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Forward–Backward Method for
Scattering from Imperfect Conductors

Dennis Holliday, Lester L. DeRaad, Jr., and Gaetan J. St-Cyr

Abstract— The previously developed forward–backward
method for calculating scattering from perfectly conducting
azimuthally homogeneous surfaces is extended to imperfect
conductors, where the dielectric constant has a large imaginary
part such as sea water at X-band (10 GHz). An example shows
that highly accurate results at X-band are obtained for the case
of a steepened sea wave.

Index Terms—Sea surface electromagnetic scattering.

I. INTRODUCTION

I N a previous paper [1], we proposed a new method called
forward–backward for solving the magnetic field integral

equation (MFIE) for a perfectly conducting azimuthally ho-
mogeneous surface under conditions where there is significant
low-grazing angle backscatter. We now describe the extension
of the new method to scattering from imperfect conductors
with dielectric constants near that of sea water, i.e.,� =
65 + i40 at 3-cm incident radiation [2].

II. DERIVATION OF EQUATIONS

We consider an azimuthally homogeneous surfaceS that
divides space into two regions. The vertical and horizontal
coordinates of this surface,z(`) and y(`), respectively, are
functions of the path length̀ on the surface; for̀ > `+ and
` < `�, z = 0, i.e., the surface is flat outside a specified
region. Region 1 is a vacuum, which has a dielectric constant
� of one and permeability� of one and containsz ) +1.
The sources of electromagnetic radiation that impinge onS

are all located in Region 1. Region 2 containsz ) �1 and
is a nonmagnetic(� = 1) material media characterized by a
complex dielectric constant�.

For brevity, we first consider the scattering of an H-pol
incident plane wave of unit amplitude; the equations describing
the scattering of a V-pol incident plane wave of unit amplitude
will be derived from the H-pol equation by well-known
substitution rules [3].

To apply the forward–backward method to scattering from
imperfect conductors, we will find it convenient to write the
well-known equations relating the electric currentLH(`) =
t̂(`) � [n̂(`)�E] and magnetic currentJH (`) = x̂ � [n̂(`)�B]
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on S in the form [3]
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where the vector


 is 


(`; `0) = [y(`) � y(`0); z(`) � z(`0)]
and Z =

p
��j


j; the unit normal vector and unit tangent

vector toS are given byn̂(`) = [�z0(`); y0(`)] and t̂(`) =
[y0(`); z0(`)], respectively;̂x is the unit vector in the azimuthal
direction. The phase of the incident plane wave is�(`) =
�[sin �y(`) + cos � z(`)], where� is its wavenumber and� is
its incidence angle. The functionsH(1)

n are Hankel functions
of the first kind of ordern.

Equations (1) and (2) can be put in a form that facilitates
their numerical solution. Define

LH (`) = L0e
�i�(`) + LHR(`) (3)

where

L0 = 2 cos �

�h
cos � +

p
� � sin2 �

i
: (4)

A function JH0(`) is obtained by inverting
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by a standard method, which will be discussed in Appendix
A. Next, we defineJHR(`) by

JH (`) = JH0(`) + JHR(`) (6)

which leads to the following equations satisfied byLHR(`)
and JHR(`):

LHR(`) =DH (`) +
i
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TABLE I
H-POL TO V-POL REPLACEMENTS

and
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where

DH (`) =+
i
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The “transparency theorem” of Shaw and Dougan [4] has been
used in the above derivation.

At large distancesr from S, the azimuthal component of the
scattered H-pol electric field is related to the surface currents
by the Stratton–Chu equation [3]

x̂ �ES(k̂) ) i

2

ei(kr+�=4)p
2��r

BH(k̂) (10)

where
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k̂ = ( sin �R; cos �R) (12)

�R being the angle of reflection so that for backscatter�R = �;
note that the component of the scattered field due to reflection

of the incident wave from the planez = 0 is subtracted so
that BH(k̂) represents that part of the scattering amplitude
that varies as1=

p
r .

