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Green’s Function Refinement as an Approach to
Radar Backscatter: General Theory and
Applications to LGA Scattering from the Ocean

William T. Shaw and Andrew J. Dougan

Abstract—We present a new approach to the computation function while substantial theoretical and numerical effort has
of radar returns from dielectric bodies whose boundary is the gone into improving the estimate of the surface fields. But, if
deformation of a plane surface. The method relies on combining the exact Green’s function for the problem were known, there

a systematic improvement in the Green’s function with a good Idb f int left t luat th ttering i
approximate choice of local boundary condition. In this paper, wou € no surface integral i€t to evaluate as the scattering 1s

the general theory is presented together with a simple application 9iven by a volume integral involving the full Green’s function
where the Green’s function is that for a lossy dielectric half-space. and currents in the radar antenna source. DeSanto was the first

We derive the root radar cross section (RCS) for a statistical to look at how the Green’s function could be improved in his
surface and the mean backscatter RCS for a rough surface. geriag of studies (in particular the electromagnetic analysis of

We explore the applications to low-grazing-angle (LGA) scat- .
tering from statistical surfaces with an ocean-like spectrum and [6]). But DeSanto focused only on the volume integral term

demonstrate that such a model explains some of the previously involving a rough surface Green's function computed as an
unexplained LGA phenomena, such as the absolute and relative approximate diagrammatic solution to the Green’s function

levels of the vertical (VV) and horizontal (HH) channel RCS integral equation in the perfectly conducting (PC) case C.
measurements. Flammer [8] considered a perturbative approach to the PC
Index Terms—Green's function, sea-surface electromagnetic case. More recently, an approach which combines elements of

scattering. diagram theory and perturbation theory has been taken up by
Mudaliar [19].
|. INTRODUCTION In recent years, a substantial program of numerical sim-

ulation has begun in several centers that aims to solve for

BACKSCATTER from surfaces at low-grazing angléne electromagnetic surface currents exactly. We cannot claim

(LGA) presents several puzzles for theoretical arg pe aware of all the threads that have been taken up in
numerical modelers. The nature of the problems dependsrgch approaches, but the work by Hollidayal. [11], [12],
some extent on the context and the context of scatteriRg‘pp and Brown, [14], Kimet al. [15], Spivak [26], and

from the ocean pre§ents particular challenges. In this ca§fiyrsos and Jackson [29] cover a range of methods including
there_ are very P?‘?'C problems to be resolved _about ¢ Iterra, “forward—backward,” and other approaches. These
polarization sensitivity of both the radar cross section (Rcﬁbproaches have the advantage that it can be checked when
and Doppler spectra. In a recent survey, Apel [1] cited ORfe glectromagnetic boundary conditions are satisfied, giving
issue in particular—the fact that vertical (VV) returns from the J<iqerable confidence in the quality of the answer. It is

ocean are very similar in level t_o those obtamed via the Sm"é'llllso possible to investigate particular deterministic surfaces
perturbation method (SPM), while the horizontal (HH) returng:, relative ease. In contrast, in our approach we merely

are significantly higher than the corresponding SPM valugqgyjate an approximate boundary condition and live with
Other issues hav? been ,(,Jl_escnbed by eeal. [16] and Ward o geficiencies. It is vital to appreciate that the purposes of
[34] and include “spikes” in the HH returns and dislocatiogs een's function refinement is to systematically render these
of the Doppler spectra peaks in the two polarizations.  geficiencies less significant, by making the mapping from
The purpose of this paper is to describe a new analylicgl tace electromagnetic (EM) currents to the RCS less and
model of scattering from a statistical surface that appears|las sensitive to the errors in the assumed surface current.

capture at least some of these so far unexplained phenomesa. method is, therefore, complementary to the numerical
In analytical models, one assumes some form of approxi

o Hpproach over which it has the distinct advantages of being
mate boundary condition and proceeds to evaluate a surfgge to handle: 1) two-dimensional (2-D) surfaces (present

integral for the scattering. The scattering integral involve.s t_}ﬁ%merical work, as far as we are aware, appears to be limited to
far-field componer!ts ofa Gregn s function. The vast maJOm(}/,ne-dimensional (1-D) surfaces) and 2) a statistical description
of past work on this problem just uses the free-space Greegsy,q surface, thereby enabling meaningful discussion of the

