods. The most common method that has bdiid interactions are computed simultaneously using FFT's
used in numerical simulations is the integral equation methg@on a Taylor series expansion of Green’s functions about a
[5]-[13]. But at low grazing, the wave can go through multiplat surface at the mean value of the surface height. Due to
scattering on the surface. To simulate the phenomenon wit¢ presence of the extra set of unknowis/dn, the banded
matrix in the perfectly conducting case becomes four banded
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increases as one gets closer to grazing. The difference alsob — Azl H(l)(klrmn) (6)
increases when the relative permittivity increases. The results 4 . ’

are compared with the small perturbation method (SPM). The o = —Az @ (@m = xa) ' (20) = [f(#m) = f(@a)]
numerical results are significantly different from that of SPM 4 Tmn

due to multiple scattering. Numerical simulation gives much .Hf)(/gﬂmn)

larger backscattering coefficients and a much smaller TM to )
TE ratio of backscattering than SPM. For the case of larger rms

height, we also use additional horizontal surfaces that allow d,, = Ax Z H (ot ). (8)
us to limit the bandwidth of the near interaction terms.

Il. INTEGRAL EQUATION FORMULATION wherer,,, = /(@m — )% + [J(&m ) — [(2,)]” andk; and
The scattered field from a penetrable rough surface chnare the wavenumbers in Region 1 and 2, respectively: for
be solved using coupled integral equations. If the fields on = n
either side of the surfacé are denoted byr; and V-,
respectively, for medium 1 and medium 2, they satisfy the

following equation [19]: P 1 () Az (9)
9Gis(r, 1) mmn Y 4m~2,
/ i\, I ;
h1\IJ7Z(I') :hQ\IJin (I‘) +‘/~7 |:\I/7(I' ) 7811/ bmm — Ax i Hgl)[k1Al‘7m,/(2€)] (10)
0w, (v') 1 " (xm)Ax
—Gi(r, x! dr’ (1 —_ 4 L\
G (I‘, r ) o’ r ( ) Cmm 5) + 47_‘_77271 (11)
hy = 0.5 andh; =1 wheni¢ = 1; by = —0.5 andh, = 0 dorm :AmiH(g”[kQAmm/(Qe)] (12)
when: = 2; WherefS denotes a Cauchy integral aiig} is 4

the Green’s function of thé¢h medium. Function¥; and¥,
are related through the boundary conditions on the surface
namely where v, = L4+ [f(2m)]?, e = 2.71828183, f'(xm),
and f’(z,,) represent the first and second derivativef(#)
dWr; (r) _ 1 dWy (r) ) evaluated at:,,,, respectively. Note that when the dielectric is
dn p dn lossy, ¢, @andd,,,, involve evaluations of Hankel functions

wherep equalsp»/i; andes/e; for TE and TM polarization, with chomplex argumf'”t- . \uti is elimi di
respectively. Applying the boundary conditions in conjunctlon In the conventional mairix solutior; is eliminated in (3)

with the collocation method, we arrive at a matrix equation through the relation in (4). However, such elimination is not
possible for an iterative solution for a large-scale problem. In

N an earlier implementation of the BMIA for the penetrable case
Wi (2)) = Z o P (2) + Z brn Fo () (3)  without the use of FFT’s [20], the two sets of unknowfis
n=l n=l and F» are labeled alternately along the 1-D surface discretized
N with N sample points resulting in the matrix equation as shown
Cn 11 (%) — Z pdrn B () (4) g (13) at the bottom of the page.
n= This will effectively double the required bandwidth of the
where  Fi(x) = Ui(z) and Fy(z) — stored near-interaction terms for the original BMIA approach.
1+ [f(2)]? (0T, /On), respectively, and z,, = In this paper, we arrange the matrix equation as in (3) and (4)
(m — 0.5Ax — L/2. Function f(z) represents the surfaceas shown in (14) at the bottom of the next page.
height at locationz. For completeness, the matrix elements Similar to the BMIA/CG method, the strong near-interaction