The above equations apply to the case where both the
surfaceand the incident field is independent of the azimuthal
coordinate. In nature, the part of the surface responsible for
the azymptotic component of the scattered field, i.e., the part
that varies as1=

p
r will have a limited azimuthal extent̀x.

Provided that�`x is large, the H-pol scattering cross section
will be given by

�HH
�= `2x

4�
jBH(k̂)j2 (13)

where BH(k̂) is determined from (11). This approximation
produces, for example, thè2x dependence of backscatter cross
section from a straight edge [5].

For V-pol, the equations have the same structure and can
be written down using the replacements indicated in Table I.

III. M ETHOD OF SOLUTION

The methods used to compute solutions to the above H-pol
and V-pol Fredholm integral equations involve the conversion
of each of the top-side equations [e.g., (7)] into two coupled
Volterra equations, which are then solved by stepping. We
have previously developed this method for scattering from
perfect conductors and have named it forward–backward [1],
which, for brevity, will be referred to as F/B. The bottom-side
equations [e.g., (8) and its V-pol counterpart] will be solved
by a method that involves approximating the Hankel function
integrals. We will show the development only for H-pol and
then use the substitution procedure in Table I to write the final
V-pol equations.

Since 2� � Imp
� is large (�12), the Hankel functions

H
(1)
0 (Z) andH

(1)
1 (Z) are small except wheǹ0 is within a
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fraction of an electromagnetic wavelength of`. Accordingly,
we approximate the integral on the right-hand side of (8) by

� i
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where
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for a flat surfaceA(`) = 0 andD(`) = (�)�(1=2).
The above approximation in (14) is more accurate than a

previously published “impedance boundary condition” approx-
imation [6], which further approximates the integrals in (15)
and (16) by taking

A(`) =� i

2�
p
�
[y0(`)z00(`) � z0(`)y00(`)] (17)

D(`) =
1p
�
: (18)

The accuracy of the approximations in (14) is discussed in
Section V where it is shown to be good.

The values ofJHR(`) and LHR(`) will be negligible far
from the crests of the waves we will consider and a good
approximation to (7) will be obtained by integrating`0 only
over the interval̀ � � `0 � `+, where`� and`+ are taken to
be sufficiently far from the crest. Then, using the result

JHR(`) = fH (`)LHR(`) (19)

where

fH (`) =
1�A(`)

D(`)
(20)

which is implied by (8) and (14), we obtain
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The V-pol equations follow in exactly the same manner as
the H-pol equations. We find

JV R(`) = DV (`) +

Z `+
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Equations (21) and (23) are solved by F/B. For (21) we write

LHR(`) = LFHR(`) + LBHR(`) (27)

where
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Application of the F/B method begins with solving (28)
with LBHR = 0 for LFHR by stepping starting at̀ = `+
and proceeding to smaller̀. With the approximateLFHR so
obtained we solve (29) forLBHR by stepping, starting at
` = `� and proceeding to largè. The resultingLB

HR
is then

substituted into (28), which is then stepped to produce a new
approximateLF

HR
. The procedure is continued until a desired

degree of convergence is obtained. For this report we stopped
the iterative process when the difference between successive
estimates ofLHR is less than 10�4 at every point on the grid.
Application of the F/B method to solve (23) proceeds in a
similar manner that is straightforward to derive.

Some details of the computations are discussed in the
Appendix. The accuracy of the method used in this section to
obtainLHR; JHR; JV R; andLV R are discussed in Section V.

IV. EXAMPLE:
BACKSCATTER FROM A SIMULATED SEA WAVE

The preceding formulation has been used to compute
LH ; JH ; JV ; LV ; and the H-pol and V-pol backscatter cross
sections at 85� incidence angle (5� grazing) for a 10-GHz
(3-cm wavelength) plane electromagnetic wave scattered from
a simulated sea wave that is similar to a paddle-generated
wave under investigation in the large wave tank at the
Ocean Engineering Laboratory, University of California, Santa
Barbara (UCSB). This simulated sea wave, which is in the
deformation phase of breaking where the forward face has
just moved past perpendicularity, is an output (Case 2.5,
t=T = 58:4377, T = 0:801 s) of the LONGTANK numerical
wavetank developed by Wanget al. at UCSB for the study
of wave groups, wave–wave interactions, wave deformation,
wave breaking, and other nonlinear effects [7]. Surface tension
effects are taken into account in the computation of the wave
shape. As shown in Fig. 1 (to scale), the wave, hereinafter
called the UCSB wave, has a crest-to-trough amplitude of
about 8 cm and its wavelength is about 1 m. Fig. 2 shows the
detail of the forward face of the wave.

