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Application of Iterative Moment-Method
Solutions to Ocean Surface Radar Scattering

D. J. Donohue, H.-C. Ku, and Donald R. Thompson

Abstract— Numerical methods such as the banded matrix = One approach to reducing the number of computing opera-
iterative approach (BMIA) represent a major advance in the tions required to solve the rough surface scattering problem
direct numerical simulation of rough surface-wave scattering. via method of moments is the banded matrix iterative ap-

This paper considers the application of iterative methods such . e
as the BMIA to ocean-radar scattering. It is shown that for proach (BMIA) [2]-[6]. The BMIA is based on splitting

typical microwave radar frequencies and sea-surface roughness, the field/surface current interaction into near (strong) and
the BMIA is actually of limited use. A more general iterative far (weak) components. A solution to the surface current is
solution based on a multigrid decomposition and the generalized gptained by iteratively inverting the banded strong interaction
conjugate residual (GCR) method, is thus developed. The multi- o, 5riy \while updating (or correcting) the solution with the

grid approach is ideally suited to the broad-band ocean surface, . . . . . .
as it solves the scattering problem on a sequence of grids, ealchweak_ interaction (se_e Section III)_. In addition to t_he iterative

corresponding to a different range of spatial frequencies or length Solution, further savings are obtained by expanding the weak

scales. This approach is applied here to several sea scatteringinteraction about a canonical grid (CAG), the mean flat surface
problems, including very low grazing angles and both horizontal 1o

and vertical polarization. Good agreement is obtained with per- _
turbation theory in the appropriate limits and several qualitative The BMIA/CAG method and a related approach, the sparse

characteristics of radar backscatter data are reproduced. matrix flat-surface iterative approach (SMFSIA), have been
successfully applied to scattering from one-dimensional (1-D)
and 2-D random rough surfaces with rms heights comparable
to or smaller than the incident wavelength. However, at
|. INTRODUCTION microwave radar wavelengths (several millimeters to about

HE need for numerical methods in the study of lowPN€ Meter), rms heights for fully developed seas can be
T grazing-angle scatter from rough surfaces is now wejjgnificantly larger. Under these conditions, we have found

established. Effects such as multiple scattering, shadowifige BMIA to be of limited use. Through extensive calcu-
tions, it is shown (Section IV) that the iterative approach

and diffraction, which are difficult to model in theory, becom : !
frequently fails to converge or converges to an incorrect

increasingly important in the grazing limit. Unfortunately, i , s i s
even numerical methods encounter difficulties in this limit. 1§elution. This behavior has a simple explanation. The weak
many cases, the numerical method either breaks down or fRteraction requires that two points on the surface have a much
application becomes computationally intensive to the point B'9€r separation along the mean plane than off of the mean
being impractical. plane. The minimum Weak-lnter_actlon dlstan«z@)(a_long the
Direct numerical simulation of the scattering problem vif'€an plane therefore grows with the surface height. For the
the method of moments is apparently one of the few suffipical radar-ocean prob_lem, the valuergfrequwed to avoid
ciently accurate methods for low-grazing-angle scatter. THi@nvergence problems is so large relative to the total surface
paper considers the application of moment methods to ocd@hgth in the simulation that little or nothing is gained by
surface radar scatter. Given the typical range of radar wawglitting the interaction. _ _
lengths, illumination footprint size, and ocean surface length Since our objective is to simulate low-grazing-angle ocean
scales, this problem usually requires a large number of Jijdar scatter, we investigate alternative methods for improving
knowns (V), perhaps numbering in the tens of thousandge efficiency of the full-matrix method of moments solution.
for two-dimensional (2-D) models. Problems of this size cddur approach (described in Sections Il and Ill) begins with
often be impractical, even on the current generation of high-decomposition of the computational domain into multiple
performance workstations. Given that the usual approach@yerlapping grids. The multigrid method has been extensively
the random ocean surface problem is a Monte Carlo methd@plied in computational fluid dynamics [7], [8]. The solution
in which scattering statistics are generated over a large numBBr €ach computational grid is accelerated by a generalized
of surface realizations and that one is typically interested inc@njugate residual (GCR) method. This approach, while not as
range of parameters such as wind speed and incidence angféicient as the BMIA/CAG with small interaction distance, is

Index Terms—Sea surface electromagnetic scattering.

the computational challenge is even more apparent. considerably faster than direct solution by LU decomposition
and has the added benefit of a significant reduction in memory
e oo i e Ao Popoee oo Hop{Some duaniiative comparisons are made in Secton V). Lie
University, Laurel, MD 20723 ngA. Y v P“¥Re BMIA/CAG, the multigrid GCR method is, in principle, an
Publisher Item Identifier S 0018-926X(98)01047-3. exact solution to the moment method, but with no limitations
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Fig. 1. Coordinate system and geometry for modeling wave scattering from a 1-D randomly rough surface. The roughs sisrfdescribed by the
height = = f(«) above the mean plane.

on surface height. In this paper, we apply the method this paper, we consider only the 2-B, (z) scattering problem
scattering of horizontal and vertical polarized radar frorfFig. 1).

perfectly conducting realizations of the ocean. The realizationsUsing (3), the surface-current integral equation may be
are generated by a well-known spectral method [12] withwaritten as a sum of two integral terms

wind-dependent spectrum spanning the gravity to capillary .. .

wave ranges [13]. Particular attention is paid to backscatterinél' (x)

and low-grazing angles. - /m dx’iHé”(/cJ[m — 2P+ @) = F@)P)

Il. METHOD OF MOMENTS FORMULATION cu(x")U(rg — |2 — ')