Y, (r) = ¥5(r) and

||
ANGER

n=1

Arns Omns Cmn, @Ndd,y,, [17] are given here: form # n terms of the submatricds], [4], [¢], and—p[d] are computed
© , and stored while the weak far-interactions are computed by
A = At iky (@ = 2a) f'(2n) = [J(2m) = Jan)] FFT’s upon Taylor series expansion of the Green’s function
4 Tmn kernels. Note that the submatride$ and|c] are not symmetric
~H§1)(k1 Trn,) (5) while [b] and —p[d] are. The stored portion of the matrix is
a1 b4 a9 by R ¢ SR, by n Fy(z) U, (1)
C11 —Pdﬂ C12 —Pd12 ottt CIN —Ple Fz(ﬂm) 0
ayt byt anz  byz -+ - ann byn Fi(xn) i (2n)

eyi1 —pdyt eys —pdye - - ey —pdyw Fz(l“zv) 0
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Im{k,} iterative procedure is similar to the procedure described in
X202 ‘branchcut [18], which addressed the TE incidence and will not be
W repeated here. We would, however, include Taylor series
k

expansion of the Green'’s function kernel for both tH 2
and Hfl) here. For the Hankel function of the zeroth order
we have

Hé”(k,/xgﬂg) =3 am(xd)(;—Z)zm

m=0
wherezy = (¢ —2’') andzy = (2 — 2') = f(z) — f(2'). The
first three terms of the expansion coefficients are given as

|
=

1 Re{k}

el
A
(=}
—

Im{k,} =2x/g° (17)
branch cut m{kJ g

Fig. 1. Integration contour for the incident filed.

denoted by the shaded region as shown in ao(q) :Hél)(/m:d) (18)
k’Id

B Fix, ¥ [ T @ (Id) - _Hil)(k’xd)T (19)

K.} ¥ %) k k 2
\ \ I I. 1% az(ﬂid) :Hil)(k'l‘d)% . Hél)(kxd)%~ (20)

: ’I ol "r-l'l"*' (15) For the Hankel function of the first order we have

: HO (ko773

. = ap (2g) 22" 21
\ \ | | 6 Vo SO

The first three terms of the expansion coefficients are given as

1
Equation (14) is to be solved by using the conjugate gradieat (z;) = M (22)
method [21]. The incident field at the poift, f(x)] on the td M M
surface is given by ar () = 0.5kz,H; (kxi) — H,(kz,) 23)
g ~ i(her—h,2) —[(ke—hig)2g2/4 T

Wle, f2)] = 5 /_m dk, e ) o= [(kemkic)??/4] s S (ki) — Ak gD (ki) — K22 D (ki)

1) )= 827 '
where k;, = ky sin 6;, k? = k7 — k2 with a proper choice (24)

of the branch cutk; is the wavenumber of the incident fieldThe accuracy of the Taylor series expansion depends on
and ane="*' convention is used. The advantage of (16) is théte ratio of z;/x,, which in turn dictates the bandwidth of

it obeys the wave equation exactly. To facilitate numericghe stored near interactions as shown in the shaded region
evaluation of (16), a complex contour integration parallg}f (15). For random surfaces of large rms heights, Taylor
to Re{k,} axis is carried out with Irfik,} = 2z/¢9” and series expansion about the canonical grid point of 0 is
indentations are made for the vertical branch cuts.at k1. not sufficient. Instead, Taylor series expansion about several
Here ¢ is the parameter that controls the tapering of theéanonical grid points or multiple flat surfaces may be required.
incident wave. The deformed contour is shown in Fig. 1. NOffg. 2 shows the canonical grids for the modified Taylor
that the integration contours far> 0 andz < 0 are different. garies expansion. Note thiat;, z;,] lies on a flat surface with
The contours are chosen so that the integrals converge rapi(jué/xi) — mAz. The Taylor series expansion about a multiple

flat surface is given as
I1l. TAYLOR SERIES EXPANSION

OF GREEN’'S FUNCTION KERNELS

The use of the FFT’s to compute the nonnear interaction
of the matrix—vector multiplication in solving (14) with an

