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Monte Carlo Simulations of Large-Scale One-
Dimensional Random Rough-Surface Scattering

at Near-Grazing Incidence: Penetrable Case
Chi Hou Chan, Leung Tsang,Fellow, IEEE, and Qin Li

Abstract— Scattering from dielectric one-dimensional (1-D)
random rough surfaces at near grazing incidence is studied for
both TE and TM cases. To obtain accurate results at incidence
angles of 80�–85�, we use long surface lengths of up to 1000 wave-
lengths. Numerical results are illustrated for dielectric surfaces
corresponding to soil surfaces with various moisture contents.
Results indicate that TM backscattering is much larger than that
of TE backscattering. The ratio of TM to TE backscattering
increases as a function of soil moisture and can be used as
an indicator of soil moisture in remote sensing applications.
However, the ratio of TM to TE backscattering is much lower
than that predicted by the small perturbation method. To facil-
itate computation of scattering by such long surfaces, the previ-
ously developed banded-matrix iteration approach/canonical grid
method (BMIA/CG) has been extended to dielectric surfaces.
The numerical algorithm consists of translating the nonnear-
field interaction to a flat surface and the interaction subsequently
calculated by fast Fourier transform (FFT).

Index Terms—Electromagnetic scattering, Monte Carlo meth-
ods, rough surfaces.

I. INTRODUCTION

T HE scattering of waves by random rough surfaces at
low-grazing angles (LGA’s) has important applications in

remote sensing of oceans and land [1]–[3]. At such large angles
of incidence, the shadowing effects are important, therefore,
the classical Kirchhoff method is not applicable. The small
perturbation method (SPM) has been used to analyze scattering
for such a problem. New analytic methods such as the small
slope approximation [4] have also been used. Recently, Monte
Carlo simulations of direct solutions of the wave scattering
problem have become a popular approach because of the
advent of modern computers and the development of fast
numerical methods. The most common method that has been
used in numerical simulations is the integral equation method
[5]–[13]. But at low grazing, the wave can go through multiple
scattering on the surface. To simulate the phenomenon with
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Monte Carlo simulations thus requires a long surface. The
use of a long surface means that there are large numbers of
surface unknowns and a more powerful numerical method
becomes necessary. Over the past few years, we have de-
veloped the banded-matrix iterative approach/canonical grid
method (BMIA/CG) that permits the solution of large-scale
random rough surface problems [14]–[18]. The essence of
the method consists of decomposing the interaction into near-
and nonnear-field interactions. The nonnear-field interactions
are then expanded on a canonical grid, which is a horizontal
surface in this case so that the fast Fourier transform (FFT) can
be applied. The ability to solve a large surface problem allows
us to tackle the near-grazing incidence problem [16], [18].

In this paper, we extend the method to treat scattering from
dielectric one-dimensional (1-D) random rough surfaces at
near grazing incidence. Both TE and TM cases are studied.
Of particular interest is the ratio of TM to TE backscattering.
It is well known that the small perturbation method predicts a
large ratio of TM backscattering to TE backscattering [19]. In
our numerical simulations, we illustrate results using surface
lengths of up to 1000 wavelengths and incidence angles
between 80 and 85�. The dielectric constants of the dielectric
surface are chosen to simulate rough soil surfaces with varying
soil moisture contents. Numerical results indicate that the ratio
of TM to TE backscattering, though large, is at a much smaller
value than that predicted by the small perturbation method. In
Section II, we give the formulation of the integral equation.
Two unknowns are required for each sample point on the
penetrable surface. We use an incident wave that is tapered in
its spectral domain. In Section III, we present the extension of
the BMIA/CG method for the penetrable case. The nonnear-
field interactions are computed simultaneously using FFT’s
upon a Taylor series expansion of Green’s functions about a
flat surface at the mean value of the surface height. Due to
the presence of the extra set of unknowns@	=@n, the banded
matrix in the perfectly conducting case becomes four banded
submatrices in the penetrable case. In Section IV, we illustrate
numerical results of scattering of soil surfaces of various soil
moisture contents up to a surface length of 1000 wavelengths
for incidence angles between 80� and 85�. Backscattering
coefficients of TM and TE waves for various soil moisture
contents are tabulated. For cases of large permittivity, we
also use a discretization of 20 points per wavelength to
ensure accuracy. Numerical results of soil surfaces indicate
that the TM backscattering is larger than TE. The difference
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increases as one gets closer to grazing. The difference also
increases when the relative permittivity increases. The results
are compared with the small perturbation method (SPM). The
numerical results are significantly different from that of SPM
due to multiple scattering. Numerical simulation gives much
larger backscattering coefficients and a much smaller TM to
TE ratio of backscattering than SPM. For the case of larger rms
height, we also use additional horizontal surfaces that allow
us to limit the bandwidth of the near interaction terms.