(x
This section describes the structure of the interaction matrix 4+ /m dx’iHé”(k\/[x — 2P+ [f(x) — J@)]P)
and, for the BMIA, the decomposition into strong and weak —oo 4

components. We consider both horizontal (Dirichlet) and verti- ~u(@U(Jz — 2’| —rg) 4)

cal (Neumann) polarized electric fields incident on a perfectly _ . . _
conducting surface. Where U () is the heaviside step function. The first integral

term in (4) corresponds to strong interaction between source
A. Dirichlet (H-pol) and field point [z —_x’| < _rd), while the s_econd term
) o ] ) corresponds to weak interactiop: & «'| > r;). It is expected
For this case, we follow the derivation given in Ts&@t@l. that due to the asymptotic behavior of the Hankel function,
[2]. Th_e starting ppint is the surface current integral equatiqpe strong interaction dominates the solution for
for a field ¥ incident on the rough surface According to the method of moments, (4) is discretized and

. becomes
0=0"r) —/ de’G(r, ¥ )u(r’) r,¥ onS (1)
5 ZX =C (5)
where the integration (source point) is over the surface

¥ = /i + f(z')%. The source functiom contains the surface where the unknown column vectd discretizes the source

functionu andC is the discretization of the incident field. For

current
these calculations, we use the simplest discretization consisting
N df (=) : oU(r’) of the point matching method with pulse basis functions [1].
u(r) =4 /1+ de’ o/ (2) For the BMIA, the interaction matri¥Z is split into strong

_ _ o and weak components, i.&,= Z(*) + Z(*) where the strong
where ¥ is the total field (incident+ scattered). The 2-D yatrix can be taken directly from (4)

free-space Green’s function is given by

. 7) =
7 5 , i
G(r,v') = 7 H (kle —x']) @ (ia
! —H (/T = T+ 1 = FT) 0<i—jl < Ry
WhereHé” is the Hankel function of the first kind order zero, { A 1) [ kA = .
and k(= 27 /}) is the free-space wavenumber. Note that the THO 2e V L+ b=
integration in (1) is over the mean plane € 0), hence, the 0 li —j| > Ra

Jacobian(y/1 + f*?) is included in (2). Also note that for (6)
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The quantityA is the sampling interval and we hawve=¢A, and mean plane is given by

i = flz), fi = df(x;)/de, and R4jA = r;. The self-

impedance or diagonal term £ j) is obtained by integrating dS' =dx'\/1+ f'2. (10)
the Hankel function over a small neighborhood absutind

using a first-order Taylor series expansion for the surfa@mbining (8)—(10), and discretizing as in (6), the off-diagonal

height f(x;). terms of the interaction matrix for vertical polarization become
For the weak interaction matrix, Tsaregd al. [2] assume
that the ratiolf; — f;|/|z; — x;| is much less than one. This _ —ikA H (b\/Tei =, + i — [;1°)
will always be true provided the strong interaction distance hi T Ty , =3 : T
. . . \/[l‘,—l‘]] +[fi = 13
rq4 IS sufficiently large compared to the maximum surface , o 1
height. Under this assumption, the Hankel function may be A= f) = e —w)] i# T (11)

m

2

fi— i

l‘i—I]'

approximated by a truncated Taylor series expansion about . . . o
the mean plane or canonical grid. The expansion has the foHﬂ“k_e the Dirichlet case (6), the mteractlon_ mat(r:))< IS honsym-
metric due to the ternf?. The Hankel functionZ; * may be
Hél)(k'\/[xi — P+ — B expanded about the canon!cal grld_ under the assqmpﬁ;om_
fil/lzi — =;] < 1 or weak interaction. The weak interaction
M matrix is then made cyclically symmetric by absorbing the
= Z am (| ; = ;1) l (M) nonsymmetric ternf! into the unknown; . The product of the
m=0 symmetric weak interaction matrix with the modified unknown
For the calculations shown in Sections IV-VI, a minimum o¥ector may then be computed in ord&rlog (V) operations
five expansion termsM = 4) are used. as for horizontal polarization.

The iterative solution of (5) (discussed in Section Ill) in- For the diagonal or self-impedance term, we first recognize
volves products of the weak interaction matrix with successiv@at the singularity at = r’ in the scattered field integral of
iterations of the unknown vectd. With the expansion shown (8) contributes a term that is proportional to the total figd
in (7), the weak interaction matrix becomes a sum of matricaghich, in this case, does not vanish on the scattering surface.
each of which may be written as a translationally invariadifter integrating out the singularity, the integral equation (8)
matrix that is pre- and post-multiplied by diagonal matrice®ecomes [9]

Because of its cyclical symmetry (matrix elements depend only ,

on the differenceli — j|), the product of a column vector T(r) = e (r) _|_/ dS/\p(r/)m r,r’ ons

with the translationally invariant matrix may be computed 5 on’

in order N log (N) operations. Reducing this product from (12)
order N? operations to orderV log (V) is one of the key

features of the BMIA/CAG method. It must be noted, howeveyhere the integration is now the principal value type. The
that the iterative solution of (5) also requires an inversion §€lf-impedance term is now calculated by integrating over the
the banded strong interaction matrix; thus, the key featu¢€incident field and source elementf j), taking the field¥
of the BMIA/CAG can only be exploited in cases wherd0 be fixed. This integral requires a second-order Taylor series
the bandwidth &,) of the strong interaction remains smalexpansion of the surface heigfitz; ) and an additional first-
compared to the total problem siz&'). This requirement order expansion of the slop€(z;). Using (9), (10), and (12)
imposes practical limitations that are further examined Mith the appropriate expansions, we obtain
Sections IV and V.