H(kr) = 2y, (9022]' =+ glzjij =+ 9’023]' /2+ 9022]' /6)
+ 25 (912 + 9224 + 9375 /2)
+ 23 (9222]' =+ QSZ;J' )2+ 2 (9322]')/6 (25)

[a11 a2 -+ .y b1 b2 biy 7 [Fi(@) ] RINEDN

Qg1 A9y as N boy bas bon F (@) Wi, (352)

aNi  aN? anny  by: b2 by Fi(en) | _ | Win(zn) (14)
ci1 c2 - cany  —pdin —pdis —pdin | | Fo(zr) 0

ca1 €3 - CaN  —pdar  —pdas —pdan | | Fo(zs) 0

Lent  ena enN —pdyi —pdna —pdyn 1 LFs(zn)d L O
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Here, H represents both H((J ) and HE )/7“, In = 6_085 84 -83 -82 -81 80 -79 -78 -77 -76 -75
8“H(kr)/8z“ Zg — (Zz _ Zio)n and Zg — (Zjo _ Z]' )n scattering angle {(degrees)
207 7 ' 7] :

With this type of expansion, the bandwidth of the strongig. 3. Comparison of bistatic scattering coefficient at near backscattering

near-interaction can be reduced substantially. However {¢ljeection between SPM and numerical simulation with the following param-
tradeoff is that di . | EET’ ired f 'theters: rmsh = 0.05\, ] = 0.3\, §; = 80°, =, = 5.56+4 0.6, L = 200,
radeoff Is that two-dimensiona S are required tor ge: L/8, and number of realizatios 50.

weak far-interaction computations. The optimal choice of
bandwidth and number of canonical grid point requires

extensive numerical experiments and will not be addressed TABLE |
here. THE PARAMETERS FOR THE VARIOUS CASES
case # relative surface length L|  #of surface | incident angle 0
IV. NUMERICAL RESULTS AND DISCUSSION pormittivity in% unkaiowns in degrecs

In this section, we illustrate the numerical results of bistatic L 2362106 0 10090 =
scattering and backscattering coefficients for different inci- 2 356 +106 200 4,000 80
dence angles and different polarizations using soil surfaces 3 5.56 +i0.6 500 10,000 85
with various soil moisture contents. At L band (1.43 GHz), 4 5.56 +i0.6 1000 20,000 85
the relative permittivity of soil at soil moisture of 10, 15, 20, 5 17.7+i2.26 200 4,000 80
25, and 30% are).56 + 20.6, 10.8 + ¢1.335, 17.7 4 22.26, 6 7741226 200 8,000 50

24.6 +43.185, and 31.5 + 4.11, respectively, [22]. For ease

of reference, we have tabulated the parameters of the various
number of cases that we have computed in Table I. For all the ) )
cases in this paper (except Fig. 3), the random rough surfal®$ height 0.05 wavelength, correlation length 0.3 wavelength

are Gaussian random rough surfaces with given rms hei@tncidence angle 80between numerical simulation and
h = 0.2\ and correlation lengtti = 0.6\. For the case of PM. For ready reference, the bistatic scattering coefficients of

Fig. 3, we choose rms height= 0.05\ and correlation length al-D die_lectric rough surface qbtained by the_ first-order small

I = 0.3\. The tapering parameter is chosengat L/8 to p_erturbgtlon method are listed in the Appendix. For numerical

ensure that the effects of edge diffraction is not important f§fmulation, we use a surface length of 200 wavelengths and the

the incident and scattering angles of interest. _results were averaged over 50 realizations. The two results are
First, we compare the results with the small perturbatil @9reement for scattering angles betweers® and —85°.

method. Next, we illustrate the convergence test and CP' this casek/ is at a relatively small value of 0.31, so that

comparison. For a fixed incidence angle, the accuracy r(_glpltlple scattering effgcts become less important. Thus, the

the results can decrease with the increase of scattering arjjii-order SPM result is reasonably accurate.