The wave shape data provided to us by Wanget al. in digital
form comprises the whole wave group, which includes the
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Fig. 1. UCSB wave.

Fig. 2. Detail of the crest.

UCSB wave. For our example, we isolate the UCSB wave
numerically by applying two “cosine-on-a-pedestal” functions
to the whole group in such a way that the surface ahead of
and behind the crest of the UCSB wave is brought smoothly
to the mean (z = 0) water level as shown in Fig. 1.

Fig. 3 shows the computed values ofjLH j and jJH j from
` = �10 + 10 cm, while Fig. 4 shows the values ofjJV j
and jLV j over the same range; the perfectly conducting(�)
i1) currentsjJHC j and jJVC j—computed by F/B—are also
shown. ThejLH j and jLV j are, as expected from (20) and
(24), attenuated versions ofjJH j and jJV j. jJH j and jJHC j
are similar, which is a consequence of negligible absorption in
H-pol by the sea water. However, in V-pol, there is significant
absorption at the low-grazing angle of our example, sojJV j
and jJVC j are quite different. The backscatter amplitudes
calculated from (11) and the corresponding V-pol expression
with the above currents are

BH(�̂) = 27:1 exp(�i 23:1�) (30)

and

BV (�̂) = 3:2 exp(�i 11:5�) (31)

which, for a reference width of̀x = 1 m, leads to backscatter
cross sections

�HH =58:3 m2 (�C
HH

= 98:2 m2) (32)

and

�VV =0:82 m2 (�C
V V

= 24:3 m2) (33)

the values in parentheses are those for perfect conductivity.
The above value of�HH is in the range observed for large
sea spikes [8]. As expected,�HH differs very little from�C

HH
.

Fig. 3. H-pol currents.

Fig. 4. V-pol currents.

However, due to the differences in backscatter produced by
the effects of imperfect conductivity (which are complicated!),
�V V differs from�C

V V
by a much larger amount, 15 dB. The

ratio of �HH to �VV is +19 dB, while the ratio of�C
HH

to
�C
V V

is +6 dB.
To see the importance of multiple scattering in this ex-

ample, we note that the Kirchhoff approximation to perfect
conductivity backscatter from the UCSB wave leads to

�CKirch = 2:9 m2: (34)

This value is 15 dB below�C
HH

and 9 dB below�C
VV

, thus
showing that multiple scattering effects are significant in both
H-pol and V-pol.

We have not been able to devise a “simple” explanation
of the scattering phenomena that lead to the results computed
above. Complicated interference phenomena, absorption by the
sea water in V-pol, and scattering by highly curved regions of
the surface are all involved in a significant way. What we
have done is to develop a method to compute scattering from
imperfectly conducting wave-like surfaces to a high degree of
accuracy that can be verified.

V. ERRORS AND THEIR REACTION

The simplest error check is to calculate how well the F/B
solutionsLF

HR
+ LB

HR
and JF

V R
+ JB

VR
satisfy the original
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Fig. 5. ~J for H-pol.

integral equations forLHR andJV R [(21), (23)], respectively.
Direct substitution of the F/B solutions into the appropriate
equations yield estimates of the errors. The maximumLHR
error occurs in the vicinity of the peakLHR and is about 4
� 10�3. The maximum error forJVR is also located in the
peak JV R region and is very small at about 3� 10�6. If
these errors are included in the calculation of the backscatter,
they lead to negligible changes of 0.01 and 0.00 dB in the
backscatter cross sections for H-pol and V-pol, respectively.