1 Afl
Zi’i:§_4 1f7 12 (13)
B. Neumann (V-pol) (14 fi7)
The surface current integral equation for a Neumann fieldignich, along with (11), completes the derivation of the inter-
. AG(r, 1) action matrix for vertical polarization.
U(r) = ¥'"(r) —I—/ ds’ \I!(I")T’/ r,r onsS
S n

8) C. Scattering Cross Section

_ _ _ _ The numerical method outlined above is applied in this
whereV is again the total field and/dn’ (_Jlenotes the gradient paper to calculating the normalized scattering cross-section
normal to the surface. The normal gradient of the 2-D Greerg$ the rough surface. For the incident field, we use the well-

function (3) is given by known tapered plane wave [12]
IG(x,x') _ —ik H{"(kle—v')) [ fle—2') = (: = &) W () = (W ()] s 1o 0% (14)
on' 4 |r — ¥/ V14 f2 '
(9) where
Note that unlike (1), the integration in (8) is written in terms W(r) = 2z + 2 tan 0,)/g” — 1 (15)

of surface coordinates. The transformation between the surface (kg cos 0;)?
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andg is a length scale that determines the taper of the incidéfit i.e., the spectral condition number, the ratio of the
wave. For most calculations, we sgt= L/4, where L is maximum and minimum eigenvalues ¥ ~'Z||, should not
the total length of the scattering surface. With this choice bk large. Herd| - || is the standard, Euclidean norm. One
incident field, it has been shown [2] that the normalized fapossible choice foZ that meets this requirement is the strong
field scattering cross section for the Dirichlet problem is giveinteraction matrix, i.e.Z = Z{*). With this choice, it can be
by shown that the method of successive substitution proposed by
Tsanget al.[2] is a special case of the preconditioning method
wherea = 1. However, in addition to the choicé = Z*)
and o« = 1, the BMIA/CAG also approximates the residual
T2 o,y 10 r=C-ZX byr~ C— (20 +2")X, wherez( + 2"
8mgk/m/2 cos 0; (1 - W) differs from the original operatoZ when retaining a finite
‘ number of terms in the CAG expansion. It is demonstrated
From (4) and (5), the source functianis given in discrete in Sections IV and V that when applied to large-amplitude
form by the elements of the column vectsr. In Section v, rough surfaces, the BMIA/CAG may converge to an incorrect
we show that the calculation of (16) is, in some cases, sensitB@ution because of the approximation error in the residual. For
to the choice of numerical integration rule. calculations in this paper, a preconditioning approach based
For the Neumann problem, the equivalent definition of then (19) is used without approximating the residual, thereby
normalized scattering cross section is given by (17), shovawoiding convergence errors. R
at the bottom of the page. In this case, the source function orThe inverse of the preconditionét in (19) can be de-
total field ¥ on the scattering surface is again given in discretermined by standard LU decomposition; that is, a one-time
form by the elements of the column vectHr. forward sweep requiring ordér’ N/2 operations wheré(<
N) is the bandwidth of the preconditioner. The stored matrix
is then repeatedly used for backward substitution. The more
efficient and well-known conjugate gradient method can also
We present two approaches for the iterative solution gk applied, however, this method is best suited to a positive
(5). In approach |, the solution is generated on a singfinite (symmetric/Hermitian) operator, which is not the
grid containing the total number of discretized poifs In  case for either polarization. Another popular method, the
approach 11, the solution is generated on a sequence of grigeralized minimal residual (GMRES) [10], is valid for both
from the finest grid with grid spaca to the coarsest grid with gymmetric and nonsymmetric systems. The GMRES method
grid space’ A (p is the grid level). Approach Il is particularly n55 4 fast convergence rate, but requires a huge storage

00 2
‘/ e—ik[sin As+cos Hsf('r)]u(x) da

aH(Hs)

Il. | TERATIVE SOLUTION

attractive for a large number of unknown¥ [> O(107)]. space. A variation called restarted GMRES can reduce the
_ _ storage requirement, however, this method requires storage
A. Single-Grid Method of previous iterations, which would become very expensive

Here, we introduce the preconditioning method, whict @ three-dimensional scattering model because of the large
consists of solving an approximate problem whose solutiGWimber of unknowns. For the calculations in this paper,

can be easily related to that of the original problem. In plagée use the generalized conjugate residual (GCR) method
of (5), we solve [11] as our iterative scheme. This method, described in the

Appendix, is rapidly convergent for both symmetric (H-pol)
7 'Z7X =7""'C. (18) and nonsymmetric (V-pol) systems.
The preconditioned GCR method on a single grid is a
An iterative solution to (18) is given by more general form of the BMIA, which has been successfully
applied to rough surfaces with rms heights comparable to
ZX"* = ZX" + a(C — ZX") (19) or smaller than the incident wavelength. For larger surface
heights, however, the GCR method with a preconditioned
wheren is the iteration numbery is a free parameter whoseoperator of reduced bandwidth (as in the BMIA) cannot
optimal value is described in the Appendix, afld is a guarantee convergence unless the bandwidth is significantly
preconditioner. A good preconditioner often requires: 1) legscreased (see calculations in Sections IV and V below). This
memory and inexpensive effort to invert the resulting matrisesults in a tremendous storage requiremenivéffor H-pol
and 2) a fast convergence rate. Fast convergence requires émat2N6 for V-pol and it slows the solution considerably.
the preconditioner should be close to the original operatdn alternative method for reducing the storage space and

2

k cos® 6, / e~ iklsin foteos of (@)l — J/(x) tan 6,]¥(z) dx

6,) = — 17

ov (6) , 1+2 tan’ 6; A7)
8mg/m/2 cos ;[ 1 — WG co? O
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improving the convergence while retaining the preconditionegtid solution has converged, the residuglwill be zero and