II. I NTEGRAL EQUATION FORMULATION

The scattered field from a penetrable rough surface can
be solved using coupled integral equations. If the fields on
either side of the surfaceS are denoted by	1 and 	2,
respectively, for medium 1 and medium 2, they satisfy the
following equation [19]:

h1	i(r) =h2	in(r) +

Z
S
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	i(r
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@Gi(r; r0)
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h1 = 0:5 and h2 = 1 when i = 1; h1 = �0.5 andh2 = 0
when i = 2; where

R
S

denotes a Cauchy integral andGi is
the Green’s function of theith medium. Functions	1 and	2

are related through the boundary conditions on the surfaceS,
namely

	1(r) = 	2(r) and
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where� equals�2/�1 and"2/"1 for TE and TM polarization,
respectively. Applying the boundary conditions in conjunction
with the collocation method, we arrive at a matrix equation

	in(xm) =
NX
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where F1(x) = 	1(x) and F2(x) =p
1 + [f 0(x)]2 (@	1=@n), respectively, and xm =

(m � 0.5)�x � L=2. Function f(x) represents the surface
height at locationx. For completeness, the matrix elements
amn, bmn, cmn, anddmn [17] are given here: form 6= n
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wherermn =
p
(xm � xn)2 + [f(xm)� f(xn)]2 andk1 and

k2 are the wavenumbers in Region 1 and 2, respectively: for
m = n
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where 
m =
p
1 + [f 0(xm)]2, e = 2:718281 83, f 0(xm),

andf 00(xm) represent the first and second derivative off(x)
evaluated atxm, respectively. Note that when the dielectric is
lossy,cmn anddmn involve evaluations of Hankel functions
with complex argument.

In the conventional matrix solution,F2 is eliminated in (3)
through the relation in (4). However, such elimination is not
possible for an iterative solution for a large-scale problem. In
an earlier implementation of the BMIA for the penetrable case
without the use of FFT’s [20], the two sets of unknownsF1

andF2 are labeled alternately along the 1-D surface discretized
with N sample points resulting in the matrix equation as shown
in (13) at the bottom of the page.

This will effectively double the required bandwidth of the
stored near-interaction terms for the original BMIA approach.
In this paper, we arrange the matrix equation as in (3) and (4)
as shown in (14) at the bottom of the next page.

Similar to the BMIA/CG method, the strong near-interaction
terms of the submatrices[a], [b], [c], and��[d] are computed
and stored while the weak far-interactions are computed by
FFT’s upon Taylor series expansion of the Green’s function
kernels. Note that the submatrices[a] and[c] are not symmetric
while [b] and��[d] are. The stored portion of the matrix is

2
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Fig. 1. Integration contour for the incident filed.

denoted by the shaded region as shown in

(15)

Equation (14) is to be solved by using the conjugate gradient
method [21]. The incident field at the point[x; f(x)] on the
surface is given by

	in[x; f(x)] =
g

2
p
�

Z
1

�1

dkxe
i(kxx�kzz)e�[(kx�kix)

2g2=4]

(16)

wherekix = k1 sin �i, k2z = k21 � k2x with a proper choice
of the branch cut,k1 is the wavenumber of the incident field
and ane�i!t convention is used. The advantage of (16) is that
it obeys the wave equation exactly. To facilitate numerical
evaluation of (16), a complex contour integration parallel
to Refkxg axis is carried out with Imfkxg = 2x=g2 and
indentations are made for the vertical branch cuts atkx = �k1.
Here g is the parameter that controls the tapering of the
incident wave. The deformed contour is shown in Fig. 1. Note
that the integration contours forx > 0 andx < 0 are different.
The contours are chosen so that the integrals converge rapidly.