toward —90°. An important criterion for all acceptable result

is that it gives an accurate result in the vicinity of th&. Convergence Test and CPU Comparison

backscattering direction. Then we illustrate and discuss th .
results of TE and TM backscattering for various parameterel) Convergence with Respect to Surface Length and Number

) : : ? Realizations: In Fig. 4, we compare the bistatic scattering
of interest. Finally, we compare the results of multileve L . S
: . : coefficients at the near backscattering direction for Case 1
expansion with a single level.

and Case 2 with permittivity of 10% soil moisture at an

) ) ) ] incidence angle 80 We plot two results for Case 2. One

A. Comparison Between Numerical Simulation and is averaged over 50 realizations and the other is averaged

SPM for the Case of Small RMS Height and Slope over 100 realizations. The results indicate that there is little
In Fig. 3, we compare the bistatic scattering coefficients faiifference between 50 and 100 realizations for both TE and

angles in the vicinity of backscattering direction of case witfiM waves. This demonstrates convergence with respect to
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Fig. 4. Comparison of bistatic scattering coefficient at near backscatterifg. 6. Comparison of bistatic scattering coefficient at near backscattering
direction between Case 5 and Case 6; fms 0.2\, [ = 0.6}, 6; = 80°,
e, = 17.74 ¢2.26,9 = L/8, L = 2007\, and number of realizatioa: 50.

direction between Case 1 and Case 2; ¥fms 0.2\, [ = 0.6}, §; = 80°,
e, = 5.56+¢0.6,9 = L/8, and number of realizatiog 50 for L = 500\.

T T T T

T T TABLE 11
THE CPU AND MEMORY REQUIREMENTS FORONE REALIZATION
— TE:L=500
o TE:L=1000
=20F | . TM:L=500 B case # CPU time (seconds) memory(Mbytes)
*  TM:L=1000 1

XX K e ox ke x % X

_ ,****)

B

347 (TE¥), 191 (TM*)

50.2

2

119 (TE), 74 (TM)

19.5

3

279 (TE), 258 (TM)

50.2

4

795 (TE), 522 (TM)

19.5

bistatic scattering coefficient (dB)
A
o

wavelength. In Fig. 6, we provide the comparison of using 10
points per wavelength versus 20 points per wavelength for 50
realizations with a surface length 200 wavelengths and relative
permittivity 17.7 4 ¢2.26. The backscattering results are about
1.08 dB different for TE wave and 2.75 dB different for TM
wave. This indicates that 20 points or more per wavelength
_ _ o ' N should be used if more accurate results are desired, particularly
e > n%%m:;foé‘ag; gséigcggsg‘j'”gngogﬁ'zc\'e?t:atorgarebi’kggf“enf& TM waves. This is because most of the incident wave was
e, = 556+ i0.6,g = L/8, and number of realizatios: 20. " transmitted to a lower medium of high permittivity for the TM
case and was scattered to the upper medium for the TE case.
3) Comparison of CPU Time and Memory Requirements:
realization. The differences between results of surface lengfh@MPle results are performed using an Alpha Server 4100.
500 and 200 wavelengths are slightly bigger. Nevertheledd!® CPU and memory requirements for one realization are
the differences at the backscattering anglél.of= —80° are tabulated in Table Il. The |nd|cat_ed C_PU time z_;mql memory
only 0.78 dB for TE and 0.74 dB for TM. This indicatesr® much lower than that of using direct matrix inversion.
that a 200 wavelength surface length is large enough for éﬁtually, the use of direct matrix inversion is not Workable on
incidence angle of 80 In Fig. 5, we show convergence Withthe Alpha Server because of the large memory requwement for
respect to surface length at an’86cidence angle using 1000 10000 surface unknowns. Using the methoc_j in this baper, the
and 500 wavelengths of surface length. The two results se of 10_000 surface unknpwns only requires a CPU time of
in agreement at backscattering &f = —85°. This shows about 6 min for TE and 3 min for TM for one realization.
that surface length of 500 wavelengths is large enough foran ) o ] ]
incidence angle of 85 C. Yarlatlon of Backscattering ('Zoeff|C|'ents with Soil
2) Convergence with Respect to Number of Sampling Poif@isture Contents and Comparison with SPM
per Wavelength:For problems of high soil moisture, the In Fig. 7, we plot the backscattering coefficients as a func-
relative permittivity can be more thatl.5 4+ ¢4.11. It may tion of soil moisture contents at an incidence angle 6f &r
become necessary to use a sampling of more than 10 pointstper case of a surface with soil moisture of 10 and 15%, we

