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Application of Iterative Moment-Method
Solutions to Ocean Surface Radar Scattering

D. J. Donohue, H.-C. Ku, and Donald R. Thompson

Abstract— Numerical methods such as the banded matrix
iterative approach (BMIA) represent a major advance in the
direct numerical simulation of rough surface-wave scattering.
This paper considers the application of iterative methods such
as the BMIA to ocean-radar scattering. It is shown that for
typical microwave radar frequencies and sea-surface roughness,
the BMIA is actually of limited use. A more general iterative
solution based on a multigrid decomposition and the generalized
conjugate residual (GCR) method, is thus developed. The multi-
grid approach is ideally suited to the broad-band ocean surface,
as it solves the scattering problem on a sequence of grids, each
corresponding to a different range of spatial frequencies or length
scales. This approach is applied here to several sea scattering
problems, including very low grazing angles and both horizontal
and vertical polarization. Good agreement is obtained with per-
turbation theory in the appropriate limits and several qualitative
characteristics of radar backscatter data are reproduced.

Index Terms—Sea surface electromagnetic scattering.

I. INTRODUCTION

T HE need for numerical methods in the study of low-
grazing-angle scatter from rough surfaces is now well

established. Effects such as multiple scattering, shadowing,
and diffraction, which are difficult to model in theory, become
increasingly important in the grazing limit. Unfortunately,
even numerical methods encounter difficulties in this limit. In
many cases, the numerical method either breaks down or the
application becomes computationally intensive to the point of
being impractical.

Direct numerical simulation of the scattering problem via
the method of moments is apparently one of the few suffi-
ciently accurate methods for low-grazing-angle scatter. This
paper considers the application of moment methods to ocean
surface radar scatter. Given the typical range of radar wave-
lengths, illumination footprint size, and ocean surface length
scales, this problem usually requires a large number of un-
knowns (N ), perhaps numbering in the tens of thousands
for two-dimensional (2-D) models. Problems of this size can
often be impractical, even on the current generation of high-
performance workstations. Given that the usual approach to
the random ocean surface problem is a Monte Carlo method
in which scattering statistics are generated over a large number
of surface realizations and that one is typically interested in a
range of parameters such as wind speed and incidence angle,
the computational challenge is even more apparent.
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One approach to reducing the number of computing opera-
tions required to solve the rough surface scattering problem
via method of moments is the banded matrix iterative ap-
proach (BMIA) [2]–[6]. The BMIA is based on splitting
the field/surface current interaction into near (strong) and
far (weak) components. A solution to the surface current is
obtained by iteratively inverting the banded strong interaction
matrix while updating (or correcting) the solution with the
weak interaction (see Section III). In addition to the iterative
solution, further savings are obtained by expanding the weak
interaction about a canonical grid (CAG), the mean flat surface
[2].

The BMIA/CAG method and a related approach, the sparse
matrix flat-surface iterative approach (SMFSIA), have been
successfully applied to scattering from one-dimensional (1-D)
and 2-D random rough surfaces with rms heights comparable
to or smaller than the incident wavelength. However, at
microwave radar wavelengths (several millimeters to about
one meter), rms heights for fully developed seas can be
significantly larger. Under these conditions, we have found
the BMIA to be of limited use. Through extensive calcu-
lations, it is shown (Section IV) that the iterative approach
frequently fails to converge or converges to an incorrect
solution. This behavior has a simple explanation. The weak
interaction requires that two points on the surface have a much
larger separation along the mean plane than off of the mean
plane. The minimum weak-interaction distance (rd) along the
mean plane therefore grows with the surface height. For the
typical radar-ocean problem, the value ofrd required to avoid
convergence problems is so large relative to the total surface
length in the simulation that little or nothing is gained by
splitting the interaction.

Since our objective is to simulate low-grazing-angle ocean
radar scatter, we investigate alternative methods for improving
the efficiency of the full-matrix method of moments solution.
Our approach (described in Sections II and III) begins with
a decomposition of the computational domain into multiple
overlapping grids. The multigrid method has been extensively
applied in computational fluid dynamics [7], [8]. The solution
on each computational grid is accelerated by a generalized
conjugate residual (GCR) method. This approach, while not as
efficient as the BMIA/CAG with small interaction distance, is
considerably faster than direct solution by LU decomposition
and has the added benefit of a significant reduction in memory
(some quantitative comparisons are made in Section V). Like
the BMIA/CAG, the multigrid GCR method is, in principle, an
exact solution to the moment method, but with no limitations
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Fig. 1. Coordinate system and geometry for modeling wave scattering from a 1-D randomly rough surface. The rough surfaceS is described by the
height z = f(x) above the mean plane.

on surface height. In this paper, we apply the method to
scattering of horizontal and vertical polarized radar from
perfectly conducting realizations of the ocean. The realizations
are generated by a well-known spectral method [12] with a
wind-dependent spectrum spanning the gravity to capillary
wave ranges [13]. Particular attention is paid to backscattering
and low-grazing angles.

II. M ETHOD OF MOMENTS FORMULATION

This section describes the structure of the interaction matrix
and, for the BMIA, the decomposition into strong and weak
components. We consider both horizontal (Dirichlet) and verti-
cal (Neumann) polarized electric fields incident on a perfectly
conducting surface.

A. Dirichlet (H-pol)

For this case, we follow the derivation given in Tsanget al.
[2]. The starting point is the surface current integral equation
for a field 	inc incident on the rough surface

0 = 	inc(r)�

Z
S

dx0G(r; r0)u(r0) r; r0 on S (1)

where the integration (source point) is over the surfaceS
r0 = x0x̂+f(x0)ẑ. The source functionu contains the surface
current

u(r0) =

s
1 +

�
df(x0)

dx0

�2
@	(r0)

@n0
(2)

where 	 is the total field (incident + scattered). The 2-D
free-space Green’s function is given by

G(r; r0) =
i

4
H

(1)
0 (kjr� r

0j) (3)

whereH(1)
0 is the Hankel function of the first kind order zero,

and k(= 2�=�) is the free-space wavenumber. Note that the
integration in (1) is over the mean plane (z = 0), hence, the
Jacobian(

p
1 + f 02) is included in (2). Also note that for

this paper, we consider only the 2-D (x; z) scattering problem
(Fig. 1).

Using (3), the surface-current integral equation may be
written as a sum of two integral terms
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whereU (x) is the heaviside step function. The first integral
term in (4) corresponds to strong interaction between source
and field point (jx � x0j < rd), while the second term
corresponds to weak interaction (jx�x0j > rd). It is expected
that due to the asymptotic behavior of the Hankel function,
the strong interaction dominates the solution foru.