III. T AYLOR SERIES EXPANSION

OF GREEN’S FUNCTION KERNELS

The use of the FFT’s to compute the nonnear interaction
of the matrix–vector multiplication in solving (14) with an

iterative procedure is similar to the procedure described in
[18], which addressed the TE incidence and will not be
repeated here. We would, however, include Taylor series
expansion of the Green’s function kernel for both theH(1)

0

and H
(1)
1 here. For the Hankel function of the zeroth order

we have
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wherexd = (x� x0) andzd = (z � z0) = f(x) � f(x0). The
first three terms of the expansion coefficients are given as
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For the Hankel function of the first order we have
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The first three terms of the expansion coefficients are given as

a0(xd) =
H

(1)
1 (kxd)

xd
(22)

a1(xd) =
0:5kxdH

(1)
0 (kxd)�H

(1)
1 (kxd)

x3d
(23)

a2(xd) =
8H

(1)
1 (kxd) � 4kxdH

(1)
0 (kxd) � k2x2dH

(1)
1 (kxd)

8x5d
:

(24)

The accuracy of the Taylor series expansion depends on
the ratio of zd=xd, which in turn dictates the bandwidth of
the stored near interactions as shown in the shaded region
of (15). For random surfaces of large rms heights, Taylor
series expansion about the canonical grid point ofz = 0 is
not sufficient. Instead, Taylor series expansion about several
canonical grid points or multiple flat surfaces may be required.
Fig. 2 shows the canonical grids for the modified Taylor
series expansion. Note that[xi; zio] lies on a flat surface with
f(xi) = m�z. The Taylor series expansion about a multiple
flat surface is given as

H(kr) �= z0di(g0z
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Fig. 2. Canonical grid for modified Taylor series expansion.

Here, H represents bothH
(1)
0 and H

(1)
1 =r; gn =

@nH(kr)=@znio, zndi = (zi � zio)n, and zndj = (zjo � zj)n.
With this type of expansion, the bandwidth of the strong
near-interaction can be reduced substantially. However, the
tradeoff is that two-dimensional FFT’s are required for the
weak far-interaction computations. The optimal choice of
bandwidth and number of canonical grid point requires
extensive numerical experiments and will not be addressed
here.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we illustrate the numerical results of bistatic
scattering and backscattering coefficients for different inci-
dence angles and different polarizations using soil surfaces
with various soil moisture contents. At L band (1.43 GHz),
the relative permittivity of soil at soil moisture of 10, 15, 20,
25, and 30% are5:56 + i0:6, 10:8 + i1:335, 17:7 + i2:26,
24:6 + i3:185, and31:5 + i4:11, respectively, [22]. For ease
of reference, we have tabulated the parameters of the various
number of cases that we have computed in Table I. For all the
cases in this paper (except Fig. 3), the random rough surfaces
are Gaussian random rough surfaces with given rms height
h = 0.2� and correlation lengthl = 0.6�. For the case of
Fig. 3, we choose rms heighth = 0.05� and correlation length
l = 0.3�. The tapering parameter is chosen atg = L=8 to
ensure that the effects of edge diffraction is not important for
the incident and scattering angles of interest.

First, we compare the results with the small perturbation
method. Next, we illustrate the convergence test and CPU
comparison. For a fixed incidence angle, the accuracy of
the results can decrease with the increase of scattering angle
toward�90�. An important criterion for all acceptable result
is that it gives an accurate result in the vicinity of the
backscattering direction. Then we illustrate and discuss the
results of TE and TM backscattering for various parameters
of interest. Finally, we compare the results of multilevel
expansion with a single level.

A. Comparison Between Numerical Simulation and
SPM for the Case of Small RMS Height and Slope

In Fig. 3, we compare the bistatic scattering coefficients for
angles in the vicinity of backscattering direction of case with

Fig. 3. Comparison of bistatic scattering coefficient at near backscattering
direction between SPM and numerical simulation with the following param-
eters: rmsh = 0.05�, l = 0.3�, �i = 80�, "r = 5.56+ i0.6, L = 200�,
g = L=8, and number of realization= 50.