impact of the surface-wave spectrum on the RCS and its
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used to establish the domain of validity of the model we shaltio of just a few dB for LGA backscatter with surfaces that
present here, very much in the spirit of [15] and [29]. are PC but otherwise ocean like. However, in the PC model
We are certainly not alone in attempting to build a morthere are some oddities in the general absolute levels of the
accurate analytical model for statistical surfaces. A priority fdRCS and we wished to develop a corresponding dielectric
our future studies must be to understand how our approaviedel in order to remedy this. In this paper, for the first
is related to other groups. The family of methods basdiine we present an analysis of the combination of GF(3) with
on small-slope approximations developed by Tatarskii afdC(2). We make brief comments on the extension to BC(3)
Tatarskii [28] and Voronovich [32] is of particular interest, agnd BC(7). We have not yet considered the combination of a
it appears to have some features (such as “containing” in soreéined Green’s function with shadowed boundary conditions
form—theories of both Kirchhoff and SPM type) in commorBC(4-6) though this can be approached by combining what
with our approach. We wish to point out that although we shalle have already with some form of geometric shadowing as
introduce our own form of small-slope approximation, denotedefined, for example, by Brown [3], Smith [25], and Wagner
linear slope variation (LSV) and quadratic slope variatiof83]. A prototype could be based on the work of Sancer [20].
(QSV), it is a computational approximation introduced to We shall show that the GF(3) BC(2/3) models define a
extract tractable detailed answers. The notion of a small slojpgory that contains both Kirchhoff theory and SPM theory
plays nofundamentarole in our model. for high-contrast lossy dielectric media. We shall combine the
There is a close relationship between our family of modelgeneral form of the theory with an approximate simple model
which are nonperturbative, and some existing models rootétithe ocean-wave spectrum and explore the mean backscatter
in perturbation theory. It is possible to regard the Greenf8CS inboth VV and HH channels. The theory is remarkable in
function method as a nonperturbative extension of work bt;a predictions for LGA scattering in that it predicts results for
Burrows [5] and Mitzner [18] and it therefore offers theVV very similar to those for SPM, but in the HH channel,
possibility of providing generalizations of the analysis bfhe mean RCS is raised substantially from its SPM value
Brown [4]. Some clues as to how this works are given iand may even be slightly higher than VV. This is much
the remarks at the end of Section IV, but a clear view of tidoser to observed RCS measurements. We remind the reader

and Ward [30]. with a simple model ocean-like surface wave spectrum. No

To give a better context to our own approach, let u&mplicated hydrodynamics or shadowing has been introduced
enumerate some scenarios for the geometry associated \@fil the most important properties of our model follow from
Green’s function and approximate boundary condition. Firdf!® use of a simple tangent-plane approximation.
the Green’s function geometry scenarios, labelediGR =

1-7 are as follows: Il. MAXWELL'S EQUATIONS VIA DYADIC GREEN'S FUNCTIONS
1) free-space;
2) perfectly conducting (PC) flat plane; Suppose first that all of three-dimensional (3-D) space is
3) flat plane bounding dielectric half-space; divided into two regionsg/; (the “upper region”) and’; (the
4) perturbation of PC flat plane; “lower” region) with the dividing region either a plane surface
5) perturbation of planar surface bounding a dielectric; OF & deformation thereof. The boundasy= 9V has a unit
6) fully rough PC surface; normalm pointing upwards into the upper regidfh. Suppose
7) fully rough boundary to dielectric. further that the full dyadic Green's functions are known for

this geometry. We shall describe these shortly. Suppose further
that the real atmosphere-ocean geometry is described by two
regions V; and V> with the ocean surface at = 0dV;.

Our goal is to make maximal use of the information about
the scattering fromS in computing scattering from the real
surfaceS. Note that, in general, it is not necessary that the
deformations relating>, S, and a flat half-plane are in any
sense perturbative.

Next, we list some approximate boundary conditions(BC
¢ = 1-7 (of the analytically tractable variety):

1) perfectly conducting (unshadowed) Kirchhoff;
2) tangent-plane impedance Kirchhoff;

3) curvature-corrected impedance Kirchhoff;

4) perfectly conducting shadowed Kirchhoff;

5) impedance shadowed Kirchhoff;

6) curvature-porrected impedance shgdowed Kirchhoff; Vi, V; have electromagnetic properties characterized by the
7) extended integral boundary condition. pair (111, €,) andV;, V, have EM properties characterized by
Our general plan is to push down these two lists are far fe (complex) paif iz, €5). We assume that = ¢, the free-
possible. Some cases have been done. For example, Holligg¥ce electric value, and that there are no magnetic effects
et al. 1986 ocean-imaging model [10] is based on scenarigssociated with either media so that = us = g, the free-
GF(1) + BC(1). An analysis of the combination GF(}) space magnetic value. Note that it is a simple matter to carry
BC(2) was developed by Hagfors [9]. A scalar version djut the following analysis without these restrictions. All our
GF(2) + BC(1) was developed by Berman and Perkins [Z]elds have a time-dependeneg’? and the wave numbers
and was extended by us to the electromagnetic case in [2ddsociated with the two media are then
These latter two models demonstrate very explicit consistency
between the Kirchhoff approximation and first-order SPM, but
in the electromagnetic case, the PC model predicts a VV/HH ky =we ko = wi /e pus. (1)
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A. Equations for the Background Green’s Dyad By integrating the divergence of a vector field built from the