According to the method of moments, (4) is discretized and
becomes

ZX = C (5)

where the unknown column vectorX discretizes the source
functionu andC is the discretization of the incident field. For
these calculations, we use the simplest discretization consisting
of the point matching method with pulse basis functions [1].
For the BMIA, the interaction matrixZ is split into strong
and weak components, i.e.,Z = Z

(s)+Z(w) where the strong
matrix can be taken directly from (4),

Z
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The quantity� is the sampling interval and we havexi = i�,
fi = f(xi), f 0i = df(xi)=dx, and Rd� = rd. The self-
impedance or diagonal term (i = j) is obtained by integrating
the Hankel function over a small neighborhood aboutxi and
using a first-order Taylor series expansion for the surface
height f(xj).

For the weak interaction matrix, Tsanget al. [2] assume
that the ratiojfi � fj j=jxi � xjj is much less than one. This
will always be true provided the strong interaction distance
rd is sufficiently large compared to the maximum surface
height. Under this assumption, the Hankel function may be
approximated by a truncated Taylor series expansion about
the mean plane or canonical grid. The expansion has the form

H
(1)
0 (k

q
[xi � xj]2 + [fi � fj ]2)

=
MX
m=0

am(jxi � xjj)

"���� fi � fj
xi � xj

����
2
#m

: (7)

For the calculations shown in Sections IV–VI, a minimum of
five expansion terms (M = 4) are used.

The iterative solution of (5) (discussed in Section III) in-
volves products of the weak interaction matrix with successive
iterations of the unknown vectorX. With the expansion shown
in (7), the weak interaction matrix becomes a sum of matrices,
each of which may be written as a translationally invariant
matrix that is pre- and post-multiplied by diagonal matrices.
Because of its cyclical symmetry (matrix elements depend only
on the differenceji � jj), the product of a column vector
with the translationally invariant matrix may be computed
in order N log (N ) operations. Reducing this product from
order N2 operations to orderN log (N ) is one of the key
features of the BMIA/CAG method. It must be noted, however,
that the iterative solution of (5) also requires an inversion of
the banded strong interaction matrix; thus, the key feature
of the BMIA/CAG can only be exploited in cases where
the bandwidth (Rd) of the strong interaction remains small
compared to the total problem size (N ). This requirement
imposes practical limitations that are further examined in
Sections IV and V.

B. Neumann (V-pol)

The surface current integral equation for a Neumann field is

	(r) = 	inc(r) +

Z
S

dS0	(r0)
@G(r; r0)

@n0
r; r0 on S

(8)

where	 is again the total field and@=@n0 denotes the gradient
normal to the surface. The normal gradient of the 2-D Green’s
function (3) is given by
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@n0
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�ik
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H
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!
:

(9)

Note that unlike (1), the integration in (8) is written in terms
of surface coordinates. The transformation between the surface

and mean plane is given by

dS0 = dx0
p
1 + f 02: (10)

Combining (8)–(10), and discretizing as in (6), the off-diagonal
terms of the interaction matrix for vertical polarization become

Zi; j =
�ik�

4

H
(1)
1 (k

p
[xi � xj]2 + [fi � fj ]2)p

[xi � xj]2 + [fi � fj ]2

� [(fi � fj) � f 0j(xi � xj)] i 6= j: (11)

Unlike the Dirichlet case (6), the interaction matrix is nonsym-
metric due to the termf 0j. The Hankel functionH(1)

1 may be
expanded about the canonical grid under the assumptionjfi�
fj j=jxi � xjj � 1 or weak interaction. The weak interaction
matrix is then made cyclically symmetric by absorbing the
nonsymmetric termf 0j into the unknownuj . The product of the
symmetric weak interaction matrix with the modified unknown
vector may then be computed in orderN log (N ) operations
as for horizontal polarization.

For the diagonal or self-impedance term, we first recognize
that the singularity atr = r

0 in the scattered field integral of
(8) contributes a term that is proportional to the total field	,
which, in this case, does not vanish on the scattering surface.
After integrating out the singularity, the integral equation (8)
becomes [9]

1
2	(r) = 	inc(r) +

Z
S

dS0	(r0)
@G(r; r0)

@n0
r; r0 on S

(12)

where the integration is now the principal value type. The
self-impedance term is now calculated by integrating over the
coincident field and source element (i = j), taking the field	
to be fixed. This integral requires a second-order Taylor series
expansion of the surface heightf(xi) and an additional first-
order expansion of the slopef 0(xi). Using (9), (10), and (12)
with the appropriate expansions, we obtain

Zi; i =
1

2
�

�f 00i
4�(1 + f 0i

2)
(13)

which, along with (11), completes the derivation of the inter-
action matrix for vertical polarization.

C. Scattering Cross Section

The numerical method outlined above is applied in this
paper to calculating the normalized scattering cross-section
of the rough surface. For the incident field, we use the well-
known tapered plane wave [12]

	inc(r) = eik�r[1+W (r)]e�(x+z tan �i)
2=g2 (14)

where

W (r) =
2(x+ z tan �i)

2=g2 � 1

(kg cos �i)2
(15)
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andg is a length scale that determines the taper of the incident
wave. For most calculations, we setg = L=4, whereL is
the total length of the scattering surface. With this choice of
incident field, it has been shown [2] that the normalized far-
field scattering cross section for the Dirichlet problem is given
by

�H (�s) =

����
Z
1

�1

e�ik[sin �s+cos �sf(x)]u(x)dx

����
2

8�gk
p
�=2 cos �i

�
1�

1 + 2 tan2 �i
2k2g2 cos2 �i

� : (16)

From (4) and (5), the source functionu is given in discrete
form by the elements of the column vectorX. In Section V,
we show that the calculation of (16) is, in some cases, sensitive
to the choice of numerical integration rule.

For the Neumann problem, the equivalent definition of the
normalized scattering cross section is given by (17), shown
at the bottom of the page. In this case, the source function or
total field	 on the scattering surface is again given in discrete
form by the elements of the column vectorX.

III. I TERATIVE SOLUTION

We present two approaches for the iterative solution of
(5). In approach I, the solution is generated on a single
grid containing the total number of discretized pointsN . In
approach II, the solution is generated on a sequence of grids
from the finest grid with grid space� to the coarsest grid with
grid space2p� (p is the grid level). Approach II is particularly
attractive for a large number of unknowns [N > O(104)].