The above errors, of course, do not address the adequacy of
the fH andfV approximations. We can consider these errors
by introducing residual fields~J(`) and ~L(`) as

JHR(`) = fH(`)LHR(`) + ~J(`)

LV R(`) = � fV (`)JV R(`) + ~L(`): (35)

The bottom-side integral equations for these residuals are
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Solutions for ~J and ~L are obtained in exactly the same way
as the solution forJH0(`) andLV 0(`) (see Appendix). Figs. 5
and 6 show the absolute values of~J and ~L, respectively, in
the peak region,�10 cm � ` � 10 cm. As can be seen,
these quantities are small compared toJH and LV and are
concentrated in the region of the waveform that we expect to
have the greatest error associated withfH andfV . When the
residual currents~J and ~L are used to calculate backscatter, the

Fig. 6. ~L for V-pol.

changed cross sections are again negligible:�0.02 and�0.05
dB for H-pol and V-pol, respectively.

The above discussion indicates that the original F/B solu-
tions are highly accurate and yield highly accurate backscatter
cross sections. However, the residuals can also be used for a
procedure to determine more accurate solutions. In particular,
if JHR andLV R are defined as in (35), then the appropriate
integral equations forLHR andJVR [cf. (21), (23)] are

LHR(`) =DH (`) � 1
2�

Z +1

�1

d`0 ~J(`0)H
(1)
0 (�
)

+

Z +1

�1

d`0H(`; `0)LHR(`
0) (38)

and

JVR(`) =DV (`) +
1
2�

Z +1

�1

d`0~L(`0)H
(1)
0 (�
)

+

Z +1

�1

d`0V (`; `0)JVR(`
0): (39)

When combined with (36) and (37), the above equations
comprise a complete set that can be solved iteratively. The
iteration scheme starts with~J = ~L = 0; (38) and (39) are
solved forLHR and JVR by F/B. These solutions are then
used to calculate~J and ~L by means of (36) and (37). The new
~J and ~L are used in (38) and (39), which are then solved by
F/B for a newLHR and a newJV R. We then go back to (36)
and (37) and repeat the process. We stop the process when a
criterion is met such as successive changes in~J and ~L being
less than some small number.

The iterative process described above was carried out for
the surface under consideration. Table II lists the maximum
changes in~J and ~L as a function of iteration number starting
with zero (the ~J = ~L = 0 solution discussed above). As
can be seen, the procedure is converging numerically. At the
point we stopped, we calculated the changes in the backscatter
amplitudes and cross sections produced by~J; ~L and the altered
LHR and JV R. We find

�BH (�̂) = 4:7� 10�2 exp(i 72:7�)

�BV (�̂) = 1:6� 10�2 exp(i 168:3�)

��HH =�7:7� 10�4 dB

��VV =�4:4� 10�2 dB: (40)
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TABLE II
~J AND ~L CONVERGENCE

These are very small changes and again emphasize the ad-
equacy of thefH and fV assumption for the surface under
consideration.

VI. SUMMARY AND CONCLUSIONS

The method previously developed for scattering from per-
fectly conducting azimuthally homogeneous surfaces has been
successfully applied to scattering from azimuthally homoge-
neous surfaces that are imperfect conductors, where

p
� has a

large imaginary part. The extension involves solving simulta-
neously the top-side and the bottom-side integral equations by
methods shown to have very low errors at X-band (10 GHz),
even for such a highly curved surface as a sea wave in the
deformation phase of breaking.

An example calculation at X-band demonstrates that the
new method produces highly accurate amplitudes and cross
sections for polarized backscatter from sea waves.1

APPENDIX

COMPUTATIONAL DETAILS

The wave form supplied by UCSB is a list ofy; z values
on a nonuniform path-length grid. For the surface used in this
report, the path-length grid spacing varied from12 mm to 2.8
cm with the1

2 mm spacing used in the highly curved regions of
the wave. To perform the underside integrals with the Hankel
functions of complex argument, we require the surface to be
sampled on a fine uniform path length grid. Here, we have used
�` = 1