TABLE I
THE PARAMETERS FOR THEVARIOUS CASES

rms height 0.05 wavelength, correlation length 0.3 wavelength
at incidence angle 80� between numerical simulation and
SPM. For ready reference, the bistatic scattering coefficients of
a 1-D dielectric rough surface obtained by the first-order small
perturbation method are listed in the Appendix. For numerical
simulation, we use a surface length of 200 wavelengths and the
results were averaged over 50 realizations. The two results are
in agreement for scattering angles between�75� and�85�.
For this case,kh is at a relatively small value of 0.31, so that
multiple scattering effects become less important. Thus, the
first-order SPM result is reasonably accurate.

B. Convergence Test and CPU Comparison

1) Convergence with Respect to Surface Length and Number
of Realizations: In Fig. 4, we compare the bistatic scattering
coefficients at the near backscattering direction for Case 1
and Case 2 with permittivity of 10% soil moisture at an
incidence angle 80�. We plot two results for Case 2. One
is averaged over 50 realizations and the other is averaged
over 100 realizations. The results indicate that there is little
difference between 50 and 100 realizations for both TE and
TM waves. This demonstrates convergence with respect to
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Fig. 4. Comparison of bistatic scattering coefficient at near backscattering
direction between Case 1 and Case 2; rmsh = 0.2�, l = 0.6�, �i = 80�,
"r = 5.56+ i0.6, g = L=8, and number of realization= 50 for L = 500�.

Fig. 5. Comparison of bistatic scattering coefficient at near backscattering
direction between Case 3 and Case 4; rmsh = 0.2�, l = 0.6�, �i = 85�,
"r = 5.56+ i0.6, g = L=8, and number of realization= 20.

realization. The differences between results of surface lengths
500 and 200 wavelengths are slightly bigger. Nevertheless,
the differences at the backscattering angle of�s = �80� are
only 0.78 dB for TE and 0.74 dB for TM. This indicates
that a 200 wavelength surface length is large enough for an
incidence angle of 80�. In Fig. 5, we show convergence with
respect to surface length at an 85� incidence angle using 1000
and 500 wavelengths of surface length. The two results are
in agreement at backscattering of�s = �85�. This shows
that surface length of 500 wavelengths is large enough for an
incidence angle of 85�.

2) Convergence with Respect to Number of Sampling Points
per Wavelength:For problems of high soil moisture, the
relative permittivity can be more than31:5 + i4:11. It may
become necessary to use a sampling of more than 10 points per

Fig. 6. Comparison of bistatic scattering coefficient at near backscattering
direction between Case 5 and Case 6; rmsh = 0.2�, l = 0.6�, �i = 80�,
"r = 17.7+ i2.26,g = L=8, L = 200�, and number of realization= 50.

TABLE II
THE CPU AND MEMORY REQUIREMENTS FORONE REALIZATION

wavelength. In Fig. 6, we provide the comparison of using 10
points per wavelength versus 20 points per wavelength for 50
realizations with a surface length 200 wavelengths and relative
permittivity 17:7+ i2:26. The backscattering results are about
1.08 dB different for TE wave and 2.75 dB different for TM
wave. This indicates that 20 points or more per wavelength
should be used if more accurate results are desired, particularly
for TM waves. This is because most of the incident wave was
transmitted to a lower medium of high permittivity for the TM
case and was scattered to the upper medium for the TE case.

3) Comparison of CPU Time and Memory Requirements:
Sample results are performed using an Alpha Server 4100.
The CPU and memory requirements for one realization are
tabulated in Table II. The indicated CPU time and memory
are much lower than that of using direct matrix inversion.
Actually, the use of direct matrix inversion is not workable on
the Alpha Server because of the large memory requirement for
10 000 surface unknowns. Using the method in this paper, the
case of 10 000 surface unknowns only requires a CPU time of
about 6 min for TE and 3 min for TM for one realization.

C. Variation of Backscattering Coefficients with Soil
Moisture Contents and Comparison with SPM

In Fig. 7, we plot the backscattering coefficients as a func-
tion of soil moisture contents at an incidence angle of 80�. For
the case of a surface with soil moisture of 10 and 15%, we
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Fig. 7. Comparison of the variation of backscattering coefficients with
percent of soil moisture contents between numerical simulation and SPM;
rms h = 0.2�, l = 0.6�, �i = 80�, g = L=8, L = 200�, and number of
realization= 50.