We now write down the equations characterizing the Greerffg€en’s function and the electric field ové and applying
dyad for the background geometry. Most of the useful existif§ divergence theorem [27, p. 70], we obtain our first formula
literature on tensor or dyadic Green's functions, notably TIf" the total field in region 1
[27] and Lindell [17], focuses detailed analysis on the equa- T (7) =i AVT. (- (F 7
tions for the electric Green’s dyad. We shall therefore develop 1(7) =i v V() G T)
the theory for the electric case and take the curl of the final = = =1
result to secure the magnetic field, which was developed in our + /5 dS{mA L (D] [VAG (7, 7)]

PC analysis. Our initial analysis of the background geometry B

follows that of Tai [27]. We use superscripts 1 and 2 to denote +aw[mA Bi(7)] - [Ge (T 7]} (10)

the upper and lower medium, respectively, except where a Here, both the volume and surface integrals are over the
subscript refers to the medium and the superscript “2” indicategoordinate, leading to the electric field evaluated7at

a squared guantity. The corresponding integration overin region V- gives the
Let 7 € Vi and let7 be a point elsewhere in 3-D spaceextended boundary condition

WhenF € V7, the electric Green'’s dya@, ' (7, 7) describing _ = =
propagation of fields fron¥ to 7 satisfies 0= /5 dS{[m A E>(T)] - [V AGE (T, 7]
VAVAGH (T 7)== kG (7, 7)=T18(F=7) (2) +iw[m A Bo(P)] - [N (F, 7))} (11)

whereT is the unit dyad. Wher € V> the dyadG?' (7, 7)

" . ) e valid with 7 € Vi. In both cases, the normalis taken to be
describing propagation of fields from to 7 satisfies

- - the upward pointing normal t§' (i.e., into V7).

v/\v/\é?(ﬁ 7)— k%@?(?, 7)= 0. (3) Note that the volume integral gives the contribution to
ai:_attering from the geometry for which the Green’s function
Is known and the surface integral gives corrections based on
an approximate local boundary condition.

These background Green’s functions satisfy boundary con
tions at the interfacey. These are
FAG(F, 7)=TAG (7, 7) (4)
AANAGE P =aANAG (T 7). (5 Ill. DIELECTRIC GREEN'S FUNCTIONS

We now make a key hypothesis. We assume that one oriSeveral authors have given various expressions for the
both of the dyadic Green’s functions defined on the regiofgeen’s function associated with a dielectric half-space, in-
V; and V, may both be uniquely continued to continuouslgluding Felsun and Marcuvitz [7] and Tai [27]. Between them,
differentiable functions as far as an open neighborhood of tHese authors make the point that the Green’s function can be
real ocean-air interfacé. In other wordsG' (7, 7) may be €xpressed in various ways and that some form of asymptotic
continued down into the troughs—we call this a level on@xpansion can be done. In this section, we exploit some work

hypothesis—while in the corresponding level-two hypothesiBy Lindell [17], which gives asymptotic expressions for the
we assume. in addition th@”(? #) may be continued up reflection and transmission Green’s dyads wliténs a flat

into the peaks and we can write down expressions involvir%ane' We should warn the reader that some effort is required

derivatives of these objects evaluated on the real interfaceldtmap Lindell's results on to our own due to differences in

should be appreciated that the level-two hypothesis appeSPSventions and various simplifications we have employed.

to be true only for lossless media—if one approaches the shall not describe the steps we have taken h_ere in detail.

limit. the objectﬁ”(?, #) blows up in the upper region Rather, we shall demonstrate that the asymptotic forms we
) ; .

write down satisfy the Green’s function boundary conditions.
To make contact with Lindell's analysis, we choose particu-
lar coordinates and bases. We introduce Cartesian coordinates

B. Electric Field Equations (z, y, z) with associated orthogonal unit vectdrs, , @, , @)
The electric fieldsE; (F) and E»(F) in the two real regions @nd the standard polar coordinates ¢, ¢) and their associ-
Vi and V, satisfy ated orthogonal unit vecto(s:, , @y, @,). Letk = kg + k.,