10 mm. The procedure used to define the surface at this
scale is as follows. We first considery and z as functions of
the index (i). We then individually cubic spline interpolatey
andz as functions ofi. This yields continuous functions with
continuous first and second derivatives. We then calculate the
path length

`(i) =

Z i

0

di0

(�
dy(i0)

di0

�2

+

�
dz(i0)

di0

�2)1=2

(A.1)

determine the appropriatei for a given ` and calculate the
six functions:y(`); y0(`); y00(`); z(`); z0(`); z00(`). The fine

1For those readers wishing more detail in the derivation of the final
equations, technical report LRDA-TR-2 190 003-002, June 1996, is available
upon request from the authors.

grid at 1/10 mm has 131 072 (217) points. The power of two
is required because of the technique we use to solve (5) (see
below). Most of this surface consists of flat regions both in
front of and beyond the UCSB surface. The actual` variable
is taken to be zero near the center and corresponds to the peak
of the UCSB surface. The variables`+ and`� are determined
by adding 5 m of flat surface on either side of the UCSB
surface so that̀+ � `� = 11.7 m.

The reason we sample the surface at�` = 1
10 mm is that all

integrals on the bottom side are calculated with this grid. Such
a fine grid is required sinceH(1)

0 (Z) andH(1)
1 (Z) vary quite

rapidly due to
p
� having a large imaginary part. To further

capture the rapid variations, we averageH
(1)
0 (Z) andH(1)

1 (Z)
over a 1/10 mm interval when performing the bottom-side
integrals.

Of course, we do not want to solveLHR and JV R on
the fine grid since this would require an excessive number
of calculations for an insignificant improvement in accuracy.
Instead, we downsample by a factor of eight so that the grid
for the top-side equations (28) and (29) is�` = 0:8 mm; then
there is a total of 14 623 grid points.

The numerical implementation of the stepping procedure has
been discussed elsewhere [1] and will not be repeated here.
We only note that we treat theH(1)

0 singularity by averaging
over the grid cell

H
(1)
0 (0)) 1 +

2i

�

�
`n

��`

4
� 1 + 
E

�
(A.2)

where
E is Euler’s constant


E = 0:57721 � � � : (A.3)

Finally, we turn to the solution of (5). We will here consider
the H-pol equation, but the V-pol equation is solved in exactly
the same manner. Since we know the solution for a flat plate,
we define

JH0(`) =
p
�� sin2 �L0e

�i�(`) + �J(`) (A.4)

so that the integral equation for�J is

1
2
�

Z +1

�1

d`0�J(`0)H(1)
0 (Z) = L0X(`) (A.5)

where

X(`) = e�i�(`) +
i

2
�

Z +1

�1

d`0e�i�(`
0)

�
np

�n̂(`0) � 
̂H(1)
1 (Z) + i

p
�� sin2 �H

(1)
0 (Z)

o
:

(A.6)

The functionX(`) is calculated on the 0.8-mm grid where for
any ` we restrict thè 0 integration in such a way that

j`0 � `j � 3 cm: (A.7)

This is reasonable since

jH(1)
0 (Z)j
=3cm = 3:46� 10�8 (A.8)
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for � = 65 + i 40. Next, we rewrite (A.5) as

1
2�

Z
d`0 �J(`0)H

(1)
0 (

p
��j`0 � `j)

= L0X(`) � 1
2�

Z
d`0 �J(`0)[H

(1)
0 (

p
��
)

�H
(1)
0 (

p
��j`0 � `j)]: (A.9)

The left-hand side�J can be solved for by FFT techniques
if the right-hand side is known. Consequently, (A.9) is solved
by iteration by first assuming�J = 0 on the right-hand side.
Typically, four iterations are required to obtain a solution that
changes less than 10�6 in �J from its previously determined
values. The iteration technique is particularly powerful here
because of the short range of the kernel and the fact that over
such short ranges
 � j`0 � `j. Finally, we note that the right-
hand side is calculated directly on the 0.8-mm grid and then
interpolated to the 1

10 mm grid by use of FFT’s and zero
padding.
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