A. Single-Grid Method

Here, we introduce the preconditioning method, which
consists of solving an approximate problem whose solution
can be easily related to that of the original problem. In place
of (5), we solve

~Z�1
ZX = ~Z�1

C: (18)

An iterative solution to (18) is given by

~ZXn+1 = ~ZXn + �(C � ZXn) (19)

wheren is the iteration number,� is a free parameter whose
optimal value is described in the Appendix, and~Z is a
preconditioner. A good preconditioner often requires: 1) less
memory and inexpensive effort to invert the resulting matrix
and 2) a fast convergence rate. Fast convergence requires that
the preconditioner should be close to the original operator

Z, i.e., the spectral condition number�, the ratio of the
maximum and minimum eigenvalues ofk~Z�1

Zk, should not
be large. Herek � k is the standard̀2 Euclidean norm. One
possible choice for~Z that meets this requirement is the strong
interaction matrix, i.e.,~Z = Z

(s). With this choice, it can be
shown that the method of successive substitution proposed by
Tsanget al. [2] is a special case of the preconditioning method
where� = 1. However, in addition to the choice~Z = Z

(s)

and � = 1, the BMIA/CAG also approximates the residual
r = C�ZX by r � C� (Z(s) +Z(w))X, whereZ(s) +Z(w)

differs from the original operatorZ when retaining a finite
number of terms in the CAG expansion. It is demonstrated
in Sections IV and V that when applied to large-amplitude
rough surfaces, the BMIA/CAG may converge to an incorrect
solution because of the approximation error in the residual. For
calculations in this paper, a preconditioning approach based
on (19) is used without approximating the residual, thereby
avoiding convergence errors.

The inverse of the preconditioner~Z in (19) can be de-
termined by standard LU decomposition; that is, a one-time
forward sweep requiring orderb2N=2 operations whereb(<
N ) is the bandwidth of the preconditioner. The stored matrix
is then repeatedly used for backward substitution. The more
efficient and well-known conjugate gradient method can also
be applied, however, this method is best suited to a positive
definite (symmetric/Hermitian) operator, which is not the
case for either polarization. Another popular method, the
generalized minimal residual (GMRES) [10], is valid for both
symmetric and nonsymmetric systems. The GMRES method
has a fast convergence rate, but requires a huge storage
space. A variation called restarted GMRES can reduce the
storage requirement, however, this method requires storage
of previous iterations, which would become very expensive
in a three-dimensional scattering model because of the large
number of unknowns. For the calculations in this paper,
we use the generalized conjugate residual (GCR) method
[11] as our iterative scheme. This method, described in the
Appendix, is rapidly convergent for both symmetric (H-pol)
and nonsymmetric (V-pol) systems.

The preconditioned GCR method on a single grid is a
more general form of the BMIA, which has been successfully
applied to rough surfaces with rms heights comparable to
or smaller than the incident wavelength. For larger surface
heights, however, the GCR method with a preconditioned
operator of reduced bandwidthb (as in the BMIA) cannot
guarantee convergence unless the bandwidth is significantly
increased (see calculations in Sections IV and V below). This
results in a tremendous storage requirement ofNb for H-pol
and 2Nb for V-pol and it slows the solution considerably.
An alternative method for reducing the storage space and

�V (�s) =

k cos2 �s

����
Z
1
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improving the convergence while retaining the preconditioned
GCR approach is now described.

B. Multigrid Method

The objective of the multigrid method [14], [15] is to
remedy the deficiency of the traditional single-grid method.
For elliptic problems such as the Helmholtz equation, during
the iteration on a single grid, high-frequency errors with short
wavelength comparable to the mesh size are quickly damped
(smoothed), but low-frequency errors with long wavelength
stay intact [16]. That is why most iterative schemes work
very well for the first several iterations and then tend to
slow toward convergence. The multigrid method enables us to
efficiently remove the low-frequency errors by projecting them
to a coarser grid on which the errors become more oscillatory
and, thus, are more amenable to iterative schemes. The solution
is generated on a sequence of grids spanning the finest grid
spacing� to the coarsest spacing2p� where p is the grid
level. The decomposition into multiscale grids is ideally suited
to ocean scatter where the sea surface spectrum spans many
scales of roughness.

To develop the multigrid solution, first definer0 = C �

Z0X0, which corresponds to the residual on the finest grid
(the original problem). For calculations in this paper, we use
the “standard coarsening,” which involves doubling the mesh
from one grid to the next coarsest grid and also smoothing the
residual [r = f (r0), wheref stands for products of a sequence
of operators] to the next coarsest grid (a process known as
restriction [14], [15]). Whenever the problem is solved on the
coarse grid (low-frequency or large-wavelength domain), the
coarse-grid correction for the variable transfers the correction
back (prolongation) to the fine grid (high-frequency or small-
wavelength domain) to gain rapid convergence. Thus, the
multigrid method can be viewed as a function to reduce the
residual on the different frequency domains. The effect of the
interaction among different grids is complementary. On the
coarse grid (levelp + 1), the equation solved is an improved
approximation to the solution on the fine grid (levelp) where
the error components are smoothed. The fine grid solution,
in turn, provides a more accurate projection of low-frequency
errors to the coarse grid.

The interaction between the fine grid and the coarse grid
can be symbolically correlated by

Zp+1Xp+1 � Zp+1(I
p
p+1Xp) = I

p
p+1rp: (20)

Here,Zp+1 represents the operator of (5) on the coarse grid,
I
p
p+1 is an interpolation operator (restriction) from the fine grid

“p” to the coarse grid “p+ 1” Xp is the unknown vector, and
the residualrp is defined as

rp = I
p�1
p rp�1 � Zp(Xp � I

p�1
p Xp�1) (21)

for p > 1 and r1 = I
0
1r0. The left-hand side of (20) is

the difference between the coarse-grid operator acting on
the coarse grid and the coarse-grid operator acting on the
interpolated fine grid (which is held fixed). After the fine-

grid solution has converged, the residualrp will be zero and
the solution of (20) becomes

Xp+1 = I
p
p+1Xp (22)

as required. When the residual is nonzero, the left-hand side of
(20) acts as a forcing term for the coarse-grid correction and
the correction toXp+1 must be transferred back (prolongated)
to the fine grid, i.e.,

X
new
p = X

old
p + I

p+1
p (Xp+1 � I

p
p+1X

old
p ) (23)

where the superscript “new” represents the updated informa-
tion during the multigrid iterative solution. This is vital for the
success of the scheme. Changes in the variables are transferred
back to the fine grid rather than the variables themselves.

