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Green’s Function Refinement as an Approach to
Radar Backscatter: General Theory and

Applications to LGA Scattering from the Ocean
William T. Shaw and Andrew J. Dougan

Abstract—We present a new approach to the computation
of radar returns from dielectric bodies whose boundary is the
deformation of a plane surface. The method relies on combining
a systematic improvement in the Green’s function with a good
approximate choice of local boundary condition. In this paper,
the general theory is presented together with a simple application
where the Green’s function is that for a lossy dielectric half-space.
We derive the root radar cross section (RCS) for a statistical
surface and the mean backscatter RCS for a rough surface.
We explore the applications to low-grazing-angle (LGA) scat-
tering from statistical surfaces with an ocean-like spectrum and
demonstrate that such a model explains some of the previously
unexplained LGA phenomena, such as the absolute and relative
levels of the vertical (VV) and horizontal (HH) channel RCS
measurements.

Index Terms—Green’s function, sea-surface electromagnetic
scattering.

I. INTRODUCTION

BACKSCATTER from surfaces at low-grazing angle
(LGA) presents several puzzles for theoretical and

numerical modelers. The nature of the problems depend to
some extent on the context and the context of scattering
from the ocean presents particular challenges. In this case,
there are very basic problems to be resolved about the
polarization sensitivity of both the radar cross section (RCS)
and Doppler spectra. In a recent survey, Apel [1] cited one
issue in particular—the fact that vertical (VV) returns from the
ocean are very similar in level to those obtained via the small
perturbation method (SPM), while the horizontal (HH) returns
are significantly higher than the corresponding SPM value.
Other issues have been described by Leeet al. [16] and Ward
[34] and include “spikes” in the HH returns and dislocation
of the Doppler spectra peaks in the two polarizations.

The purpose of this paper is to describe a new analytical
model of scattering from a statistical surface that appears to
capture at least some of these so far unexplained phenomena.

In analytical models, one assumes some form of approxi-
mate boundary condition and proceeds to evaluate a surface
integral for the scattering. The scattering integral involves the
far-field components of a Green’s function. The vast majority
of past work on this problem just uses the free-space Green’s
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function while substantial theoretical and numerical effort has
gone into improving the estimate of the surface fields. But, if
the exact Green’s function for the problem were known, there
would be no surface integral left to evaluate as the scattering is
given by a volume integral involving the full Green’s function
and currents in the radar antenna source. DeSanto was the first
to look at how the Green’s function could be improved in his
series of studies (in particular the electromagnetic analysis of
[6]). But DeSanto focused only on the volume integral term
involving a rough surface Green’s function computed as an
approximate diagrammatic solution to the Green’s function
integral equation in the perfectly conducting (PC) case C.
Flammer [8] considered a perturbative approach to the PC
case. More recently, an approach which combines elements of
diagram theory and perturbation theory has been taken up by
Mudaliar [19].

In recent years, a substantial program of numerical sim-
ulation has begun in several centers that aims to solve for
the electromagnetic surface currents exactly. We cannot claim
to be aware of all the threads that have been taken up in
such approaches, but the work by Hollidayet al. [11], [12],
Kapp and Brown, [14], Kimet al. [15], Spivak [26], and
Thorsos and Jackson [29] cover a range of methods including
Volterra, “forward–backward,” and other approaches. These
approaches have the advantage that it can be checked when
the electromagnetic boundary conditions are satisfied, giving
considerable confidence in the quality of the answer. It is
also possible to investigate particular deterministic surfaces
with relative ease. In contrast, in our approach we merely
postulate an approximate boundary condition and live with
its deficiencies. It is vital to appreciate that the purposes of
Green’s function refinement is to systematically render these
deficiencies less significant, by making the mapping from
surface electromagnetic (EM) currents to the RCS less and
less sensitive to the errors in the assumed surface current.
Our method is, therefore, complementary to the numerical
approach over which it has the distinct advantages of being
able to handle: 1) two-dimensional (2-D) surfaces (present
numerical work, as far as we are aware, appears to be limited to
one-dimensional (1-D) surfaces) and 2) a statistical description
of the surface, thereby enabling meaningful discussion of the
impact of the surface-wave spectrum on the RCS and its
consequences for synthetic aperture radar (SAR) imagery and
detection theory for internal waves and other disturbances. In
principle, at least some of these numerical methods could be
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used to establish the domain of validity of the model we shall
present here, very much in the spirit of [15] and [29].

We are certainly not alone in attempting to build a more
accurate analytical model for statistical surfaces. A priority for
our future studies must be to understand how our approach
is related to other groups. The family of methods based
on small-slope approximations developed by Tatarskii and
Tatarskii [28] and Voronovich [32] is of particular interest, as
it appears to have some features (such as “containing” in some
form—theories of both Kirchhoff and SPM type) in common
with our approach. We wish to point out that although we shall
introduce our own form of small-slope approximation, denoted
linear slope variation (LSV) and quadratic slope variation
(QSV), it is a computational approximation introduced to
extract tractable detailed answers. The notion of a small slope
plays nofundamentalrole in our model.