N =N = be the outgoing wave vectof is taken to be the flat plane
Z/\Z/\El(’”) T ’“1251(7“) :Z_wﬂljl(r) ® .= 0 and reflected vectors are denoted by a caret sozthat
VAV AEs(7) + ki Ea(7) =0 (7)  becomess = 7 — 2(7 - w. )u.. To define the electric dyadics
where J; (7) is the source inV;. They also satisfy boundary G}' (7, ¥) and G?' (7, 7) we must introduce the free-space
conditions on the real interface which may be written &reen’s function defined by

follows: ikl
— — — =\
TAE =T AE, 8) Golr=T) = o7y (12)
TAVAE =T AV A By, (9) and the Fresnel coefficients defined by
These express, respectively, continuity of the tangential com- Y e
ponents of the electric and magnetic fields across the real R™ () = cosy c-sin’¢ (13)

interface, bearing in mingy = ps = . cos ¢ + /e —sin” ¥
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_—ecost/;—i—\/e—sinzl/) and

R™ () = 4 _ _ ) )
ccosy + /e —sin” VAGY (7, 7) ~ zk{ LTTP (@ — o) + B + T )T,
2 cosp
TTE(y) = 15 € — N iR ik (1—6)
(%) cos i + \/m (15) ——TTMU¢U9}G0(T/)6 kT eth=(1=8n
2v/¢ — sin’ (23)
TTM(¢): € —sln 1/) _ (16)
€cosP + /€ —sin” ¢ Hence, placing® on the flat plane, we get, asymptotically
wheree = €5 /¢ is the relative permittivity and whergisthe _ = =11, . =21,
local angle of incidence between an incident wave vectand {(VALGS () = G M}
the unit normalz to the surface so thabs v = —(7 - 7)/|%|. = ik{([l — R™) = 8T Ya, Ay
We also have the relationships
T™ Ermm - A SN ik
1+ B (W) =TT (), 1+ R™(y)=1T™() (17) —([1 - RN - BT )uz /\u¢}G0(r Je .
and (24)
1_ R —BTTF(y), 1—R™ — £ ™
W) =7 ) ) I54 ) But since the Fresnel coefficients satisfy (18), this is zero, as

(18) required.

where 8 = B,/ and 3 = \/k? — |ky|*. Note that we |V. THE ROOT RCSAS A FUNCTION OF THE SURFACE FIELDS

will just write RT", R™, TTF, and ™ for the Fresnel  |n this section, we look at the properties of the root RCS
coefficients when considering the flat = 0 surface with a5 an integral mapping from assumed surface fields. To obtain
n=7u. andr = —k. the root RCS we use (10) for the electric field. For nonnormal

Using Lindell’_s asymptotic exp_ression for the reflectior_1 Pafackscatter, we may ignore the volume integral when the
of the asymptotic Green's dyadic [17, p. 221] and adding ackground geometry is flat. The surface integral for the
the contribution direct from the source gives the followin%agnetic field can be written down by taking the curl with
asymptotic expression fat!' (7, 7): respect to the primed variable

(7)) = / 4S{[Y AT 7] [7 AT (7)]

TEP) ~ L+ BP0, i
+ [y + R™e¥* =10, }Go (7 )e ™ (19)

ol

+iwlV AME 7)) -mAB(M]}  (25)
wheren = 7.1, is the surface height. Similarly his expression
for the asymptotic form of the transmission Green’s dyad
G2'(7, ¥) can be shown to be equivalent to

here F(r, 7) = [V A GIL(r, P)]" and M(7,7) =
G (7, 7)]". It is then a simple matter to show that
V' AM(F, 7) ~ — ikGo(F)e™ P T{[1 + €2 Rz, 7,

=91 /— — - TTE_ — TTM— = 1—-1 . ~
G2 (7, ) ~ {1 + TN + (1 1/5) o+ T [y + 24+ R Mg} (26)

-sin HTTMUZm}GO(F’)e”EFeM‘(]_ﬁ)”. (20) and

S AT I\ — kT ik e —
To confirm that these expressions are the correct dyads fof A F(7, ) ~ k> Go(F)e " T{[1 — e R™Ju,u,

the flat dielectric plane we will check that they satisfy the +ap[ag — 2 RTEq,)Y.
boundary conditions given in (4) and (5). The first boundary 27)
condition is easily checked by taking= %, andn = 0 and _
writing With the root RCSY defined by

wA[GY — G2 = {[1 + R™® — T™F][m, Aa,)u, Bi(7') = Go(T)E + O(I7'[7%) (28)