The coarse grid operatorZp is a projection of the original
operatorZ onto thepth grid. For standard coarsening (doubling
of the mesh size to the next grid level), the projection is
straightforward. Assuming thatip and jp are the indexes of
the mesh point on thepth level, the matrix elementZp

ip; jp
is

given by the appropriate expressions for H-pol or V-pol [(6)
or (11) and (13), respectively] with indexes given by

i =2p(ip � 1) + 1

j =2p(jp � 1) + 1: (24)

In addition, the grid spacing� is replaced by�p = 2p�.
Both Ip+1p , the prolongation operator from the coarse grid to
the fine grid, andIpp+1, the restriction operator from the fine
grid to the coarse grid, can be simply constructed through
linear interpolation [14].

The order in which the grids are visited is called the multi-
grid cycle or multigrid schedule. If the order is fixed in advance
we have a fixed schedule; if the order depends on intermediate
computational results we have an adaptive schedule. In this
paper, we use a fixed schedule, either smoothing the residual
to the lower coarse-grid level or transferring the coarse-grid
correction to the upper fine-grid level. A complete cycle
constitutes one multigrid iteration. For comparisons among
different cycles (fixed schedule), e.g., “V,” “W,” “F,” and
“Sawtooth”, the reader is referred to Wesseling [17]. The
calculations in this article use the W-cycle (Fig. 2). For each
multigrid iteration, the residual on the gridp = 0 is first
smoothed and estimated, then restricted to the next finest grid
level. In our case, the iterative solution of the surface current
X by the four-grid (M = 3) W-cycle can be cast in the form

X
new
0 =Xold

0 + I
1
0Z
�1
1 I

2
1Z
�1
2 I

3
2Z
�1
3 I

2
3Z
�1
2 I

3
2Z
�1
3 I

2
3Z
�1
2 I

1
2

Z
�1
1 I

2
1Z
�1
2 I

3
2Z
�1
3 I

2
3Z
�1
2 I

3
2Z
�1
3 I

2
3Z
�1
2 I

1
2Z
�1
1 I

0
1

� (C � Z0X
old
0 ) (25)

which clearly demonstrates the interactions between different
grid levels. The residual is smoothed from grid levelp to p+1
by the restriction process (21), while the coarse-grid correction
from grid level p + 1 to p is transferred by the prolongation
process (23).

The correction terms for restrictionZ�1p+1I
p
p+1rp and for pro-

longationZ�1p I
p+1
p rp+1 require a matrix inverse, which can be

obtained at each grid level by the preconditioned GCR method.
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Fig. 2. Illustration of the four-grid (M = 3) W-cycle. The solution is first generated on the fine gridp = 0. Downward arrows represent restriction of
the residual to the next finest grid level. Upward arrows represent prolongation of the coarse-grid correction. At any grid level, the terminus of an upward
arrow is a “new,” or updated solution. The corresponding “old” solution lies to the left along the same grid level.

This approach is crucial to the success of the algorithm, as it
accelerates the convergence while also reducing the working
space. With the definition�Xp+1 = Xp+1 � I

p
p+1Xp, the

iterative solution of (20) by the preconditioned GCR method
has the form

~Zp+1�X
n+1
p+1 = ~Zp+1�X

n
p+1 + �(Ipp+1rp � Zp+1�X

n
p+1)

(26)

wheren is the iteration number at each grid level. The coarse
grid operatorZp+1 is based on the grid spacing�p+1 =
2p+1�. The preconditioned operator~Zp+1 is formed by band-
ing the coarse-grid operatorZp+1 as in the BMIA strong
interaction. This reduces the number of operations required
to invert ~Zp+1 and also requires a much smaller storage space
than forZp+1. On the finest grid, considerable savings can be
attained by choosing a relatively small bandwidth for~Zp+1.
With the multigrid method, rapid convergence is still possible
because the low-frequency error is quickly smoothed on the
coarse grids (Section V and Fig. 7 discuss the convergence
history). On the coarsest gridM , ~ZM is either set equal to
ZM (no banding) or a large bandwidth is used to ensure that
fast convergence can be reached. The number of operations
and memory required here are minimal, since levelM is
considerably smaller than the original problem (level 0). Note
that with the choice~Zp+1 = Z

(s)
p+1, we have a multigrid BMIA

method. In this case, a canonical grid expansion (CAG) can
be implemented on each grid level.

When the coarse-grid correction process transfers the cor-
rection from grid levelp + 1 to p, (26) can be written as

�Xnew
p = �Xold

p + I
p+1
p �Xold

p+1 (27)

for p > 0 and

X
new
0 = X

old
0 + I

1
0�X

old
1 (28)

for p = 0. Note that the superscript “new” becomes “old” after
updating the information according to (27) or (28). In the W-
cycle diagram (Fig. 2), prolongation from a lower grid level
is indicated by an upward arrow. The “new” solution is at
the terminus of the upward arrow, while the corresponding
“old” solution lies to the left, along the same grid level.
Also note from this figure that the lower grids are visited
several times during the course of one cycle. For one multigrid
cycle, the coarse-grid correction process eventually transfers
the correction back to the finest grid levelp = 0. If the residual

r0 does not meet the convergence criterion (kr0k < �), the
multigrid iteration is repeated until the convergence check is
satisfied.

IV. BMIA/CAG A PPLIED TO LARGE-AMPLITUDE SURFACES

We have developed a numerical code based on the moment-
method formulation described in Section II and using the
iterative solution techniques of Section III. As mentioned
previously, the BMIA/CAG is a special case of our iterative
procedure (19) with the choices~Z = Z

(s) and � = 1 and
with the residualr = C � ZX approximated byr � C �
[Z(s)+Z(w)]X. In this section, we consider the application of
a multigrid BMIA/CAG to surfaces whose amplitudes exceed
the incident wavelength. The BMIA/CAG results are compared
with a more exact multigrid with GCR calculation, where no
approximation has been made to the residual.

We first consider a sinusoidal surface described by

f(x) = h sin

�
2�x

�

�
� L=2 < x < +L=2: (29)

For perfect conductivity, the solution of a plane wave incident
on the sinusoid has been studied for many years. Numerical
solutions may be obtained by several different methods, how-
ever, with the exception of moment methods, all are limited
by the Rayleigh criterion, i.e.,h < 0:448�=2� [18]. A set of
moment method calculations for various ratiosh=� and�=�
for both H- and V-polarizations appear in Zaki and Neurether
[19], [20]. Our numerical code has been compared with
the numerical solutions shown in those papers. In all cases,
excellent agreement was obtained. In addition, our numerical
results are in agreement with an analytical theory [21] based
on the Rayleigh plane wave expansion in the limith < �.
For surface amplitudes exceeding the wavelength, no reference
solutions exist. However, it is assumed that the convergence
criterionkC�ZXk < 10�4 is sufficient to guarantee accuracy,
since the exact residual is used.