GCR approach is now described. the solution of (20) becomes
Xpt1 = IZ+IXP (22)
B. Multigrid Method as required. When the residual is nonzero, the left-hand side of

The objective of the multigrid method [14], [15] is to(20) acts as a forcing term for the coarse-grid correction and
remedy the deficiency of the traditional single-grid methodhe correction taX,, 1 must be transferred back (prolongated)
For elliptic problems such as the Helmholtz equation, duririg the fine grid, i.e.,
the iteration on a single grid, high-frequ_ency errors with short X = XO 4t (X, — I
wavelength comparable to the mesh size are quickly damped v v b ? P+l
(smoothed), but low-frequency errors with long wavelengtithere the superscript “new” represents the updated informa-
stay intact [16]. That is why most iterative schemes woron during the multigrid iterative solution. This is vital for the
very well for the first several iterations and then tend tduccess of the scheme. Changes in the variables are transferred
slow toward convergence. The multigrid method enables ushiack to the fine grid rather than the variables themselves.
efficiently remove the low-frequency errors by projecting them The coarse grid operatd, is a projection of the original
to a coarser grid on which the errors become more oscillatapperatorZ onto thepth grid. For standard coarsening (doubling
and, thus, are more amenable to iterative schemes. The solutibrthe mesh size to the next grid level), the projection is
is generated on a sequence of grids spanning the finest giichightforward. Assuming tha} and j, are the indexes of
spacingA to the coarsest spacirgf A wherep is the grid the mesh point on thgth level, the matrix elemeri, . = is

13

level. The decomposition into multiscale grids is ideally Smte&iven by the appropriate expressions for H-pol or TVZF)OI [(6)

to ocean scatter where the sea surface spectrum spans ann()il) and (13), respectively] with indexes given by
scales of roughness. '

To develop the multigrid solution, first defing = C — i=2(, —1)+1
Z,X,, which corresponds to the residual on the finest grid =20, — 1)+ 1. (24)
(the original problem). For calculations in this paper, we use r
the “standard coarsening,” which involves doubling the mesf addition, the grid spacing\ is replaced byA, = 27A,
from one grid to the next coarsest grid and also smoothing t8gth 17+, the prolongation operator from the coarse grid to
residual f = f(ro), wheref stands for products of a sequencene fine grid, and_ ,, the restriction operator from the fine
of operators] to the next coarsest grid (a process known &gy to the coarse grid, can be simply constructed through
restriction [14], [15]). Whenever the problem is solved on thg,agr interpolation [14].
coarse grid (low-frequency or large-wavelength domain), the the order in which the grids are visited is called the multi-
coarse-grid correction for the variable transfers the correctigg cycle or multigrid schedule. If the order is fixed in advance
back (prolongation) to the fine grid (high-frequency or smalfge haye a fixed schedule: if the order depends on intermediate
wavelength domain) to gain rapid convergence. Thus, thgmpytational results we have an adaptive schedule. In this
multigrid method can be viewed as a function to reduce the ner \ve use a fixed schedule, either smoothing the residual
residual on the different frequency domains. The effect of th& the jower coarse-grid level or transferring the coarse-grid
interaction among different grids is complementary. On &, rection to the upper fine-grid level. A complete cycle
coarse grid (levep + 1), the equation solved is an improved.,nsiitutes one multigrid iteration. For comparisons among
approximation to the solution on the fine grid (legglwhere jiterent cycles (fixed schedule), e.g., “V,” “W,” “F,” and
the error components are smoothed. The fine grid SO'“““@awtooth”, the reader is referred to Wesseling [17]. The
in turn, provides a more accurate projection of low-frequen@jicylations in this article use the W-cycle (Fig. 2). For each

X;‘d ) (23)

errors to the coarse grid. _ _ multigrid iteration, the residual on the grid = 0 is first
The interaction between the fine grid and the coarse guthoothed and estimated, then restricted to the next finest grid
can be symbolically correlated by level. In our case, the iterative solution of the surface current

X by the four-grid {4/ = 3) W-cycle can be cast in the form
Zpy1 Xpiy — Zp+1(IZ+1Xp) = IZHPP' (20)
Xoow =X 4 Iz P72y ' B2 ' 22, 325 ' 1275 ' T
Here_,ZpH_ represents the operator o_f (5) on the coarse gr_ld, 7702y ' BZ; ' 132, ' B2; ' TZ; ' 127 T
IZH is an interpolation operator (restriction) from the fine grid (C = X3 (25)
“p” to the coarse grid 4+ 1" X,, is the unknown vector, and 020
the residualr, is defined as which clearly demonstrates the interactions between different
grid levels. The residual is smoothed from grid leyeb p+1
r,=0""r,_ —Z,(X, -L7'X,_) (21) by the restriction process (21), while the coarse-grid correction
from grid levelp + 1 to p is transferred by the prolongation
for p > 1 andr; = I'ry. The left-hand side of (20) is process (23).
the difference between the coarse-grid operator acting onThe correction terms for restricti(Z'gjlngrlrp and for pro-
the coarse grid and the coarse-grid operator acting on ﬂbegationZ;lIg“rpH require a matrix inverse, which can be
interpolated fine grid (which is held fixed). After the fine-obtained at each grid level by the preconditioned GCR method.
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grid level
p=0 (full spectrum) restriction
p=1
p=2
p=3 (long waves)
prolongation

Fig. 2. lllustration of the four-grid X/ = 3) W-cycle. The solution is first generated on the fine grig= 0. Downward arrows represent restriction of
the residual to the next finest grid level. Upward arrows represent prolongation of the coarse-grid correction. At any grid level, the terminusasfian up
arrow is a “new,” or updated solution. The corresponding “old” solution lies to the left along the same grid level.