+ 1+ R™ — 7™, Awylu, }GO(F/)e—i?F (21) we can now write down the following formula where, as usual,
¢ = 1/./fo€ is the speed of light in vacuum
where we have used. A @, = u. A y. Since the Fresnel

coefficients satisfy (17), this is zero, as required. ¥ =ik / dSe= T {(u,7 — wyw).[A A E (7)) c
The confirmation of the differential boundary condition is a s =
little more involved as one needs to know how to find the curl + (Wb —w f).[m A Bi(P)]} (29)

of the dyads. The method of computation is _(_jescribed bY T8here the kernels are given by = (T, — €27 RTFg,),
[27]. Asymptotically, for a general source pointwe have B= (14 RT)g, 5=—(1— 21 F™)g, ands =
_ = 2ik.n PTMZ ; i ati
AT (= o i p [ TR ik (g +e R"™17,). To obtain the polarization components
VAG (T, T) Z]f{[ue e ue]_“j’ of the root RCS, we take the scalar product of (29) witts,
—[1 = R™e¥ k=g, LG o (7 e 7 (22) andwu,, respectively. We leE(xH) denote the root RCS for
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H receive and either transmitted polarization ai{eV) is the the resulting relations into our expressions for the horizontal
corresponding root RCS for V- receive. Then and vertical polarization root RCS and dividing By gives
] I - us the scattered field per unit in field (the root RCS proper).
L(xH) = ik / dSe™" " {@ @A E)/e+ 0.(MAB)} (30) 19 state our results in a compact form we now introduce some
polarization functions defined by
OHH)=-1, 0(VV)=+l1 (36)
Note that at this stage we have maae assumptions about R(HH) = RTE R(VV) = _R™™M (37)
the nature of the surface fields, so our result may be viewed P(HH)=R"(), P(VV)=-R™(y). (38)
as a mapping from surface fields to cross sections with ’ )
several interesting properties. The reader may notice thgte "ot RCS can then be written
the vectors@, 3, 7, 6 are in fact the H and V components S(pol) =i /dSe—“EHf—Z“WIC(pol)
of the electric and magnetic fields of a plane wave being
scattered by a dielectric half-space. This is no coincidence +i©(pol) R(pol) /dse—ziEH.fH(pOl) (39)
and is one example of a general link between the Green’s
function approach and other methods recently discovered Witere, in the integrands;(pol) denotes the dielectric Kirch-
Tough and Ward [30]. hoff component and(pol) denotes the half-space Green’s
function corrections. The Kirchhoff components are given by

] . Ko = D[R + R - (el
It is possible to consider three types of expression for the

E(*V):ik/dSe—f"E”T{V.(ﬁ/\F)/ch3.(%/\?)}. (32)

V. EXPRESSIONS FOR THESURFACE FIELDS

surface fields. These are based on: 1) the tangent-plane approx- [R™ () —R™W)] .
imation, which is equivalent to a Leontovich-type impedance ' 7 A K [(m29)” — (m2g)°] -
assumption; 2) a curvature-corrected impedance approxima- (40)

tion; and 3) an extended boundary condition. Here we consider ) o o -
only 1). The detailed results arising from choice 2) will pdlote that this contr|but|0r_1 is itself p_olanzann sensitive.
considered elsewhere [24]. The implications of 3) will be 1€ half-space corrections are given by
discussed later. - = = o

In the tangent plane approximation for the surface fields ifidpol) =m.(k — k) — P(pol)m.(k + k) + (7.k)

assumed that each infinitesimal _pi_ec_e of_the sgattering surface 1 cos QH[RTM(¢) _ RTEW)] X
S can be treated as part of an infinite dielectric plane whose
normal is defined by the local normal Let® be the incident RTP() — RT™
y the local no | _ [R™W) = R™M@)] o
wave vector and lef; and B; incident electric and magnetic : A K] [cos 20(n.7p)" + (M20g)"] ¢
fields, respectively. The equations for the surface fields are a1
then (41)
TAE, = 1+ RTMW)]WAE _ [RTEW) - RTMW)] We now have the root RCS for VV and HH as explicit, if
' |7 AR|? very complicated, functions of the local height and normal.
(R A E;)[F — (RE)RA] (32) We can now, at least in principle, taken the modulus squared
. . RTF() — RT™ of these expressions and average over the joint distribution of
nAB =[1 - R () AB; — [ (ﬁ/\ =R @] heights and slopes.

VIl. THE LSV METHOD OF APPROXIMATION

VI. THE ROOTRCSIN THE TANGENT PLANE APPROXIMATION In the previous section, we wrote down various integrals for
the root RCS. The problem is, therefore, to evaluate them. To

From here we make the explicit specialization to backscaf- ., . . : .
- _ _ : : o this we note that since the integrands are functionals of the
ter, so thatk = —% = k;u,.. For transmitted horizontal .
larizati h . . f the f surface height and slope, we can expand them up to any order
polarization, we have an incoming wave ot the form in the slopes. One can then attempt to evaluate the resulting

E; = —Eome‘“'zf, By = —Botge "7 (34) integrals order by order. When this expansion is carried out
For transmitted vertical polarization, we have an incomirigP 1© linear order about the flat case, we say we have an LSV
wave of the form approximation to the root RCS. Similarly, if this is carried