L ! 1

-83 -82 -81

. 1 ;
-86 -85 -84
scattering angle (degrees)

-80
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-20 T T T T T T T TABLE 1l
BISTATIC SCATTERING COEFFICIENT AT BACKSCATTERING
% * ¥ ANGLE AS A FUNCTION OF THE PERCENT OF SoIL MOISTURE
_apt % i
> percent of soil | relative dielectric TE T™M | Ratio** TE ™ Ratio
o moisture (%) constant (Num.*)| (Num.)| (Num.)| (SPM***)| (SPM) | (SPM)
o < ©
§—400 b 10 5.56 +i0.6 -39.78 | -33.64 6.14 -75.80 -60.89 | 14.92
o
38 15 10.8 +11.335 -38.15 | -30.48 7.67 -75.36 -56.36 | 19.00 .
&=
[}
;_50 L i 20 177 +12.26 -37.52 | -26.87 | 10.65 -75.13 -53.49 | 21.64
S T T T
g e T T - 25 24.6+i3.185 -37.12 | <2572 11.40 -75.02 -51.78 | 2323
© e
S -
2 6oL - B 30 31.5+i4.11 -36.70 | -25.02 | 11.68 -74.94 -50.59 | 2435
8 oV O numerical results (TE)
o —— SPM (TE) * Numerical simulation results
¥ numerical results (TM}) . L . . .
. **  Ratio of the bistatic scattering cocfficient at backscattering angle of TM and TE
70k SPM (TM) i
waves
***  Results by using small perturbation method
_80 : L L | L L

L L L
10 12 14 16 18 20 22 24 26 28 30
percent of soil moisture (%)

-20 T T T T

Fig. 7. Comparison of the variation of backscattering coefficients with
percent of soil moisture contents between numerical simulation and SPM;
rmsh = 0.2\, = 0.6\, 6; = 80°, g = L/8, L = 200\, and number of =30 ]

S * *
realization= 50. * %
5—40' o o B
el o
hug o
30 5
T T T 7 T T k]
£ -50+ —
©  numerical results 54
— SPM o
£ e
25t . 8 6ot T - .
©
o
17
=
Q
o
=

O numerical results (TE)
_70}+ — SPM (TE) B
*  numerical results (TM)

-~ - SPM (TM)
80 \

_90 L L L . L L | . .
° © 80 80.5 81 81.5 82 82,5 83 83.5 84 845 85
incident angle (degrees)

n
=]
T

L

-
(=]
T

L

Fig. 9. Comparison of the variation of backscattering coefficients with
sl 1 incident angles between numerical simulation and SPM; kms= 0.2\,

{ = 0.6\, &, = 10.84 ¢1.335,9 = L/8, L = 5001, and number of
realization= 50.

ratio of backscattering coefficients of TM and TE (dB)
o

10 12 14 16 18 20 22 24 26 28 30 i Tl i
percent of soll moisture (%) lower backscattering coefficients and also a much larger ratio

of TM to TE backscattering than numerical simulations.
Fig. 8. Variation of ratio of backscattering coefficients of TM and TE with

percent of soil moisture contents and comparison with SPM; /rms 0.2, L . .. .
1= 06\ 6; =80°, g = L/8, L = 200\, and number of realizatios= 50. ~D. Variation of Backscattering Coefficients with