This approach is crucial to the success of the algorithm, asjt does not meet the convergence criterifng(| < ), the
accelerates the convergence while also reducing the workimgiltigrid iteration is repeated until the convergence check is
space. With the definitol\X,,,, = X, — I’ ,X,, the satisfied.

iterative solution of (20) by the preconditioned GCR method

has the form IV. BMIA/CAG A PPLIED TO LARGE-AMPLITUDE SURFACES

Zer1 AXZLl = Zp+1 AXP L+ a(IZ — Ly AXZH) We have developed a numerical code based on the moment-
(26) method formulation described in Section Il and using the
iterative solution techniques of Section Ill. As mentioned
wheren is the iteration number at each grid level. The coarg#eviously, the BMIA/CAG is a special case of our iterative
grid operatorZ,,, is based on the grid spacing,,; = Procedure (19) with the choices = Z*) and« = 1 and
27+ A. The preconditioned operatfr,, is formed by band- With the residualr = C — ZX approximated by ~ C —
ing the coarse-grid operatdf,,; as in the BMIA strong [Z*)+Z*/]X. In this section, we consider the application of
interaction. This reduces the number of operations requiradnultigrid BMIA/CAG to surfaces whose amplitudes exceed
to inverthJH and also requires a much smaller storage spa# incident wavelength. The BMIA/CAG results are compared
than forZ, ,;. On the finest grid, considerable savings can B#ith a more exact multigrid with GCR calculation, where no
attained by choosing a relatively small bandwidth #y,,. @approximation has been made to the residual.
With the multigrid method, rapid convergence is still possible We first consider a sinusoidal surface described by
because the low-frequency error is quickly smoothed on the I
coarse grids (Section V and Fig. 7 discuss the convergence Jf(x) =/ sin < >
history). On the coarsest grid/, Z, is either set equal to
Zyr (no banding) or a large bandwidth is used to ensure tHz@r perfect conductivity, the solution of a plane wave incident
fast convergence can be reached. The number of operationsthe sinusoid has been studied for many years. Numerical
and memory required here are minimal, since lex¢lis solutions may be obtained by several different methods, how-
considerably smaller than the original problem (level 0). Nogver, with the exception of moment methods, all are limited
that with the choic&, 11 = Zz(:ﬁl, we have a multigrid BMIA by the Rayleigh criterion, i.eh < 0.448A/2x [18]. A set of
method. In this case, a canonical grid expansion (CAG) céiPment method calculations for various ratio§\ and A/A
be implemented on each grid level. for both H- and V-polarizations appear in Zaki and Neurether
When the coarse-grid correction process transfers the cB9], [20]. Our numerical code has been compared with

rection from grid levelp + 1 to p, (26) can be written as the numerical solutions shown in those papers. In all cases,
excellent agreement was obtained. In addition, our numerical

AXDY = AXO I AXOY (27) results are in agreement with an analytical theory [21] based
on the Rayleigh plane wave expansion in the lifait< A.
For surface amplitudes exceeding the wavelength, no reference
Xpew = X9 4 I AX9M (28) Ssolutions exist. However, it is assumed that the convergence
criterion||C—ZX]|| < 10~* is sufficient to guarantee accuracy,
for p = 0. Note that the superscript “new” becomes “old” aftesince the exact residual is used.
updating the information according to (27) or (28). In the W- For these comparisons, the incident plane wave was sim-
cycle diagram (Fig. 2), prolongation from a lower grid levellated by setting the parametgrin (14) to be much larger
is indicated by an upward arrow. The “new” solution is athan the surface length. The length was set t& = 10 A
the terminus of the upward arrow, while the correspondirgp that the normalized scattering cross section closely ap-
“old” solution lies to the left, along the same grid levelproximated that from an infinite periodic surface. To test
Also note from this figure that the lower grids are visitethe BMIA/CAG at large amplitude:, we consider only the
several times during the course of one cycle. For one multigsgecular cross section at H-poly (6;). At other scattering
cycle, the coarse-grid correction process eventually transfarggles, our numerical results reproduce the well-known Bragg
the correction back to the finest grid leyet= 0. If the residual scattering lobes. Calculations of the specular cross-section

+1T¥p

—L/2<z<+L/2. (29)

for p > 0 and
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Fig. 3. Calculation of the specular cross section (H-pol) from a sinusoidal

surface of periodd = 32.7 A and amplitude. (29). The preconditioned Fig. 4. Sample calculation of the direction-independent part of the
GCR or reference solution is shown by the thick line. A set of convergeBijerkaas—Riedel sea-surface elevation spectrum for a variety of windspeeds.
BMIA/CAG solutions are shown for,; ranging from 20 to 266\. The total

surface length is 327, or ten periods j = 7848).

from surfaces ofA = 32.7 A are shown in Fig. 3. The
maximum surface amplitude calculated/is= 10 A, which
is well beyond the Rayleigh cutoff of = 2.33 A.