— R S s out up to quadratic order, we call this a QSV approximation.
Bi = —Eqtge ,  Bi = DBouge (35)  These approximations are, therefore, valid when the surface
In these relationsF, = ¢By. slopes are small. An issue arises as to what other values of
As a preliminary to working out all the terms in ourthe slope could be used as the base point of the expansion. In
integrands, we substitute each of these expressions for ke pioneering analysis of dielectrics, Hagfors [9] considered
incoming fields into (32) and (33), and then take the dot prodhaking an expansion about that slope that results in specular
ucts of the resulting expressions with our basis vectors, areflection. In our own studies we considered this in some
use some vector identities to simplify the results. Substitutimtptail, but discarded this approach as 1) the relationship to
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SPM of the_resulting mode_l is very avv_kw_ard and 2) such a D(F) = /dQTe_iEH‘Fn (57)
specular point may not exist for LGA incidence or may be
shadowed. In what follows, we will only consider the LS\/it is then straight forward to show that ignoring a delta

approximation, though it is possible to give extensions to QSf\dnction that contributes only at normal incidence, we have
or to a Hagfors-style approximation. ’

Let , = On/dr andn, = On/dy so thatw = the following expression ftzr the root RCS:

- k
T=Y(=ns, —ny,, 1) and dS = Tdzrdy whereT = [l + Y(pol) = — Qi@(pol){ [—R(pol) —k sin 0R, (pol)]
nZ + nZ]'/2. Furthermore, with conventions that the wave k.

is incident from the right at an anglé from normal, - T R -

we have F = k(sin 0.0, cos0), w = (0,1,0) and -C(2kg, 2k.) — 2ik* sin® OR*(pol) D(2kw) ¢.
Ty = (cos 6, 0, —sin 6). In this approximation, we expand (58)
all integrals about.., 7,) = (0,0). We have the following
exact relations:

dS(n.k) = d*Zk(cos 6 — n, sin 0) (42)

This expression for the root RCS reduces to the PC result,
given by (64) of [21], as the conductivity becomes infinite.

dS(nk) = — d*Tk( cos 0 + 1), sin 0) (43) VIIl. A GREEMENT WITH SPM
and the expansions denoting byeithers, or 7,

o 1, The relationship of the LSV half-space model to SPM is
niy = — T " (sin 6 + 7, cos §)

easy to explore, as we have treated the analysis of the dielectric

= — (sin 0 + 1, cos 0) + O(x”) (44) formula quasi-perturbatively. The height is modeled exactly,
nay = —T""n, = —n, + OK") (45) but the slopes are treated perturbatively for the purpose only
of modeling the variation of the reflection coefficients.
k? 2 2 Valenzuela’s perturbation result [31] for the root RCS may
mAR? (R.3)" = 1+ 0(x). (“48)  pe written

The local reflection coefficients can be expanded about their 3" (pol) = — 40(pol)k*{R(pol) cos® 0

flat space values as follows: — A(pol) sin” 0} D(2kx) (59)
RTE() = R™® + RIPn, 4+ O(+7) (47) where A(HH) = 0 and A(VV) = —(1/2)[1 — ¢ '](1 —
R™(y) = R™ 4 RTMy, + O(+?). (48) R™)?. The SPM limit of our model is given by making

the expansiorC'(2ky, 2k, ) ~ (27)%6(2ky) — 2ik, D(2ksr).

The reflection coefficient linear deviation functions are giveEJnoring the delta function as usual (as we are not considering

by i almost normal incidence) we obtain
R® = 201 —9)sind s (49) S (pol) = — 4k?O(pol){ R(pol)[1 + R(pol) sin? ]
Ve —sin” 0 (COS& + Ve —sin’ 9) —sin 0 cos O R (pol)} D(2kg). (60)
R™ — —2¢(1 — €)sinf . (50) These are clearly not the same. To see by how much th_ey
m(E cosf —+ m} differ, we can expand Valenzuela’s results and our own in

_ o _ inverse powers ofV = ,/e. This gives us
Define the polarization functiom®, (pol) by E“””(HH) o 4k2(1 ~ sin? O)[1 = 2 cos oN-!