Fig. 8. Variation of ratio of backscattering coefficients of TM and TE with
percent of soil moisture contents and comparison with SPM; rmsh = 0.2�,
l = 0.6�, �i = 80�, g = L=8, L = 200�, and number of realization= 50.

use 10 points per wavelength and 20 points per wavelength
for other cases because of the large relative permittivity.
The results are tabulated in Table III for better quantitative
comparisons. We also show the SPM results for comparison.
We note that as soil moisture increases, the backscattering
coefficients increases. They have a large increase at small
moisture. The rate of increase levels off at high soil moisture.
In Fig. 8, we plot the ratio of TM to TE backscattering as a
function of soil moisture. We note that TM backscattering is
much larger than TE backscattering. The ratio also increases
as a function of soil moisture. This shows that the ratio of
TM to TE backscattering can be an important indicator of soil
moisture in remote sensing applications. The comparison with
SPM results show that the latter are erroeous. SPM gives much

TABLE III
BISTATIC SCATTERING COEFFICIENT AT BACKSCATTERING

ANGLE AS A FUNCTION OF THE PERCENT OF SOIL MOISTURE

Fig. 9. Comparison of the variation of backscattering coefficients with
incident angles between numerical simulation and SPM; rmsh = 0.2�,
l = 0.6�, "r = 10.8+ i1.335, g = L=8, L = 500�, and number of
realization= 50.

lower backscattering coefficients and also a much larger ratio
of TM to TE backscattering than numerical simulations.

D. Variation of Backscattering Coefficients with
Incidence Angles and Comparison with SPM

In Fig. 9, we plot the TE and TM backscattering coef-
ficients as a function of incidence angle from 80� to 85�.
To ensure accurate results, we have used a surface length of
500 wavelengths. The results are also tabulated in Table IV
for better quantitative comparisons. The ratio of TM to TE
backscattering is plotted in Fig. 10. Both TE and TM backscat-
tering decreases as a function of incidence angle. However,
the ratio of TM to TE backscattering increases with incidence
angle. Again the SPM gives much larger ratio than numerical
simulations.

E. Comparing Results of Multilevel Expansion
with a Single Level

In Fig. 11, we compare the results of the BMIA/CG method
with the multiple-level expansion method for one realization
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Fig. 10. Variation of ratio of backscattering coefficients of TM and TE
with incident angles and comparison with SPM; rmsh = 0.2�, l = 0.6�,
"r = 10.8+ i1.335,g = L=8, L = 500�, and number of realization= 50.

TABLE IV
BISTATIC SCATTERING COEFFICIENT AT BACKSCATTERING

ANGLE AS A FUNCTION OF THE INCIDENT ANGLE

with rms height 0.2 wavelength, correlation length 0.6 wave-
length, surface length 50 wavelengths, and relative permittivity
5:56+i0:6 at an incidence angle of 45�. The two results are in
good agreement. The half-bandwidth used for BMIA/CG is 20
wavelengths. The half-bandwidth used for the multiple-level
expansion is five wavelengths. This indicates that the multiple-
level expansion is useful for cases with larger rms height, as
it accommodates a substantially smaller bandwidth.

V. CONCLUSIONS

In this paper, we have modified the BMIA/CG method
to perform Monte Carlo simulations of random penetrable
surfaces. The method permits the solution of low-grazing
backscattering problems with large surface lengths at modest
CPU requirements. Numerical results of soil surfaces indicate
that the TM backscattering is larger than TE. The ratio of
TM to TE backscattering increases as one gets closer to
grazing. The ratio also increases when the relative permittivity
increases. Comparing with first-order SPM indicates that the
latter can be erroneous by many decibels.

APPENDIX

The bistatic scattering coefficients of a 1-D dielectric rough
surface with Gaussian power spectrum using small perturba-

Fig. 11. Comparison of bistatic scattering coefficients using BMIA/CG and
multilevel expansion method for one realization. TE wave; rmsh = 0.2�,
l = 0.6�, �i = 45�, "r = 5.56 + i0.6, g = L=8, L = 50�,
BMIA/CG half-bandwidthb = 200 (20 wavelengths), multilevel expansion
half-bandwidthb = 50 (five wavelengths).

tion method are

�aa(�s) = 4k3 cos2 �s cos �ifaaW (k1x � k1xi)
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2
� k2

1xi
; k2z =

q
k2
2
� k2

1x
:
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