The thick solid line in Fig. 3 is calculated by multigrid (4-  f(x} /2
grid) preconditioned GCR without strong/weak decomposition -
and it is taken to be the reference solution for the calculation.
The BMIA/CAG solution is then generated for bandwidth
ranging from 20\, or less than one period, to 266 which , :
is a sizable fraction of the ten period surfade=£ 327 )). It 15 e
can be seen that for each choicergf the BMIA result agrees "160-120 -80 40 O 40 80 120 160
with the reference solution to a maximum surface amplitude o ) ]
determined by the ratiﬁd/L. The maximum surface amplitudeg'g' 5. Sample _reallzatloni)f the sea surface based on the Bjerkaas—Riedel

pectrum with windspeed = 10 m/s. The plot is normalized to a radar
is somewhat dependent on the number of terms retainedwiivelength of 10 cm. The random surface realizations are generated by a
the canonical grid expansion. For example, the= 20 A spectral method [12].

calculation agrees with the reference solutionkat= 1 A

and = 2 A using five expansion terms. At = 3 A, nine (djssipation (Cox viscous cutoff range). A plot of the direction-
terms are required. At = 4 A and beyond, the BMIA/CAG independent spectrum at various windspeeds is shown in
(ra = 20 A) does not converge when 15 expansion terms argy. 4. Fig. 5 is a sample realization of the ocean surface
used. The behavior is similar for; = 60 A. In this case, an model for windspeedu = 10 m/s. The plot is shown
accurate solution is obtained at= 5 X by including nine normalized to a 10-cm radar wavelength. For this particular
expansion terms. However, the method will not converge witbalization, the rms surface height is 7.2and the maximum
15 expansion terms fok = 6 A and beyond. We emphasizepeak-to-trough height differential is about 21 It should be
again that each of the BMIA/CAG results shown in Fig. $oted that the dominant contribution to the wave amplitude
is converged. However, because of the approximation magtsmes from wave components near the long-wavelength peak
to the residual by the canonical grid expansion, many of tla¢ the spectrum, shown in Fig. 4. Unlike the typical Gaussian
results are numerically incorrect. At larger amplitudes beyongugh surface with Gaussian spectrum, the sea surface consists
those shown for eachy, the algorithm will not converge, evenof small-scale roughness superimposed on long-wavelength
with a large number of expansion terms. structures with amplitudes that are typically much larger than
A second test of the BMIA/CAG was conducted onhe incident radar wavelength.
random ocean surface realizations. The realizations wereA calculation of the normalized scattering cross section
generated using the spectral technique [12] with a Gaussw@inthe surface shown in Fig. 5 is plotted in Fig. 6. The
normal height probability density function (pdf) and &ross section is shown as a function of scattering angle for
direction-independent sea-surface elevation spectrum [18].fixed incidence angle of 82and for the 10-cm radar
The windspeed dependent Bjerkaas—Riedel spectrum isvavelength. The preconditioned GCR solution (thick line) is
composite of five spectral ranges, from long-wavelengtompared with the BMIA/CAG solution using; = 140 A
gravity waves (Pierson—Moskowitz range) to short-wavelengtin 7/16 L and M = 4 expansion terms. At some angles,
capillary waves (Mitsuyasu—Honda range) and viscoulse error is as large as a factor of two. It is clear that
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5 [ T TABLE |
r multi-grid + GCR COMPUTATIONAL PERFORMANCE ON A SAMPLE SEA SURFACE (N = 12000)
I —BMIA Method Storage  CPU time 1C-ZX| iterations energy
4 H (MB) (min) (<1079 or cycles  integral
LU 2.30 %+ 10°  huge machine limit 1
3
9) BMIA/CAG 1.15 % 10% not converged
AL (5 term, b < 6000)
2 BMIA/CAG 1.17 % 103 not converged
(15 term, b < 6000}
1 BMIA/CAG 1.34+10° 576 4.406 21 1.00984
(5 term, b = 7000)
) ) ) g BMIA/CAG 1.36+10° 624 3.07+1073 22 0.99985
0 ' M M M, (15 term, b = 7000)
70 75 80 85 90 - . _5
scattering angle 9 (deg) single-grid GCR. 35 743 7.88 10 32 0.99985
s
multi-grid GCR 33 761 4.22 % 1075 8 0.99985

Fig. 6. Calculation of the normalized scattering cross section (H-pol) from

the surface shown in Fig. 5\ = 7680). The incidence angle is 82and the single-grid GCR 10 1150 8.62+107° 50 0.99985
plot shows a narrow range about the specular direction. The preconditioned
GCR solution (thick line) is compared with a BMIA/CAG calculation using
Td = 7/16L.

multi-grid GCR 10 1024 9.12 %108 10 0.99985

convergence and, for energy conservation, the integral of the

fo_r a Windspeeo_l of 10 m/s, with 10-cm wavelength, thg,rmalized cross section over scattering angle. The number
minimum bandwidth for the BMIA/CAG exceeds 14001 o jiorations or multigrid cycles required for each method is

14 m and this minimum will increase with windspeed. Fig. 3|55 |isted.

demonstrates that _the minimum bandwidth may be OleCrease%tarting from the top of Table I, we find the storage require-
somewhat by adding expansion terms, however, one Mgl for 4 full-matrix (LU) solution exceeds the computers

also c_o_nS|der the a_ddltlona_\l CP_U time (see Table I). W"Qvailable to us. Given the number of operations required,
the minimum weak interaction distance so large, the BMIf, o cpy time should also be extremely large. We found
apparently offers little advantage, unless one considers VX BMIA was unable to converge for bandwidth< 6000
large surfaces on t_he ord_er_of 1000(100 m) Or more. With nknowns as a result of the approximation error in the residual.
the possible exception of incidence angles within a few degrefs, storage requirement fér = 6000 is also too large for

of grazing, there is generally no reason to consider suchya- compuyters. To reduce storage, the BMIA calculations
large surface, particularly since the dominant wavelength \Wbre performed with a preconditioned operator, which is

the ocean spectrum (for wind speed_of 1_0 m/s) is on trﬁ%merically equivalent but prevented us from determining
order of 91 m. Moreover, the computing time and memory,, time for a true BMIA calculation (note BMIA/CAG

rquirement for surfaces of that siz_e are mostly impracticgds| ) times are with a precondition operator, while storage
particularly for Monte Carlo calculations. o is without). The BMIA did converge fob = 7000, however,