There is a close relationship between our family of models,
which are nonperturbative, and some existing models rooted
in perturbation theory. It is possible to regard the Green’s
function method as a nonperturbative extension of work by
Burrows [5] and Mitzner [18] and it therefore offers the
possibility of providing generalizations of the analysis by
Brown [4]. Some clues as to how this works are given in
the remarks at the end of Section IV, but a clear view of the
correspondence relies on an analysis of reciprocity by Tough
and Ward [30].

To give a better context to our own approach, let us
enumerate some scenarios for the geometry associated with
Green’s function and approximate boundary condition. First,
the Green’s function geometry scenarios, labeled GF(i), i =
1–7 are as follows:

1) free-space;
2) perfectly conducting (PC) flat plane;
3) flat plane bounding dielectric half-space;
4) perturbation of PC flat plane;
5) perturbation of planar surface bounding a dielectric;
6) fully rough PC surface;
7) fully rough boundary to dielectric.

Next, we list some approximate boundary conditions, BC(i),
i = 1–7 (of the analytically tractable variety):

1) perfectly conducting (unshadowed) Kirchhoff;
2) tangent-plane impedance Kirchhoff;
3) curvature-corrected impedance Kirchhoff;
4) perfectly conducting shadowed Kirchhoff;
5) impedance shadowed Kirchhoff;
6) curvature-corrected impedance shadowed Kirchhoff;
7) extended integral boundary condition.

Our general plan is to push down these two lists are far as
possible. Some cases have been done. For example, Holliday
et al. 1986 ocean-imaging model [10] is based on scenarios
GF(1) + BC(1). An analysis of the combination GF(1)+
BC(2) was developed by Hagfors [9]. A scalar version of
GF(2) + BC(1) was developed by Berman and Perkins [2]
and was extended by us to the electromagnetic case in [21].
These latter two models demonstrate very explicit consistency
between the Kirchhoff approximation and first-order SPM, but
in the electromagnetic case, the PC model predicts a VV/HH

ratio of just a few dB for LGA backscatter with surfaces that
are PC but otherwise ocean like. However, in the PC model
there are some oddities in the general absolute levels of the
RCS and we wished to develop a corresponding dielectric
model in order to remedy this. In this paper, for the first
time we present an analysis of the combination of GF(3) with
BC(2). We make brief comments on the extension to BC(3)
and BC(7). We have not yet considered the combination of a
refined Green’s function with shadowed boundary conditions
BC(4–6) though this can be approached by combining what
we have already with some form of geometric shadowing as
defined, for example, by Brown [3], Smith [25], and Wagner
[33]. A prototype could be based on the work of Sancer [20].

We shall show that the GF(3)+ BC(2/3) models define a
theory that contains both Kirchhoff theory and SPM theory
for high-contrast lossy dielectric media. We shall combine the
general form of the theory with an approximate simple model
of the ocean-wave spectrum and explore the mean backscatter
RCS in both VV and HH channels. The theory is remarkable in
its predictions for LGA scattering in that it predicts results for
VV very similar to those for SPM, but in the HH channel,
the mean RCS is raised substantially from its SPM value
and may even be slightly higher than VV. This is much
closer to observed RCS measurements. We remind the reader
that we have assumed standard Gaussian surface statistics
with a simple model ocean-like surface wave spectrum. No
complicated hydrodynamics or shadowing has been introduced
and the most important properties of our model follow from
the use of a simple tangent-plane approximation.

II. M AXWELL’S EQUATIONS VIA DYADIC GREEN’S FUNCTIONS

Suppose first that all of three-dimensional (3-D) space is
divided into two regions~V1 (the “upper region”) and~V2 (the
“lower” region) with the dividing region either a plane surface
or a deformation thereof. The boundary~S = @ ~V1 has a unit
normal~n pointing upwards into the upper region~V1. Suppose
further that the full dyadic Green’s functions are known for
this geometry. We shall describe these shortly. Suppose further
that the real atmosphere-ocean geometry is described by two
regions V1 and V2 with the ocean surface atS = @V1.
Our goal is to make maximal use of the information about
the scattering from~S in computing scattering from the real
surfaceS. Note that, in general, it is not necessary that the
deformations relating~S, S, and a flat half-plane are in any
sense perturbative.
V1; ~V1 have electromagnetic properties characterized by the

pair (�1; �1) andV2; ~V2 have EM properties characterized by
the (complex) pair(�2; �2). We assume that�1 = �0, the free-
space electric value, and that there are no magnetic effects
associated with either media so that�1 = �2 = �0, the free-
space magnetic value. Note that it is a simple matter to carry
out the following analysis without these restrictions. All our
fields have a time-dependencee�i!t and the wave numbers
associated with the two media are then

k1 = !
p
�1�1; k2 = !