For these comparisons, the incident plane wave was sim-
ulated by setting the parameterg in (14) to be much larger
than the surface lengthL. The length was set toL = 10 �
so that the normalized scattering cross section closely ap-
proximated that from an infinite periodic surface. To test
the BMIA/CAG at large amplitudeh, we consider only the
specular cross section at H-pol,�H (�i). At other scattering
angles, our numerical results reproduce the well-known Bragg
scattering lobes. Calculations of the specular cross-section
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Fig. 3. Calculation of the specular cross section (H-pol) from a sinusoidal
surface of period� = 32:7 � and amplitudeh (29). The preconditioned
GCR or reference solution is shown by the thick line. A set of converged
BMIA/CAG solutions are shown forrd ranging from 20 to 266�. The total
surface length is 327�, or ten periods (N = 7848).

from surfaces of� = 32:7 � are shown in Fig. 3. The
maximum surface amplitude calculated ish = 10 �, which
is well beyond the Rayleigh cutoff ofh = 2:33 �.

The thick solid line in Fig. 3 is calculated by multigrid (4-
grid) preconditioned GCR without strong/weak decomposition
and it is taken to be the reference solution for the calculation.
The BMIA/CAG solution is then generated for bandwidthrd
ranging from 20�, or less than one period, to 266�, which
is a sizable fraction of the ten period surface (L = 327 �). It
can be seen that for each choice ofrd, the BMIA result agrees
with the reference solution to a maximum surface amplitude
determined by the ratiord=L. The maximum surface amplitude
is somewhat dependent on the number of terms retained in
the canonical grid expansion. For example, therd = 20 �
calculation agrees with the reference solution ath = 1 �
and h = 2 � using five expansion terms. Ath = 3 �, nine
terms are required. Ath = 4 � and beyond, the BMIA/CAG
(rd = 20 �) does not converge when 15 expansion terms are
used. The behavior is similar forrd = 60 �. In this case, an
accurate solution is obtained ath = 5 � by including nine
expansion terms. However, the method will not converge with
15 expansion terms forh = 6 � and beyond. We emphasize
again that each of the BMIA/CAG results shown in Fig. 3
is converged. However, because of the approximation made
to the residual by the canonical grid expansion, many of the
results are numerically incorrect. At larger amplitudes beyond
those shown for eachrd, the algorithm will not converge, even
with a large number of expansion terms.

A second test of the BMIA/CAG was conducted on
random ocean surface realizations. The realizations were
generated using the spectral technique [12] with a Gaussian
normal height probability density function (pdf) and a
direction-independent sea-surface elevation spectrum [13].
The windspeed dependent Bjerkaas–Riedel spectrum is a
composite of five spectral ranges, from long-wavelength
gravity waves (Pierson–Moskowitz range) to short-wavelength
capillary waves (Mitsuyasu–Honda range) and viscous

Fig. 4. Sample calculation of the direction-independent part of the
Bjerkaas–Riedel sea-surface elevation spectrum for a variety of windspeeds.

Fig. 5. Sample realization of the sea surface based on the Bjerkaas–Riedel
spectrum with windspeedu = 10 m/s. The plot is normalized to a radar
wavelength of 10 cm. The random surface realizations are generated by a
spectral method [12].

dissipation (Cox viscous cutoff range). A plot of the direction-
independent spectrum at various windspeeds is shown in
Fig. 4. Fig. 5 is a sample realization of the ocean surface
model for windspeedu = 10 m/s. The plot is shown
normalized to a 10-cm radar wavelength. For this particular
realization, the rms surface height is 7.23� and the maximum
peak-to-trough height differential is about 21�. It should be
noted that the dominant contribution to the wave amplitude
comes from wave components near the long-wavelength peak
of the spectrum, shown in Fig. 4. Unlike the typical Gaussian
rough surface with Gaussian spectrum, the sea surface consists
of small-scale roughness superimposed on long-wavelength
structures with amplitudes that are typically much larger than
the incident radar wavelength.

A calculation of the normalized scattering cross section
of the surface shown in Fig. 5 is plotted in Fig. 6. The
cross section is shown as a function of scattering angle for
a fixed incidence angle of 82� and for the 10-cm radar
wavelength. The preconditioned GCR solution (thick line) is
compared with the BMIA/CAG solution usingrd = 140 �
or 7/16 L and M = 4 expansion terms. At some angles,
the error is as large as a factor of two. It is clear that
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Fig. 6. Calculation of the normalized scattering cross section (H-pol) from
the surface shown in Fig. 5 (N = 7680). The incidence angle is 82� and the
plot shows a narrow range about the specular direction. The preconditioned
GCR solution (thick line) is compared with a BMIA/CAG calculation using
rd = 7=16L.

for a windspeed of 10 m/s, with 10-cm wavelength, the
minimum bandwidth for the BMIA/CAG exceeds 140� or
14 m and this minimum will increase with windspeed. Fig. 3
demonstrates that the minimum bandwidth may be decreased
somewhat by adding expansion terms, however, one must
also consider the additional CPU time (see Table I). With
the minimum weak interaction distance so large, the BMIA
apparently offers little advantage, unless one considers very
large surfaces on the order of 1000� (100 m) or more. With
the possible exception of incidence angles within a few degrees
of grazing, there is generally no reason to consider such a
large surface, particularly since the dominant wavelength in
the ocean spectrum (for wind speed of 10 m/s) is on the
order of 91 m. Moreover, the computing time and memory
requirement for surfaces of that size are mostly impractical,
particularly for Monte Carlo calculations.

We note that the same calculation as shown in Fig. 6 was
repeated on a single realization atu = 4-m/s windspeed
(rms height= 1.15�). In this case, there was no discernible
difference between the preconditioned GCR and BMIA/CAG
solutions. We, therefore, conclude that for ocean-radar scatter,
the BMIA/CAG may only be practical for very light winds
and wavelengths on the order of 10 cm or larger. In many
such cases, approximate methods requiring far less computing
time may be adequate.

V. COMPUTATIONAL PERFORMANCE

OF THE MULTIGRID + GCR APPROACH

To provide a measure of the relative efficiency and accuracy
of the multigrid and GCR solutions, the method is applied
to scattering from a single realization of the Bjerkaas–Riedel
spectrum with wind speed equal to 10 m/s. The incident
wavelength is 3 cm and incidence angle equals 80�. The
surface is sampled with 20 points per wavelength and is
600 wavelengths long for a total ofN = 12000 unknowns.
Table I compares storage and CPU requirements for several
different methods applied to the same surface realization. The
table also lists the exact residual achieved by each method at

TABLE I
COMPUTATIONAL PERFORMANCE ON A SAMPLE SEA SURFACE (N = 12000)

convergence and, for energy conservation, the integral of the
normalized cross section over scattering angle. The number
of iterations or multigrid cycles required for each method is
also listed.