We note that th_e same ‘?a'C‘_“a“O” as shown In Fig. 6 Wag five expansion terms the exact residual was very large.
repeate(_j on a single real_lzatlon at= 4-m/s W|n_dspee_d Note that the exact residual is a one-time calculation done
(r_ms height= 1.15 ). In this case, there was no discerniblg, comparison and it is not part of the BMIA. A single grid
dlffer_ence between the preconditioned GCR and BMIA/CAG, preconditioned GCR calculation required only 35 MB of
solutions. We, therefore, conclude that for ocean-radar scati@hrage and converged to a small residual in 32 iterations. The
the BMIA/CAG may only be practical for very light winds multigrid/GCR method with comparable storage required only
and wavelengths on the order of 10 cm or larger. In ma'@fght cycles, however, because the cycle is more expensive
S_UCh cases, approximate methods requiring far less compuiggy, 5 single-grid iteration, CPU time was comparable. The
time may be adequate. real benefit of the multigrid approach can be seen in the
last example, where memory for the problem with 12000
unknowns was reduced to only 10 MB by choosing a very
small bandwidth for the preconditioner. In this case, the single-

To provide a measure of the relative efficiency and accuragyid calculation required 50 iterations and 1150 CPU min.
of the multigrid and GCR solutions, the method is applieBecause of its improved convergence properties, the multigrid
to scattering from a single realization of the Bjerkaas—Riedehlculation required only ten cycles and 1024 CPU min.
spectrum with wind speed equal to 10 m/s. The incidefihis result demonstrates that the multigrid approach will be
wavelength is 3 cm and incidence angle equal$. 8the particularly attractive for problems where an extremely large
surface is sampled with 20 points per wavelength and msimber of unknowns (as for three dimensions) must be solved
600 wavelengths long for a total @f = 12000 unknowns. with reasonable memory requirements.

Table | compares storage and CPU requirements for severalhe improved convergence properties of the multigrid ap-
different methods applied to the same surface realization. Tii@ach are also illustrated in Fig. 7. The scattering is again
table also lists the exact residual achieved by each methodtalculated from a single realization of the Bjerkaas—Riedel

V. COMPUTATIONAL PERFORMANCE
OF THE MULTIGRID + GCR APPROACH
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Fig. 7. Calculated residual errofz(norm) as a function of iteration number rjg g Multigrid calculation of the backscatter cross section from random

(single-grid method) or multigrid cycle (four-grid method) for a sample seg.5 syrface realizationd, (= 360 A, N = 7200). The radar wavelength is

surface with wind speed equal to 10 m/s. 20 cm and windspeed is 4 m/s. The results are an average of 80 realizations.
The SPM solution (30) is also shown.

spectrum (windspeed= 10 m/s). The incident wavelength o .
is 3 cm, and the problem is computed witi = 7200 At low and moderate incidence angles the agreement is

unknowns. The bandwidth of the preconditioner on the firfite good. At incidence angles beyond®/@he numerical
grid is set to a relatively small = 100 unknowns. Because €Sults at V-pol slightly exceed the SPM. The error is mostly
of the persistence of low-frequency errors, the single-ngP'fo_rm out to thel|m|_t of 88. The most pr0m|nentd|fference§
iterative approach converges very slowly. Faster single-gfi€ In the low-grazing-angle H-pol results, particularly in
convergence is obtained by increasing the bandwidth afge rangevl® < ¢; < 86°. There is apparently a problem

hence, the computing time and storage requirement. The folfith the very small ratio of backscattered to total scattered

grid approach, in contrast, reduces the residual error to tfg'dy- A normzilic;zed backscatter cross_-se‘(‘:tio_n in the” range
required 10* in only five iterations. In this case, fasterl”" < s < 107" represents an effective “noise-floor” for

convergence can be obtained (to a limit) by introducin@e calculation. At higher windspeeds, the backscatter cross-

additional coarse-grid levels, without affecting the bandwidtRECtion approaches the noise floor only at the very lowest

Since the coarse-grid problem is considerably smaller, tHEZing angles and only for H-pol. Nevertheless, a more
additional computation is minimal. accurate calculation under these conditions would be desirable.

We have found that for these very small backscatter cross
sections (low-grazing angle), the result is highly sensitive
VI. SEA SCATTERING RESULTS to the numerical rule used to integrate the surface current
In this section, we use the multigrid (four-grid) with GCR(16). For the calculations shown in Fig. 8, a third-order
method (Section Ill) to calculate polarized scatter from rafolynomial extrapolation (equally spaced) was used. Higher
dom realizations based on the Bjerkaas—Riedel sea spectr@€r polynomials offer no improvement and often generate
Because of the limitations discussed above, no splitting sfghtly larger errors. It is also interesting to note that the
the interaction matrix into strong and weak components @curacy of the backscatter calculation under these conditions
employed. Particular attention is paid to the difficulties ers generally not quantifiable by testing for energy conservation.
countered with very low-grazing-angle scatter, regardless bfeoretically, the integral of the normalized scattering cross
the solution method. section (16) over all scattering angles should equal one. In
For low windspeeds, the small perturbation method (SPMNyactice, however, the computed integral usually differs from
is often used to approximate ocean-radar backscatter. It carob€ in the second or third decimal. Because the backscattered
shown that for a 1-D rough surface, the normalized backscatfégnal contributes negligibly to the total scattered power, order

cross section reduces to [22] of magnitude calculation errors ing are not quantifiable by
this measure.
ospm(—6;) Fig. 8 is taken to % grazing angle at both polarizations.
cost 0, Hpol Lower grazing angles become problematic for several reasons.