p
�2�2: (1)



SHAW AND DOUGAN: GREEN’S FUNCTION REFINEMENT AS AN APPROACH TO RADAR BACKSCATTER 59

A. Equations for the Background Green’s Dyad

We now write down the equations characterizing the Green’s
dyad for the background geometry. Most of the useful existing
literature on tensor or dyadic Green’s functions, notably Tai
[27] and Lindell [17], focuses detailed analysis on the equa-
tions for the electric Green’s dyad. We shall therefore develop
the theory for the electric case and take the curl of the final
result to secure the magnetic field, which was developed in our
PC analysis. Our initial analysis of the background geometry
follows that of Tai [27]. We use superscripts 1 and 2 to denote
the upper and lower medium, respectively, except onk where a
subscript refers to the medium and the superscript “2” indicates
a squared quantity.

Let r0 2 ~V1 and let r be a point elsewhere in 3-D space.
Whenr 2 ~V1, the electric Green’s dyadG11

e
(r; r0) describing

propagation of fields fromr0 to r satisfies

r^r^G11

e
(r; r0) � k2

1
G11

e
(r; r0) = I�(r � r0) (2)

whereI is the unit dyad. Whenr 2 ~V2 the dyadG21

e
(r; r0)

describing propagation of fields fromr0 to r satisfies

r^r^G21

e
(r; r0)� k2

2
G21

e
(r; r0) = 0: (3)

These background Green’s functions satisfy boundary condi-
tions at the interface~S. These are

~n ^G11

e
(r; r0) = ~n ^G21

e
(r; r0) (4)

~n ^ [r^G11

e
(r; r0)] = ~n ^ [r^G21

e
(r; r0)]: (5)

We now make a key hypothesis. We assume that one or
both of the dyadic Green’s functions defined on the regions
~V1 and ~V2 may both be uniquely continued to continuously
differentiable functions as far as an open neighborhood of the
real ocean-air interfaceS. In other words,G11

e
(r; r0) may be

continued down into the troughs—we call this a level one
hypothesis—while in the corresponding level-two hypothesis,
we assume, in addition, thatG21

e
(r; r0) may be continued up

into the peaks and we can write down expressions involving
derivatives of these objects evaluated on the real interface. It
should be appreciated that the level-two hypothesis appears
to be true only for lossless media—if one approaches the PC
limit, the objectG21

e
(r; r0) blows up in the upper region.

B. Electric Field Equations

The electric fieldsE1(r) andE2(r) in the two real regions
V1 and V2 satisfy

r^r^E1(r) + k2
1
E1(r) = i!�1J1(r) (6)

r^r^E2(r) + k2
2
E2(r) = 0 (7)

whereJ1(r) is the source inV1. They also satisfy boundary
conditions on the real interface which may be written as
follows:

n ^E1 =n ^E2 (8)

n ^r ^E1 =n ^r ^E2: (9)

These express, respectively, continuity of the tangential com-
ponents of the electric and magnetic fields across the real
interface, bearing in mind�1 = �2 = �0.

By integrating the divergence of a vector field built from the
Green’s function and the electric field overV1 and applying
the divergence theorem [27, p. 70], we obtain our first formula
for the total field in region 1

E1(r
0) = i!�1

Z
V

dV J1(r) �G11
e (r; r0)

+

Z
S

dSf[n ^E1(r)] � [r^G11
e (r; r0)]

+ i![n ^B1(r)] � [G11
e (r; r0)]g: (10)

Here, both the volume and surface integrals are over the
r-coordinate, leading to the electric field evaluated atr0.
The corresponding integration overr in region V2 gives the
extended boundary condition

0 =

Z
S

dSf[n ^E2(r)] � [r^G21
e (r; r0)]

+ i![n ^B2(r)] � [G21
e (r; r0)]g (11)

valid with r0 2 V1. In both cases, the normaln is taken to be
the upward pointing normal toS (i.e., into V1).

Note that the volume integral gives the contribution to
scattering from the geometry for which the Green’s function
is known and the surface integral gives corrections based on
an approximate local boundary condition.

III. D IELECTRIC GREEN’S FUNCTIONS

Several authors have given various expressions for the
Green’s function associated with a dielectric half-space, in-
cluding Felsun and Marcuvitz [7] and Tai [27]. Between them,
these authors make the point that the Green’s function can be
expressed in various ways and that some form of asymptotic
expansion can be done. In this section, we exploit some work
by Lindell [17], which gives asymptotic expressions for the
reflection and transmission Green’s dyads when~S is a flat
plane. We should warn the reader that some effort is required
to map Lindell’s results on to our own due to differences in
conventions and various simplifications we have employed.
We shall not describe the steps we have taken here in detail.
Rather, we shall demonstrate that the asymptotic forms we
write down satisfy the Green’s function boundary conditions.