Starting from the top of Table I, we find the storage require-
ment for a full-matrix (LU) solution exceeds the computers
available to us. Given the number of operations required,
the CPU time should also be extremely large. We found
the BMIA was unable to converge for bandwidthb � 6000
unknowns as a result of the approximation error in the residual.
The storage requirement forb = 6000 is also too large for
our computers. To reduce storage, the BMIA calculations
were performed with a preconditioned operator, which is
numerically equivalent but prevented us from determining
cpu time for a true BMIA calculation (note BMIA/CAG
CPU times are with a precondition operator, while storage
is without). The BMIA did converge forb = 7000, however,
for five expansion terms the exact residual was very large.
Note that the exact residual is a one-time calculation done
for comparison and it is not part of the BMIA. A single grid
with preconditioned GCR calculation required only 35 MB of
storage and converged to a small residual in 32 iterations. The
multigrid/GCR method with comparable storage required only
eight cycles, however, because the cycle is more expensive
than a single-grid iteration, CPU time was comparable. The
real benefit of the multigrid approach can be seen in the
last example, where memory for the problem with 12 000
unknowns was reduced to only 10 MB by choosing a very
small bandwidth for the preconditioner. In this case, the single-
grid calculation required 50 iterations and 1150 CPU min.
Because of its improved convergence properties, the multigrid
calculation required only ten cycles and 1024 CPU min.
This result demonstrates that the multigrid approach will be
particularly attractive for problems where an extremely large
number of unknowns (as for three dimensions) must be solved
with reasonable memory requirements.

The improved convergence properties of the multigrid ap-
proach are also illustrated in Fig. 7. The scattering is again
calculated from a single realization of the Bjerkaas–Riedel
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Fig. 7. Calculated residual error (`2 norm) as a function of iteration number
(single-grid method) or multigrid cycle (four-grid method) for a sample sea
surface with wind speed equal to 10 m/s.

spectrum (windspeed= 10 m/s). The incident wavelength
is 3 cm, and the problem is computed withN = 7200
unknowns. The bandwidth of the preconditioner on the fine
grid is set to a relatively smallb = 100 unknowns. Because
of the persistence of low-frequency errors, the single-grid
iterative approach converges very slowly. Faster single-grid
convergence is obtained by increasing the bandwidth and,
hence, the computing time and storage requirement. The four-
grid approach, in contrast, reduces the residual error to the
required 10�4 in only five iterations. In this case, faster
convergence can be obtained (to a limit) by introducing
additional coarse-grid levels, without affecting the bandwidth.
Since the coarse-grid problem is considerably smaller, the
additional computation is minimal.

VI. SEA SCATTERING RESULTS

In this section, we use the multigrid (four-grid) with GCR
method (Section III) to calculate polarized scatter from ran-
dom realizations based on the Bjerkaas–Riedel sea spectrum.
Because of the limitations discussed above, no splitting of
the interaction matrix into strong and weak components is
employed. Particular attention is paid to the difficulties en-
countered with very low-grazing-angle scatter, regardless of
the solution method.

For low windspeeds, the small perturbation method (SPM)
is often used to approximate ocean-radar backscatter. It can be
shown that for a 1-D rough surface, the normalized backscatter
cross section reduces to [22]

�SPM (��i)

= 4�k3
�

cos4 �i
(1 + sin2 �i)2

�
W (2k sin �i)

Hpol
Vpol

(30)

whereW is the one-sided surface spectrum. This result may be
calculated from the Bjerkaas–Riedel spectrum and compared
with numerical results. In Fig. 8, a comparison is made for a 4-
m/s wind and 20-cm radar wavelength. The numerical results
are based on surface lengths of 90–360� and the results are
averaged over 80 realizations.

Fig. 8. Multigrid calculation of the backscatter cross section from random
sea surface realizations (L = 360 �, N = 7200). The radar wavelength is
20 cm and windspeed is 4 m/s. The results are an average of 80 realizations.
The SPM solution (30) is also shown.

At low and moderate incidence angles the agreement is
quite good. At incidence angles beyond 70�, the numerical
results at V-pol slightly exceed the SPM. The error is mostly
uniform out to the limit of 86�. The most prominent differences
are in the low-grazing-angle H-pol results, particularly in
the range70� < �i < 86�. There is apparently a problem
with the very small ratio of backscattered to total scattered
energy. A normalized backscatter cross-section in the range
10�4 < �B < 10�3 represents an effective “noise-floor” for
the calculation. At higher windspeeds, the backscatter cross-
section approaches the noise floor only at the very lowest
grazing angles and only for H-pol. Nevertheless, a more
accurate calculation under these conditions would be desirable.

We have found that for these very small backscatter cross
sections (low-grazing angle), the result is highly sensitive
to the numerical rule used to integrate the surface current
(16). For the calculations shown in Fig. 8, a third-order
polynomial extrapolation (equally spaced) was used. Higher
order polynomials offer no improvement and often generate
slightly larger errors. It is also interesting to note that the
accuracy of the backscatter calculation under these conditions
is generally not quantifiable by testing for energy conservation.
Theoretically, the integral of the normalized scattering cross
section (16) over all scattering angles should equal one. In
practice, however, the computed integral usually differs from
one in the second or third decimal. Because the backscattered
signal contributes negligibly to the total scattered power, order
of magnitude calculation errors in�B are not quantifiable by
this measure.

Fig. 8 is taken to 4� grazing angle at both polarizations.
Lower grazing angles become problematic for several reasons.
One expects multiple scattering to become increasingly impor-
tant in this limit and, in fact, we observe multiple scatter well
outside of the directly illuminated area. Fig. 9, for example,
is a plot of the induced surface current for an H-pol incident
beam with 1/e diameter of 25� and grazing angle of 10�.
It can be seen that current is induced well outside of the
directly illuminated area (�12:5 � < x < 12:5 �). As the
grazing angle approaches zero and the illuminated area is
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Fig. 9. Plot of the source functionu(x) (H-pol) from one realization of the
surfaces averaged in Fig. 8. The incidence angle is 80� and the incident beam
illuminates the area roughly shown byg, the 1/e scale of the beam.

Fig. 10. Same as Fig. 8, but with 3-cm radar wavelength and 10-m/s
windspeed.

held constant, the surface current covers an increasingly larger
area, thereby requiring a larger computational domain for the
scattering calculation. The smallest grazing angles in Fig. 8
are calculated forL = 360 � compared toL = 90 � from
normal incidence to�i = 80�.