_ pTE _ TM
Ri(HH)=R® R/(VV)=—-R™. (51) 2 cos” ON-7] + O(N?) (61)

The expansions to linear order for the integrands can then bgval(vv) ~ — 4K2[(1 + sin? O)[1 — 2 sec ON 1]
written

dSK (pol) = — 2d*TkO(pol){[R(pol) cos 0
+ [Ri(pol) cos 6 — R(pol) sin 0]n, } + O(x”)
(52)

+ (2 sec? 0)(1 + 2 sin? 0
—sin? @ cos? O)N~?] + O(N~?) (62)
and
S(HH) ~ — 4k*(1 —sin® 0)[1 — 2 cos 6N "
+ 2((:os2 6 — sin? H)N_E] + O(N_3) (63)
EVV)~ — 4]6’2[(1 + sin? 0)[1 — 2 sec HN_W]
+ (2 sec”? 0)(1 + 2 sin® O)N~?] + O(N~%).

and
dSH(pol) = 2d°Tk|[ cos 6 + R(pol) sin 01,] + O(x”). (53)
Noting that integration by parts implies

/ dPmem P T = ]Z” Clkr, k) (54) (64)
o T _ Comparison of the exact SPM results with the results from
/d re e =tk D(k#r) (35)  the LSV model therefore yield agreemeniN") (perfectly
where conducting) and a©(N "), but not atO(N~?).
We remind the reader that the preceding analysis assumes
C(ky, k)= /d%e—i%f—ikm (56) @ tangent plane approximation for the surface fields. This,
at O(N~1), is consistent with imposing a Leontovich-type



SHAW AND DOUGAN: GREEN'S FUNCTION REFINEMENT AS AN APPROACH TO RADAR BACKSCATTER 63

impedance boundary condition. It can be shown [24] that ibe done essentially exactly in closed form. It can be also
clusion of first-order curvature corrections improves agreemdrg applied to more realistic spectra such as the detailed
with SPM toO(N~2). Better still, if we impose an extendedspectrum presented by Apel [1] and to the radar imagery in
boundary condition it can also be shown that the agreemeéné same way as was carried out by Holliday [10], based
with SPM is exact However, in this case, the model can ben modulations of the surface-wave spectrum. Note that we
only used for near lossless materials due to the failure of tHesagree with both these authors in several respects. Not only
level two continuation hypothesis for conducting media. Theave we changed the mapping from the spectrum to the RCS
model presented here is really to be regarded as a model ttoaccount for dielectric effects and limited multiple scattering,

“high-contrast” media, whergV | is large. but we also believe that the traditional specular limit model
for near-normal incidence (used by both authors) is invalid (as
IX. RCS FOR A STATISTICAL SURFACE discussed in [23]). Here we shall confine ourselves to incidence

gles well away from normal, so that at least for our model

ectrum, the results of [22] for the Kirchhoff integral may

used. This is an simple and accurate analytic model that
replaces the detailed numerics of [10].

O (2%, 2k.) We sha!l consider tW(_) issue_s. First, we present some plots to
show the influence of dielectric properties compared to perfect

conductivity. Then, we look at varying the wind speed. We

use a model spectrum

If we take our expression for the root RCS, take expectatioﬁg
of its modulus, and normalize the result, we obtain th%D
following expression for the mean RCS per unit area N

—4k§s2

26
|E(pol)| TE

+ (2Re{[E(pol)][R2(pol)]* }e~ 22" sin? 6

(o) = 167k*

+| R? (pol)|* sin* H)WS(QEH)] (65) b
= ) =k exp(—ko/k), if ko >0
where E(pol) = R(pol) —(1/2) sin 20 R, (pol), the Kirchhoff (k) = g’ otherwise (68)

integral ®(kw, k. ), is defined by
- 1 —
(kp, k) = @r)y /dQT@_ikH‘m{eXP [K2W(T)] - 1} where @ is the steady wind velocityk, is of orderg/u?,
(66) andb is a parameter determined empirically. This is identical
to that discussed in [10], [21] and we use all the asymptotic

the correlation functioV(z) is defined by machinery developed for evaluating the statistical Kirchhoff
W(z) = /dQE(iiE‘F\I/S(E). 67) integral ® given in [22] and [23].
s? = W(0) is the mean square wave heighk®(k) = A. The Influence of Imperfect Conductivity

(1/2)[¥(k)+¥(—k)], and¥ (k) is the surface wave spectrum.
The formula given in (65) is, as far as we aware, the firg%
to combine elements of Kirchhoff theory, the properties of
dielectric, and multiple scattering effects.

In this section, we present some plots to show, for various
attering models, the influence of finite conductivity versus
8erfect conductivity. We explore this for two scattering mod-
) X ; .. els, Valenzuela’'s SPM model and the half-space model in
This model conta_uns_ several previous models as "m'“ S%sv approximation. In each case, we consider two values of
cases. For smal, it gives the Holliday model [10] with the conductivity, labeled “typical” and “large.” The “typical”

dielectri_c _C(_)rre_ctions. As the relative_ dielectric constant b?'fers to sea water, which has a conductivity of 4 S/m and
comes |_nf|n|te it approaches our previous half-space perfec Yrelative dielectric constant of 81 (values from Ishimaru
_conductlng model as expressed by [2_1’ eq. (70)]; that mo fé]). The “large” refers to a conductivity of 40000 S/m and
itself reduced to the perfectly conducting SPM model exac ¥e same dielectric constant. The complex dielectric constants

in the limit of very small surface height. We have alread¥onsidered are, therefore, given by 81+ i(56.4, 564 000),
demonstrated that this agreement with SPM has been extenfled . - o o,f example's we work at L-Bandj with a wind-
to high-contrast dielectrics. speed of 2 m/s '