To make contact with Lindell’s analysis, we choose particu-
lar coordinates and bases. We introduce Cartesian coordinates
(x; y; z) with associated orthogonal unit vectors(ux; uy; uz)
and the standard polar coordinates(r; �; �) and their associ-
ated orthogonal unit vectors(ur ; u�; u�). Let k = kH +kzuz
be the outgoing wave vector.~S is taken to be the flat plane
z = 0 and reflected vectors are denoted by a caret so thatv
becomeŝv = v � 2(v � uz)uz. To define the electric dyadics
G11
e (r; r0) andG21

e (r; r0) we must introduce the free-space
Green’s function defined by

G0(r � r0) =
eikjr�r0j

4�jr � r0j (12)

and the Fresnel coefficients defined by

RTE( ) =
cos �

p
�� sin2  

cos +
p
�� sin2  

(13)
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RTM( ) =
�� cos +

p
�� sin2  

� cos +
p
�� sin2  

(14)

TTE( ) =
2 cos 

cos +
p
�� sin2  

(15)

TTM( ) =
2
p
�� sin2 

� cos +
p
� � sin2  

(16)

where� = �2=�1 is the relative permittivity and where is the
local angle of incidence between an incident wave vector� and
the unit normaln to the surface so thatcos  = �(� �n)=j�j.
We also have the relationships

1 +RTE( ) =TTE( ); 1 + RTM( ) = TTM( ) (17)

and

1�RTE( ) = �TTE( ); 1� RTM( ) =
�

�
TTM( )

(18)

where � = �2=�1 and �i =
q
k2i � jkH j2. Note that we

will just write RTE, RTM, TTE, and TTM for the Fresnel
coefficients when considering the flatz = 0 surface with
n = uz and � = �k.

Using Lindell’s asymptotic expression for the reflection part
of the asymptotic Green’s dyadic [17, p. 221] and adding in
the contribution direct from the source gives the following
asymptotic expression forG11

e (r; r0):

G11
e (r; r0) �f[1 + RTEe2ikz�]u�u�

+ [u� +RTMe2ikz�û�]u�gG0(r
0)e�ik:r (19)

where� = r:uz is the surface height. Similarly his expression
for the asymptotic form of the transmission Green’s dyadic
G21
e (r; r0) can be shown to be equivalent to

G21
e (r; r0) �fTTEu�u� + TTMu�u� + (1 � 1=�)

� sin �TTMuzu�
	
G0(r

0)e�ik:reikz(1��)�: (20)

To confirm that these expressions are the correct dyads for
the flat dielectric plane we will check that they satisfy the
boundary conditions given in (4) and (5). The first boundary
condition is easily checked by takingn = uz and� = 0 and
writing

uz^ [G11
e �G21

e ] = f[1 + RTE � TTE][uz ^ u�]u�
+ [1+ RTM � TTM][uz ^ u�]u�

	
G0(r

0)e�ik:r (21)

where we have useduz ^ u� = uz ^ û�. Since the Fresnel
coefficients satisfy (17), this is zero, as required.

The confirmation of the differential boundary condition is a
little more involved as one needs to know how to find the curl
of the dyads. The method of computation is described by Tai
[27]. Asymptotically, for a general source pointr we have

r^G11
e (r; r0) � ikf[u� �RTEe2ikz� û�]u�

� [1� RTMe2ikz�]u�u�gG0(r
0)e�ik:r (22)

and

r^G21
e (r; r0) � ik

�
1
2T

TE[(u� � û�) + �(û� + u�)]u�

� �

�
TTMu�u�

�
G0(r

0)e�ik:reikz(1��)�:

(23)

Hence, placingr on the flat plane, we get, asymptotically

uz^fr ^ [G11
e (r; r0) �G21

e (r; r0)]g
= ik

�
([1�RTE]� �TTE)uz ^ u�

�
�
[1� RTM]� �

�
TTM

�
uz ^ u�

�
G0(r

0)e�ik:r:

(24)

But since the Fresnel coefficients satisfy (18), this is zero, as
required.

IV. THE ROOT RCSAS A FUNCTION OF THE SURFACE FIELDS

In this section, we look at the properties of the root RCS
as an integral mapping from assumed surface fields. To obtain
the root RCS we use (10) for the electric field. For nonnormal
backscatter, we may ignore the volume integral when the
background geometry is flat. The surface integral for the
magnetic field can be written down by taking the curl with
respect to the primed variable

B1(r
0) =

1

i!