The numerical calculation shown in Fig. 8 is repeated for
Fig. 10, but with a windspeed of 10 m/s and 3-cm radar
wavelength. For these parameters, the ratio of wave height
to incident wavelength is much greater than one, so that the
assumptions of perturbation theory (SPM) are no longer valid.
Nevertheless, the numerical results again predict the V-pol
backscatter to be very weakly dependent on incidence angle,
particularly at larger incidence angles, in agreement with SPM.
Compared to Fig. 8, whereu = 4 m/s, the V-pol result is
significantly larger, especially at moderate incidence angles.
This is expected on physical grounds, since the Bragg resonant
wavelength�=(k sin �i) ranges from 4.38 cm at 20� incidence
to 1.73 cm at 60� incidence and� = 3 cm. In this range of
length scales, the Bjerkaas–Riedel sea spectrum is strongly
wind dependent [13]. The H-pol backscatter increases with
wind as well, with the greatest differences between Figs. 8
and 10 occurring at large incidence angles.

Fig. 11. Multigrid calculation of sea-surface backscatter as a function of
windspeed (L = 360 �, N = 7200). Results are calculated for near-normal
(15� circles), intermediate (40� squares), and near-grazing (80� diamonds)
incidence angles. The open symbols show H-pol and solid symbols show
V-pol. All results are for 3-cm radar wavelength.

The windspeed dependence is examined in detail in Fig. 11,
which is again calculated for 3-cm radar wavelength. The low-
grazing angle (�i = 80�) H-pol result is the most strongly
wind dependent. Interestingly, V-pol return at low-grazing
angle is very weakly wind dependent, particularly for higher
windspeeds. At 15� incidence, both polarizations in Fig. 11
are nearly independent of windspeed. An experimental confir-
mation of this result, based on data collected at 3 cm [24] and
2.15 cm [23] wavelengths, is reported in Wetzel [25]. At even
smaller incidence angles, our results indicate a slightdecrease
in �B with windspeed, which is expected since the increased
small-scale roughness reduces specular reflection [26].

VII. SUMMARY

We have developed a general iterative numerical solution to
the method of moments formulation of rough surface scatter-
ing. The method is developed for both horizontal (Dirichlet)
and vertical (Neumann) polarized electric fields incident on
perfectly conducting surfaces and there is no restriction on
the amplitude of the rough surface relative to the incident
wavelength. A key component of the method is a decomposi-
tion of the scattering problem into multiple overlapping grids,
each corresponding to a different range of spatial frequencies
or length scales. This approach is ideally suited to scattering
from the ocean surface, which is shown by spectral models
to encompass a broad range of length scales from long-
wavelength gravity waves (tens or hundreds of meters) to
short wavelength capillary waves (millimeters). Compared
to numerical solution by full-matrix inversion, the multigrid
iterative method substantially reduces the computing time
and can reduce computer memory to a small fraction (by
introducing additional grid levels and reducing the size of the
preconditioning matrix).

A previously introduced iterative method, the BMIA
[2]–[4], is shown to be a special case of the multigrid method.
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A multigrid form of the BMIA is applied to several sample
problems, including the ocean surface at moderate windspeed
and microwave radar wavelengths. Because the surface height
in these problems greatly exceeds the radar wavelength,
the BMIA is found to converge to an incorrect solution
unless the strong matrix bandwidth encompasses most of the
computational domain. Through extensive calculations, we
find that the BMIA may only be practical for an appropriate
combination of light winds and longer radar wavelengths.
By choosing a sufficiently large number of grid levels
and combining with the preconditioned GCR approach, the
multigrid method can be applied to such problems with
increased efficiency and no loss of numerical accuracy.

For ocean surface backscatter calculations, our numerical
results demonstrate good agreement with perturbation theory
out to low-grazing angles and we are able to apply the
method at higher windspeeds and smaller wavelengths where
the assumptions of perturbation theory are no longer satisfied.
Numerical results are obtained to within 4� of grazing and, for
V-pol, good agreement with perturbation theory is observed in
the limit of small windspeed. At H-pol, however, numerical
difficulties are encountered. One problem is apparently the
very small ratio of backscattered to total scattered energy,
which becomes less restrictive as windspeed, hence, surface
roughness, is increased. We also observe that within 10� of
grazing, considerably larger surface realizations are required
to capture the extensive multiple scatter. Additional results
are presented for the windspeed dependence of sea surface
backscatter over a range of incidence angles. Although pub-
lished measurements are relatively scarce, several qualitative
characteristics of the results are in agreement with radar
backscatter data.

APPENDIX A
GENERALIZED CONJUGATE RESIDUAL (GCR)

For the preconditioned GCR solution of (18), we first
calculate

r
0 =C� ZX0 (A.1)

z
0 = ~Z�1r0

h
0 = z0

where X0 is the initial guess, which may be taken to be
X
0 = ~Z�1C or simplyX0 = 0. Given (A.1), the equations

X
n+1 =X

n + �nhn (A.2)

r
n+1 = r

n

� �nZhn

z
n+1 = ~Z�1rn+1

h
n+1 = z

n+1
� �nhn

where

�n =
(rn; Zhn)

(Zhn;Zhn)
; �n =

(Zzn+1; Zhn)

(Zhn; Zhn)
(A.3)

are iterated inn(n = 0; 1; 2; � � �) until the residualkrnk meets
the convergence criterionkrnk < �. For calculations in this

paper, the value� = 10�4 is used throughout. Using thè2
norm, this criterion guarantees that the maximum error at any
point in the domain is very small. Values of� from 10�4–10�5

are typically observed. The notation ( , ) in (A.3) denotes the
inner product. At each iteration, the optimal parameters�; �

can be found by minimizing the functionals(rn+1; rn+1) and
(Zhn+1; Zhn+1) with respect to� and�, respectively.

REFERENCES

[1] R. F. Harrington,Field Computation by Moment Methods.New York:
Macmillan, 1968.

[2] L. Tsang, C. H. Chan, K. Pak, and H. Sangani, “Monte Carlo simulations
of large-scale problems of random rough surface scattering and applica-
tions to grazing incidence with the BMIA/canonical grid method,”IEEE
Trans. Antennas Propagat.,vol. 43, pp. 851–859, Aug. 1995.

[3] K. Pak, L. Tsang, and C. H. Chan, “Backscattering enhancement
of electromagnetic waves from two-dimensional perfectly conducting
random rough surfaces based on Monte Carlo simulations,”J. Opt. Soc.
Amer,vol. 12, pt. A, pp. 2491–2499, 1995.