We see that whatever the model, there is very little influ-
ence of the conductivity on the HH cross-section behavior.
Although our formulas can only be evaluated (with presektowever, the VV values are significantly different in the
machinery) to low order in the slope variations, it is welLGA domain. The plots demonstrate the singular nature of the

worth looking at what they predict. Even the low-order resultsGA/high conductivity limits. For finite conductivity, there is
indicate interesting new features compared to the perfecdygentle decline in the VV amplitude as we approach grazing,
conducting model and to perturbation theory. We are henich is not the case in the PC limit. The effect of finite
concerned mainly with the ocean surface, but our result (6&)nductivity is to significantly depress the VV RCS in the
for the mean backscatter RCS may in principle be usé@A domain, compared to its PC value. This is independent
for any Gaussian surface bounding a high-contrast mediwhthe scattering model.

where the surface is characterized by a spectrum. Here w&he SPM HH values are much lower than the half-space
shall investigate the RCS based on a simple model spectruatues. This was also true in the PC case and will be explored
for the ocean background where the Kirchhoff integral cdnrther in the next subsection.

X. PROPERTIES OF THERCS
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Fig. 1. SPM cross sections for various conductivities.
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Fig. 2. Half-space cross sections for various conductivities.

B. SPM Versus Half-Space and Influence of Wind Speed from the QSV variant to become important as the wind speed

The next two diagrams explore the relationship betwe&hOWS still further. What is important is that the half-space
SPM and the half-space model for two different wind speed&odel only reduces to the SPM limit for tiny mean square
The results may be summarized easily enough. The half-spA@ve heights—for applications of any practical relevance at
model in the LSV approximation tracks the SPM result quite-band or higher frequencies, SPM is not relevant.
closely in the VV channel, but gives significantly higher results It is noteworthy that these plots, at least for lower wind
in HH. As the wind speed increases, the HH RCS grows asgieed, suggest that this model is a significant improvement
can be higher than VV. Note that we are only working ilover other existing models in explaining the observed RCS
the LSV approximation—we might expect further correctionkevels. Apel [1] noted that satisfactory agreement with data
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Fig. 3. Half-space versus SPM for low wind speed.
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Fig. 4. Half-space versus SPM for intermediate wind speed.

could be obtained in VV using SPM, but that the SPM HHhb time-dependent phenomena and analyzed Doppler spectra
levels were much too low. The present model dramaticalyith encouraging results; details will be given elsewhere. The
elevates the HH levels. We might argue that this preliminaassociated question of “spikes” is more mysterious. It should
dielectric model resolves the single biggest issue raised by appreciated that most statistical models of the general
Apel—that of the gross levels of the VV and HH crossype presented here only address the question of calculating
sections. the mean backscatter RCS. The likelihood of sporadic larger
The other “unexplained features” mentioned in our invalues is not addressed since we have calculated neither the
troduction deserve comment. We have extended this mogebbability distribution of the RCS nor associated measures of
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spread such as the variance. It is not so much that the questian D. Holliday, L. L. DeRaad, Jr., and G. J. St.-Cyr, “Volterra approxima-

has not been answered; rather the question of the likelihood
of spikes has not been posed within this framework. [12]

XI.

In this paper, we have shown how refinement of the Gree
function can be combined with approximate boundary conh-
ditions to produce a tractable model of the RCS and mean
backscatter RCS for statistical surfaces that are the boundary'6t
a high-contrast dielectric medium. For LGA backscatter fromg)
ocean-like surfaces, the model predicts VV returns similar to
those predicted from first-order perturbation theory, but HH
returns that are significantly higher than those predicted iy
SPM. This prediction has been obtained through a simple
refinement of the Green’s function, representing a simpﬂeg]
electromagnetic modification to an otherwise familiar type of
theory with Gaussian surface statistics, a simple model ocedr®]
like surface wave spectrum, and no complex hydrodynami&%]
or shadowing.

The theory we have presented reduces to a pure dielectric
Kirchhoff model for near-normal incidence and to HoIIida)Pl]
et al. ocean-scattering model [10] for simultaneous near-
normal incidence and perfect conductivity. For very smalg2]
surface heights, it reduces to Valenzuela’'s SPM model [31]
for dielectrics with a large refractive index.

The theory presented here is capable of considerable fig3]
ther development and we intend to continue the program of
refining the Green'’s function and to consider variant boundapy;
conditions with and without shadowing.

CONCLUSIONS 13]
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