Incidence Angles and Comparison with SPM

In Fig. 9, we plot the TE and TM backscattering coef-
use 10 points per wavelength and 20 points per wavelengiflents as a function of incidence angle from°8® 85.
for other cases because of the large relative permittivityp ensure accurate results, we have used a surface length of
The results are tabulated in Table Ill for better quantitativ00 wavelengths. The results are also tabulated in Table IV
comparisons. We also show the SPM results for compariséor better quantitative comparisons. The ratio of TM to TE
We note that as soil moisture increases, the backscatterbagkscattering is plotted in Fig. 10. Both TE and TM backscat-
coefficients increases. They have a large increase at snating decreases as a function of incidence angle. However,
moisture. The rate of increase levels off at high soil moisturthe ratio of TM to TE backscattering increases with incidence
In Fig. 8, we plot the ratio of TM to TE backscattering as angle. Again the SPM gives much larger ratio than numerical
function of soil moisture. We note that TM backscattering isimulations.
much larger than TE backscattering. The ratio also increases
as a function of soil moisture. This shows that the ratio & Comparing Results of Multilevel Expansion
TM to TE backscattering can be an important indicator of sdifith a Single Level
moisture in remote sensing applications. The comparison within Fig. 11, we compare the results of the BMIA/CG method
SPM results show that the latter are erroeous. SPM gives mwath the multiple-level expansion method for one realization
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Fig. 10. Variation of ratio of backscattering coefficients of TM and TErig. 11. Comparison of bistatic scattering coefficients using BMIA/CG and
with incident angles and comparison with SPM; rias= 0.2\, [ = 0.6\, multilevel expansion method for one realization. TE wave; fms: 0.2\,
e, = 10.84 ¢1.335,9 = L/8, L = 500\, and number of realizatiog 50. I = 06\, 8 = 45, s = 556+ i06,9g = L/8 L = 50,

BMIA/CG half-bandwidthb = 200 (20 wavelengths), multilevel expansion
TABLE IV half-bandwidthb = 50 (five wavelengths).

BISTATIC SCATTERING COEFFICIENT AT BACKSCATTERING
ANGLE AS A FUNCTION OF THE INCIDENT ANGLE i
tion method are

incident angle TE ™ Ratio TE ™ Ratio 3 2
(degrees) | (Num.) | (Num.) | (Num)| (SPM) | (SPM) | (SPM) gaa(as) =4k” cos” O, cos 0; [, W(klx — klxi)
80 -37.598 | -30.668| 6.93 -75.36 -56.36 | 18.99
where
81 -39.615 | -32.270 7326 -76.97 -57.39 | 19.59
2
82 -40.567 | -32.97 | 7.594 -78.72 -58.51 | 20.20 _ ]C2
83 -42.704 | 3476 | 7946 | -80.63 | -59.78 | 2084 - (kos + ]ﬁz (k227; + ki.s)
84 -44.160 | -3537 | 8.787 -82.78 -61.26 | 21.52 k’2 — k‘%
85 -45.440 | -36.04 | 9400 | 8525 | 6303 | 2222 Jow = (k3kv, + kP kos ) (k2 k1. + k2 koss)
2
. . . - [k3k? sin 0, sin 0; — kT ko, ko]
with rms height 0.2 wavelength, correlation length 0.6 wave- 2™ d ! 12z
length, surface length 50 wavelengths, and relative permittivity h2l k22
5.56+:0.6 at an incidence angle of 45The two results are in Wi(k,) = e exp ( T4 >
good agreement. The half-bandwidth used for BMIA/CG is 20

wavelengths. The half-bandwidth used for the multiple-levaind
expansion |s_f|ve_wavelengths. This |n(_j|cates that the m_ultlple- Fioi =k cos 05, kipi = ky sin 65, ke = by sin 6,
level expansion is useful for cases with larger rms height, as

it accommodates a substantially smaller bandwidth. kosi =+/k2 — k2., ko, =+Jk3— K2,
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