Z
S

dSf[r0 ^ F (r; r0)] � [n ^E1(r)]

+ i![r0 ^M (r; r0)] � [n ^B1(r)]g (25)

where F (r; r0) = [r ^ G11
e (r; r0)]T and M (r; r0) =

[G11
e (r; r0)]T . It is then a simple matter to show that

r0 ^M (r; r0) � � ikG0(r
0)e�ik:rf[1 + e2ikz�RTE]u�u�

+ u�[u� + e2ikz�RTMû�]g (26)

and

r0 ^ F (r; r0) � k2G0(r
0)e�ik:rf[1� e2ikz�RTM]u�u�

+ u�[u� � e2ikz�RTEû�]g:
(27)

With the root RCS� defined by

B1(r
0) = G0(r

0)� + O(jr0j�2) (28)

we can now write down the following formula where, as usual,
c = 1=

p
�0�0 is the speed of light in vacuum

� = ik

Z
S

dSe�ik:r f(u�
 � u��):[n ^E1(r)]=c

+ (u�� � u��):[n ^B1(r)]g (29)

where the kernels are given by� = (u� � e2ikz�RTEû�),
� = (1 + e2ikz�RTE)u�, 
 = �(1� e2ikz�RTM)u�, and� =
(u� + e2ikz�RTMû�). To obtain the polarization components
of the root RCS, we take the scalar product of (29) with�u�
andu�, respectively. We let�(�H) denote the root RCS for
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H receive and either transmitted polarization and�(�V ) is the
corresponding root RCS for V- receive. Then

�(�H) = ik

Z
dSe�ik:rf�:(n ^E)=c+ �:(n ^B)g (30)

�(�V ) = ik

Z
dSe�ik:rf
:(n ^E)=c+ �:(n ^B)g: (31)

Note that at this stage we have madeno assumptions about
the nature of the surface fields, so our result may be viewed
as a mapping from surface fields to cross sections with
several interesting properties. The reader may notice that
the vectors�; �; 
; � are in fact the H and V components
of the electric and magnetic fields of a plane wave being
scattered by a dielectric half-space. This is no coincidence
and is one example of a general link between the Green’s
function approach and other methods recently discovered by
Tough and Ward [30].

V. EXPRESSIONS FOR THESURFACE FIELDS

It is possible to consider three types of expression for the
surface fields. These are based on: 1) the tangent-plane approx-
imation, which is equivalent to a Leontovich-type impedance
assumption; 2) a curvature-corrected impedance approxima-
tion; and 3) an extended boundary condition. Here we consider
only 1). The detailed results arising from choice 2) will be
considered elsewhere [24]. The implications of 3) will be
discussed later.

In the tangent plane approximation for the surface fields it is
assumed that each infinitesimal piece of the scattering surface
S can be treated as part of an infinite dielectric plane whose
normal is defined by the local normaln. Let � be the incident
wave vector and letEi andBi incident electric and magnetic
fields, respectively. The equations for the surface fields are
then

n ^E1 = [1 +RTM( )]n ^Ei � [RTE( ) � RTM( )]

jn ^ �j2
� n:(� ^Ei)[�� (n:�)n] (32)

n ^B1 = [1�RTE( )]n ^Bi � [RTE( ) � RTM( )]

jn ^ �j2
� n:(� ^Bi)[�� (n:�)n]: (33)

VI. THE ROOT RCSIN THE TANGENT PLANE APPROXIMATION

From here we make the explicit specialization to backscat-
ter, so thatk = �� = k1ur . For transmitted horizontal
polarization, we have an incoming wave of the form

Ei = �E0u�e
�ik:r ; Bi = �B0u�e

�ik:r : (34)

For transmitted vertical polarization, we have an incoming
wave of the form

Ei = �E0u�e
�ik:r; Bi = B0u�e

�ik:r : (35)

In these relations,E0 = cB0.
As a preliminary to working out all the terms in our

integrands, we substitute each of these expressions for the
incoming fields into (32) and (33), and then take the dot prod-
ucts of the resulting expressions with our basis vectors, and
use some vector identities to simplify the results. Substituting

the resulting relations into our expressions for the horizontal
and vertical polarization root RCS and dividing byB0 gives
us the scattered field per unit in field (the root RCS proper).
To state our results in a compact form we now introduce some
polarization functions defined by

�(HH) = � 1; �(V V ) = +1 (36)

R(HH) =RTE; R(V V ) = �RTM (37)

P (HH) =RTE( ); P (V V ) = �RTM( ): (38)

The root RCS can then be written

�(pol) = i

Z
dSe�2ikH :x�2ikz�K(pol)

+ i�(pol)R(pol)

Z
dSe�2ikH :xH(pol) (39)

where, in the integrands,K(pol) denotes the dielectric Kirch-
hoff component andH(pol) denotes the half-space Green’s
function corrections. The Kirchhoff components are given by

K(pol) = (n:k)

�
[RTM( ) +RTE( )] ��(pol)k2

� [R
TE( ) � RTM( )]

jn ^ kj2 [(n:u�)
2 � (n:u�)

2]

�
:

(40)

Note that this contribution is itself polarization sensitive.
The half-space corrections are given by

H(pol) =n:(k � k̂) � P (pol)n:(k + k̂) + (n:k)

�
�
cos 2�[RTM( ) � RTE( )] + k2

� [R
TE( ) �RTM( )]

jn ^ kj2 [cos 2�(n:u�)
2 + (n:u�)

2]

�
:

(41)

We now have the root RCS for VV and HH as explicit, if
very complicated, functions of the local height and normal.
We can now, at least in principle, taken the modulus squared
of these expressions and average over the joint distribution of
heights and slopes.