= dmk’ [(1 + sin” 6;)? ] W(2k sin 6;) Vpol (30) ' One expects multiple scattering to become increasingly impor-
' tant in this limit and, in fact, we observe multiple scatter well
wherelV is the one-sided surface spectrum. This result may betside of the directly illuminated area. Fig. 9, for example,
calculated from the Bjerkaas—Riedel spectrum and compaied plot of the induced surface current for an H-pol incident
with numerical results. In Fig. 8, a comparison is made for a heam with 1/e diameter of 2% and grazing angle of 20
m/s wind and 20-cm radar wavelength. The numerical resultscan be seen that current is induced well outside of the
are based on surface lengths of 90-36@nd the results are directly illuminated area{12.5 A < z < 12.5 X). As the
averaged over 80 realizations. grazing angle approaches zero and the illuminated area is
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Fig. 9. Plot of the source functiom(s) (H-pol) from one realization of the 4 6 8 10 12 14 16 18 20

surfaces averaged in Fig. 8. The incidence angle {s&8@l the incident beam
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Fig. 11. Multigrid calculation of sea-surface backscatter as a function of
windspeed [ = 360 A, N = 7200). Results are calculated for near-normal
(15° circles), intermediate (40squares), and near-grazing f8@iamonds)
incidence angles. The open symbols show H-pol and solid symbols show
V-pol. All results are for 3-cm radar wavelength.
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102 STl 7 The windspeed dependence is examined in detail in Fig. 11,
° =~ which is again calculated for 3-cm radar wavelength. The low-

grazing angle § = 80°) H-pol result is the most strongly

104+ - wind dependent. Interestingly, V-pol return at low-grazing

angle is very weakly wind dependent, particularly for higher

V—Pol
¥ ¥ % V-Pol; SPM o windspeeds. At 15 incidence, both polarizations in Fig. 11
100 H-Pol are nearly independent of windspeed. An experimental confir-
¢ 0 ¢ H-Pol; SPM . .
T . ‘ mation of this result, based on data collected at 3 cm [24] and
0 20 40 60 80 2.15 cm [23] wavelengths, is reported in Wetzel [25]. At even

smaller incidence angles, our results indicate a slifgitrease
. . _ ip op With windspeed, which is expected since the increased
Fig. 10. Same as Fig. 8, but with 3-cm radar wavelength and 10-m/s .

windspeed. small-scale roughness reduces specular reflection [26].

Incidence Angle (deg)

held constant, the surface current covers an increasingly larger VIl. SUMMARY

area, thereby requiring a larger computational domain for theWe have developed a general iterative numerical solution to
scattering calculation. The smallest grazing angles in Figitl8e method of moments formulation of rough surface scatter-
are calculated for, = 360 A compared tol. = 90 A from ing. The method is developed for both horizontal (Dirichlet)
normal incidence td;, = 80°. and vertical (Neumann) polarized electric fields incident on
The numerical calculation shown in Fig. 8 is repeated fgrerfectly conducting surfaces and there is no restriction on
Fig. 10, but with a windspeed of 10 m/s and 3-cm raddhe amplitude of the rough surface relative to the incident
wavelength. For these parameters, the ratio of wave heigtdvelength. A key component of the method is a decomposi-
to incident wavelength is much greater than one, so that ttien of the scattering problem into multiple overlapping grids,
assumptions of perturbation theory (SPM) are no longer valieach corresponding to a different range of spatial frequencies
Nevertheless, the numerical results again predict the V-pmi length scales. This approach is ideally suited to scattering
backscatter to be very weakly dependent on incidence andglem the ocean surface, which is shown by spectral models
particularly at larger incidence angles, in agreement with SPkb. encompass a broad range of length scales from long-
Compared to Fig. 8, where = 4 m/s, the V-pol result is wavelength gravity waves (tens or hundreds of meters) to
significantly larger, especially at moderate incidence anglehort wavelength capillary waves (millimeters). Compared
This is expected on physical grounds, since the Bragg resonnnumerical solution by full-matrix inversion, the multigrid
wavelengthr /(& sin 6;) ranges from 4.38 cm at 20ncidence iterative method substantially reduces the computing time
to 1.73 cm at 60 incidence andh = 3 cm. In this range of and can reduce computer memory to a small fraction (by
length scales, the Bjerkaas—Riedel sea spectrum is stronigiyoducing additional grid levels and reducing the size of the
wind dependent [13]. The H-pol backscatter increases witheconditioning matrix).
wind as well, with the greatest differences between Figs. 8A previously introduced iterative method, the BMIA
and 10 occurring at large incidence angles. [2]-[4], is shown to be a special case of the multigrid method.
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A multigrid form of the BMIA is applied to several samplepaper, the value = 10~* is used throughout. Using th&
problems, including the ocean surface at moderate windspewum, this criterion guarantees that the maximum error at any
and microwave radar wavelengths. Because the surface hejggint in the domain is very small. Values ofrom 10-%-10-°

in these problems greatly exceeds the radar wavelengdhe typically observed. The notation (, ) in (A.3) denotes the
the BMIA is found to converge to an incorrect solutiorinner product. At each iteration, the optimal parameters
unless the strong matrix bandwidth encompasses most of da@ be found by minimizing the functiongls™+!, r"+!) and
computational domain. Through extensive calculations, w&h"+! Zh"*!) with respect tax and 3, respectively.

find that the BMIA may only be practical for an appropriate
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