[4] L. Tsang, C. H. Chan, and H. Sangani, “Banded matrix iterative
approach to Monte Carlo simulations of scattering of waves by large-
scale random rough surface problems: TM case,”Electron. Lett.,vol.
29, pp. 1153–1154, 1993.

[5] K. Pak, L. Tsang, and J. T. Johnson, “Numerical simulations and
backscattering enhancement of electromagnetic waves from two-
dimensional dielectric random rough surfaces with the sparse-matrix
canonical grid method,”J. Opt. Soc. Amer.,vol. 14, pt. A, pp.
1515–1529, 1997.

[6] J. T. Johnson, L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru,
and Y. Kuga, “Backscattering enhancement of electromagnetic waves
from two-dimensional perfectly conducting random rough surfaces: A
comparison of Monte Carlo simulations with experimental data,”IEEE
Trans. Antennas Propagat.,vol. 44, pp. 748–756, May 1996.

[7] H.-C. Ku and B. Ramaswamy, “Multi-grid domain decomposition
approach for solution of Navier–Stokes equations in primitive variable
form,” Int. J. Numer. Methods Eng.,vol. 38, pp. 667–683, 1995.

[8] H.-C. Ku, “Solution of flow in complex geometries by the pseudospec-
tral element method,”J. Comput. Phys.,vol. 117, pp. 215–227, 1995.

[9] A. Pao and M. Mow,Diffraction of Elastic Waves and Dynamic Stress
Concentrations. Russak, NY: Crane, 1973.

[10] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems,”SIAM J. Stat.
Comput.,vol. 7, pp. 856–869, 1986.

[11] Y. S. Wong, T. A. Zang, and M. Y. Hussaini, “Preconditioned conjugate
residual methods for the solution of spectral methods,”Comput. Fluids,
vol. 14, pp. 85–89, 1986.

[12] E. I. Thorsos, “The validity of the Kirchhoff approximation for rough
surface scattering using a Gaussian roughness spectrum,”J. Acoust. Soc.
Amer., vol. 83, p. 78, 1988.

[13] A. W. Bjerkaas and F. W. Riedel, “Proposed model for the elevation
spectrum of a wind-roughened sea surface,” Johns Hopkins Univ. Appl.
Phys. Lab., vol. TG-1328, 1979.

[14] W. Hackbush,Multi-Grid Methods and Applications. Berlin, Germany:
Springer-Verlag, 1985.

[15] A. Brandt, “Multi-level adaptive solutions to boundary-value problems,”
Math. Comput.,vol. 31, pp. 333–390, 1977.

[16] K. Kalbasi and K. R. Demarest, “A multi-level formulation of the
method of moments,”IEEE Trans. Antennas Propagat.,vol. 41, pp.
589–598, May 1993.

[17] P. Wesseling,An Introduction to Multigrid Methods. London, U.K.:
Wiley, 1992.

[18] S.-L. Chuang and J. A. Kong, “Scattering of waves from periodic
surfaces,”Proc. IEEE,vol. 69, pp. 1132–1144, Sept. 1981.

[19] K. A. Zaki and A. R. Neureuther, “Scattering from a perfectly con-
ducting surface with a sinusoidal height profile: TE polarization,”IEEE
Trans. Antennas Propagat.,vol. AP-19, pp. 208–214, Mar. 1971.

[20] , “Scattering from a perfectly conducting surface with a sinusoidal
height profile: TM polarization,”IEEE Trans. Antennas Propagat.,vol.
AP-19, pp. 747–751, Nov. 1971.

[21] J. R. Kuttler and J. D. Huffaker, “Solving the parabolic wave equation
with a rough surface boundary condition,”J. Acoust. Soc. Amer.,vol.
94, pp. 2451–2454, 1993.

[22] D. R. Thompson and R. D. Chapman, “Note on the reduction of the full-
wave method for rough surface scattering to the small height limit,”J.
Geophys. Res.,vol. C3-98, pp. 4827–4831, 1993.



132 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 1, JANUARY 1998

[23] L. C. Schroeder, P. R. Schaffner, J. L. Mitchell, and W. L. Jones, “AAFE
RADSCAT 13.9-GHz measurements and analysis: Wind-speed signature
of the ocean,”IEEE J. Oceanic Eng.,vol. OE-10, pp. 346–357, Oct.
1985.

[24] H. Masuko, K. Okamoto, M. Shimada, and S. Niwa, “Measurement of
microwave backscattering signatures of the ocean surface using X band
and Ka band airborne scatterometers,”J. Geophys. Res.,vol. C11-91,
pp. 13065–13083, 1986.

[25] L. B. Wetzel, “Sea clutter,” inRadar Handbook,M. Skolnik, Ed. New
York: McGraw-Hill, 1990.

[26] D. R. Thompson, “Calculations of radar backscatter modulations from
internal waves,”J. Geophys. Res.,vol. C10-93, pp. 12371–12380, 1988.

Denis J. Donohue received the B.A. degree in computer science from
Rutgers University, Piscataway, NJ, in 1985 and the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA, in 1991.

Following a Postdoctoral appointment working in space plasma physics,
he joined the Research and Technology Development Center of the Johns
Hopkins University Applied Physics Laboratory, Laurel, MD. His research
interests span a broad range including space science and astrophysics, optics,
acoustics, electromagnetic theory, and computational physics. His emphasis,
for several years, has been on radar and optical scattering from the ocean
surface.

Dr. Donohue is a member of the IEEE Antennas and Propagation Society
and the U.S. National Committee of URSI (Commission F).

Hwar-Ching Ku received the B.S. degree from Tsing Hua University,
Hsinchu, R.O.C., in 1976, the M.S. degree from Taiwan University, Tapei,
in 1980, and the Ph.D. degree from Illinois Institute of Technology, Chicago,
in 1984, all in chemical engineering.

He joined the Johns Hopkins University Applied Physics Laboratory,
Laurel, MD, in 1985, where he is now a Senior Staff Member in the
Research and Technology Development Center. Most of his research interests
in computational physics include fluid dynamics, magnetohydrodynamics of
space, plasma dynamics of aerospace, and electromagnetic scattering from
the ocean surface.

Donald R. Thompson received the B.S. degree in physics from Case
Western Reserve University, Cleveland, OH, in 1964, and the Ph.D. degree
in theoretical physics from the University of Minnesota, Minneapolis, MN,
in 1968.

Early in his career, he studied problems in few-body nuclear reactions and
stellar nucleosynthesis at the California Institute of Technology, Pasadena, the
University of Minnesota, and the Universit¨at Tübingen, Tübingen, Germany.
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