VII. T HE LSV METHOD OF APPROXIMATION

In the previous section, we wrote down various integrals for
the root RCS. The problem is, therefore, to evaluate them. To
do this we note that since the integrands are functionals of the
surface height and slope, we can expand them up to any order
in the slopes. One can then attempt to evaluate the resulting
integrals order by order. When this expansion is carried out
up to linear order about the flat case, we say we have an LSV
approximation to the root RCS. Similarly, if this is carried
out up to quadratic order, we call this a QSV approximation.
These approximations are, therefore, valid when the surface
slopes are small. An issue arises as to what other values of
the slope could be used as the base point of the expansion. In
his pioneering analysis of dielectrics, Hagfors [9] considered
making an expansion about that slope that results in specular
reflection. In our own studies we considered this in some
detail, but discarded this approach as 1) the relationship to
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SPM of the resulting model is very awkward and 2) such a
specular point may not exist for LGA incidence or may be
shadowed. In what follows, we will only consider the LSV
approximation, though it is possible to give extensions to QSV
or to a Hagfors-style approximation.

Let �x = @�=@x and �y = @�=@y so that n =
T�1(��x; ��y; 1) and dS = T dx dy where T = [1 +
�2x + �2y]

1=2. Furthermore, with conventions that the wave
is incident from the right at an angle� from normal,
we have k = k(sin �; 0; cos �), u� = (0; 1; 0) and
u� = (cos �; 0; � sin �). In this approximation, we expand
all integrals about(�x; �y) = (0; 0). We have the following
exact relations:

dS(n:k) = d2xk(cos � � �x sin �) (42)

dS(n:k̂) = � d2xk( cos � + �x sin �) (43)

and the expansions denoting by� either�x or �y

n:u� = � T�1(sin � + �x cos �)

= � (sin � + �x cos �) +O(�2) (44)

n:u� = � T�1�y = ��y + O(�2) (45)

k2

jn ^ kj2 (n:u�)
2 = 1 + O(�2): (46)

The local reflection coefficients can be expanded about their
flat space values as follows:

RTE( ) =RTE + RTE
1 �x + O(�2) (47)

RTM( ) =RTM +RTM
1 �x + O(�2): (48)

The reflection coefficient linear deviation functions are given
by

RTE
1 =

2(1� �) sin �p
�� sin2 �

�
cos � +

p
�� sin2 �

�2 (49)

RTM
1 =

�2�(1� �) sin �p
�� sin2 �

�
� cos � +

p
�� sin2 �

�2 : (50)

Define the polarization functionR1(pol) by

R1(HH) = RTE
1 ; R1(V V ) = �RTM

1 : (51)

The expansions to linear order for the integrands can then be
written

dSK(pol) = � 2d2xk�(pol)f[R(pol) cos �
+ [R1(pol) cos � � R(pol) sin �]�xg+O(�2)

(52)

and

dSH(pol) = 2d2xk
�
cos � + R(pol) sin ��x

�
+O(�2): (53)

Noting that integration by parts impliesZ
d2xe�ikH :x�ikz��x = � kH

kz
C(kH ; kz) (54)

Z
d2xe�ikH :x�x = ikHD(kH) (55)

where

C(kH ; kz) =

Z
d2xe�ikH:x�ikz� (56)

D(kH) =

Z
d2xe�ikH:x� (57)

it is then straight forward to show that ignoring a delta
function that contributes only at normal incidence, we have
the following expression for the root RCS:

�(pol) = � 2i�(pol)

��
k2

kz
R(pol) � k sin �R1(pol)

�

�C(2kH ; 2kz)� 2ik2 sin2 �R2(pol)D(2kH )

�
:

(58)

This expression for the root RCS reduces to the PC result,
given by (64) of [21], as the conductivity becomes infinite.

VIII. A GREEMENT WITH SPM

The relationship of the LSV half-space model to SPM is
easy to explore, as we have treated the analysis of the dielectric
formula quasi-perturbatively. The height is modeled exactly,
but the slopes are treated perturbatively for the purpose only
of modeling the variation of the reflection coefficients.

Valenzuela’s perturbation result [31] for the root RCS may
be written

�val(pol) = � 4�(pol)k2fR(pol) cos2 �
�A(pol) sin2 �gD(2kH) (59)

whereA(HH) = 0 and A(V V ) = �(1=2)[1 � ��1](1 �
RTM)2. The SPM limit of our model is given by making
the expansionC(2kH ; 2kz) � (2�)2�(2kH ) � 2ikzD(2kH ).
Ignoring the delta function as usual (as we are not considering
almost normal incidence) we obtain

�(pol) = � 4k2�(pol)fR(pol)[1 + R(pol) sin2 �]

� sin � cos �R1(pol)gD(2kH): (60)

These are clearly not the same. To see by how much they
differ, we can expand Valenzuela’s results and our own in
inverse powers ofN =

p
�. This gives us

�val(HH) � � 4k2(1� sin2 �)[1� 2 cos �N�1

+ 2 cos2 �N�2] + O(N�3) (61)

�val(V V ) � � 4k2[(1 + sin2 �)[1 � 2 sec �N�1]

+ (2 sec2 �)(1 + 2 sin2 �

� sin2 � cos2 �)N�2] +O(N�3) (62)

and

�(HH) � � 4k2(1� sin2 �)[1� 2 cos �N�1

+ 2(cos2 � � sin2 �)N�2] + O(N�3) (63)

�(V V ) � � 4k2[(1 + sin2 �)[1 � 2 sec �N�1]

+ (2 sec2 �)(1 + 2 sin2 �)N�2
�
+ O(N�3):

(64)

Comparison of the exact SPM results with the results from
the LSV model therefore yield agreement atO(N0) (perfectly
conducting) and atO(N�1), but not atO(N�2).

We remind the reader that the preceding analysis assumes
a tangent plane approximation for the surface fields. This,
at O(N�1), is consistent with imposing a Leontovich-type
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impedance boundary condition. It can be shown [24] that in-
clusion of first-order curvature corrections improves agreement
with SPM toO(N�2). Better still, if we impose an extended
boundary condition it can also be shown that the agreement
with SPM is exact. However, in this case, the model can be
only used for near lossless materials due to the failure of the
level two continuation hypothesis for conducting media. The
model presented here is really to be regarded as a model for
“high-contrast” media, wherejN j is large.

IX. RCS FOR A STATISTICAL SURFACE

If we take our expression for the root RCS, take expectations
of its modulus, and normalize the result, we obtain the
following expression for the mean RCS per unit area

h�i =16�k4

"
jE(pol)j2

e�4k
2

z
s
2

4k2
z

�(2kH ; 2kz)

+ (2Ref[E(pol)][R2(pol)]�ge�2k
2

z
s
2

sin2 �

+jR2(pol)j2 sin4 �)	S(2kH )

#
(65)

whereE(pol) = R(pol)� (1=2) sin 2�R1(pol), the Kirchhoff
integral�(kH ; kz), is defined by

�(kH ; kz) =
1

(2�)2

Z
d2xe�ikH :xfexp [k2

z
W (x)]� 1g

(66)

the correlation functionW (x) is defined by

W (x) =

Z
d2keik:x	S(k): (67)

s2 = W (0) is the mean square wave height,	S(k) =
(1=2)[	(k)+	(�k)], and	(k) is the surface wave spectrum.
The formula given in (65) is, as far as we aware, the first
to combine elements of Kirchhoff theory, the properties of a
dielectric, and multiple scattering effects.

This model contains several previous models as limiting
cases. For small�, it gives the Holliday model [10] with
dielectric corrections. As the relative dielectric constant be-
comes infinite it approaches our previous half-space perfectly
conducting model as expressed by [21, eq. (70)]; that model
itself reduced to the perfectly conducting SPM model exactly
in the limit of very small surface height. We have already
demonstrated that this agreement with SPM has been extended
to high-contrast dielectrics.

X. PROPERTIES OF THERCS

Although our formulas can only be evaluated (with present
machinery) to low order in the slope variations, it is well
worth looking at what they predict. Even the low-order results
indicate interesting new features compared to the perfectly
conducting model and to perturbation theory. We are here
concerned mainly with the ocean surface, but our result (65)
for the mean backscatter RCS may in principle be used
for any Gaussian surface bounding a high-contrast medium
where the surface is characterized by a spectrum. Here we
shall investigate the RCS based on a simple model spectrum
for the ocean background where the Kirchhoff integral can

be done essentially exactly in closed form. It can be also
be applied to more realistic spectra such as the detailed
spectrum presented by Apel [1] and to the radar imagery in
the same way as was carried out by Holliday [10], based
on modulations of the surface-wave spectrum. Note that we
disagree with both these authors in several respects. Not only
have we changed the mapping from the spectrum to the RCS
to account for dielectric effects and limited multiple scattering,
but we also believe that the traditional specular limit model
for near-normal incidence (used by both authors) is invalid (as
discussed in [23]). Here we shall confine ourselves to incidence
angles well away from normal, so that at least for our model
spectrum, the results of [22] for the Kirchhoff integral may
be used. This is an simple and accurate analytic model that
replaces the detailed numerics of [10].

We shall consider two issues. First, we present some plots to
show the influence of dielectric properties compared to perfect
conductivity. Then, we look at varying the wind speed. We
use a model spectrum

	(k) =

8<
:

b

�
k�4 exp(�k0=k); if k:u � 0

0; otherwise
(68)

where u is the steady wind velocity,k0 is of order g=u2,
andb is a parameter determined empirically. This is identical
to that discussed in [10], [21] and we use all the asymptotic
machinery developed for evaluating the statistical Kirchhoff
integral� given in [22] and [23].

A. The Influence of Imperfect Conductivity

In this section, we present some plots to show, for various
scattering models, the influence of finite conductivity versus
perfect conductivity. We explore this for two scattering mod-
els, Valenzuela’s SPM model and the half-space model in
LSV approximation. In each case, we consider two values of
the conductivity, labeled “typical” and “large.” The “typical”
refers to sea water, which has a conductivity of 4 S/m and
a relative dielectric constant of 81 (values from Ishimaru
[13]). The “large” refers to a conductivity of 40 000 S/m and
the same dielectric constant. The complex dielectric constants
considered are, therefore, given by� = 81+ i(56:4; 564 000).
In this series of examples, we work at L-Band with a wind-
speed of 2 m/s.

We see that whatever the model, there is very little influ-
ence of the conductivity on the HH cross-section behavior.
However, the VV values are significantly different in the
LGA domain. The plots demonstrate the singular nature of the
LGA/high conductivity limits. For finite conductivity, there is
a gentle decline in the VV amplitude as we approach grazing,
which is not the case in the PC limit. The effect of finite
conductivity is to significantly depress the VV RCS in the
LGA domain, compared to its PC value. This is independent
of the scattering model.

The SPM HH values are much lower than the half-space
values. This was also true in the PC case and will be explored
further in the next subsection.
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Fig. 1. SPM cross sections for various conductivities.

Fig. 2. Half-space cross sections for various conductivities.

B. SPM Versus Half-Space and Influence of Wind Speed

The next two diagrams explore the relationship between
SPM and the half-space model for two different wind speeds.
The results may be summarized easily enough. The half-space
model in the LSV approximation tracks the SPM result quite
closely in the VV channel, but gives significantly higher results
in HH. As the wind speed increases, the HH RCS grows and
can be higher than VV. Note that we are only working in
the LSV approximation—we might expect further corrections

from the QSV variant to become important as the wind speed
grows still further. What is important is that the half-space
model only reduces to the SPM limit for tiny mean square
wave heights—for applications of any practical relevance at
L-band or higher frequencies, SPM is not relevant.

It is noteworthy that these plots, at least for lower wind
speed, suggest that this model is a significant improvement
over other existing models in explaining the observed RCS
levels. Apel [1] noted that satisfactory agreement with data
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Fig. 3. Half-space versus SPM for low wind speed.

Fig. 4. Half-space versus SPM for intermediate wind speed.

could be obtained in VV using SPM, but that the SPM HH
levels were much too low. The present model dramatically
elevates the HH levels. We might argue that this preliminary
dielectric model resolves the single biggest issue raised by
Apel—that of the gross levels of the VV and HH cross
sections.

The other “unexplained features” mentioned in our in-
troduction deserve comment. We have extended this model

to time-dependent phenomena and analyzed Doppler spectra
with encouraging results; details will be given elsewhere. The
associated question of “spikes” is more mysterious. It should
be appreciated that most statistical models of the general
type presented here only address the question of calculating
the mean backscatter RCS. The likelihood of sporadic larger
values is not addressed since we have calculated neither the
probability distribution of the RCS nor associated measures of
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spread such as the variance. It is not so much that the question
has not been answered; rather the question of the likelihood
of spikes has not been posed within this framework.

XI. CONCLUSIONS

In this paper, we have shown how refinement of the Green’s
function can be combined with approximate boundary con-
ditions to produce a tractable model of the RCS and mean
backscatter RCS for statistical surfaces that are the boundary of
a high-contrast dielectric medium. For LGA backscatter from
ocean-like surfaces, the model predicts VV returns similar to
those predicted from first-order perturbation theory, but HH
returns that are significantly higher than those predicted by
SPM. This prediction has been obtained through a simple
refinement of the Green’s function, representing a simple
electromagnetic modification to an otherwise familiar type of
theory with Gaussian surface statistics, a simple model ocean-
like surface wave spectrum, and no complex hydrodynamics
or shadowing.

The theory we have presented reduces to a pure dielectric
Kirchhoff model for near-normal incidence and to Holliday
et al. ocean-scattering model [10] for simultaneous near-
normal incidence and perfect conductivity. For very small
surface heights, it reduces to Valenzuela’s SPM model [31]
for dielectrics with a large refractive index.

The theory presented here is capable of considerable fur-
ther development and we intend to continue the program of
refining the Green’s function and to consider variant boundary
conditions with and without shadowing.
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