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On the Universal Behavior of Scattering from
a Rough Surface for Small Grazing Angles

Valerian I. Tatarskii and Mikhail I. Charnotskii

Abstract—It is shown that for scattering from a plane in
average rough surface, the scattering cross section of the range
of small grazing angles of the scattered wave demonstrates a
universal behavior. If the angle of incidence is fixed (in general,
it should not be small), the diffuse component of the scattering
cross section for the Dirichlet problem is proportional to �

2

where � is the (small) angle of elevation and for the Neumann
problem it does not depend on�. For the backscattering case,
these dependencies correspondingly become�4 and �

0. The result
is obtained from the structure of the equations that determine the
scattering problem rather than the use of an approximation.

Index Terms—Electromagnetic scattering, rough surfaces.

I. INTRODUCTION

I N this paper, we investigate the low-grazing-angle (LGA)
behavior of the scattering amplitudes for the scalar rough

surface scattering problem under the Dirichlet and Neumann
boundary condition. Usually, the rough surface scattering
problems are attacked using some kind of analytical approx-
imations [5]–[7] or numerical methods [1], [4]. Unlike the
majority of publications in the rough surface scattering theory,
we only use the most general properties of the scattered fields
for our study. Our technique is based on the exact integral
equations for source functions and scattering amplitudes. We
show that even at this very general level of analysis, it is pos-
sible to obtain certain properties of the scattering amplitudes
at LGA’s of incidence and/or scattering.

II. NOTATIONS AND BASIC EQUATIONS

We consider the scattering of the plane wave

Einc(r; z) = exp[iq0r�i�0z] (1)

by the rough surfacez = �(r). Here, the arbitrary three-
dimensional wave vectork is of the form

k = q� e�(q); e = (0; 0; 1); qe = 0: (2)

The vertical wave number� is the function ofq

�(q) =

�p
k2 � q2; for q < k

i
p
q2 � k2; for q > k

;

Re � � 0; Im� � 0 (3)

and because of this relation, the plane wave with the wave
vector (2) satisfies the Helmholtz equation.
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The scattering amplitudeS(q; q0) in the region z >
max �(r) is defined by the formula

Esc(r; z) =

ZZ
exp[iqr+ i�(q)z]S(q; q0)

d2q

k�(q)
: (4)

For q < k the value d2q=k�(q) is equal to the element
of the solid angled
(k) on the sphereq2 + �2 = k2.
Equation (4) remains the same for both the Dirichlet and the
Neumann problems. Most of the following relations, however,
will be different for these two problems and we consider them
separately. We also use the Weyl–Sommerfeld formula

G0(r+ ez; r0 + ez0)

=
1

8i�2

ZZ
d2q

�
exp[iq(r� r0) + i�jz � z0j]: (5)

The reciprocity theorem is true both for the Dirichlet and
the Neumann problems:

S(q; q0) = S(�q0; �q): (6)

This derivation follows the general idea of [3].
Consider domainV bounded by the scattering surfacez =

�(r) from the bottom and some planez = z� > �max from the
top. For two arbitrary solutionsE1(r; z) andE2(r; z) of the
homogeneous Helmholtz equation, the Green’s theorem states
that

ZZ �
E1[r; �(r)]

@E2[r; �(r)]

@n(r)

� E2[r; �(r)]
@E1[r; �(r)]

@n(r)

�
d�(r)

=

ZZ �
E1(r; z�)

@E2(r; z�)

@z
�E2(r; z�)

@E1(r; z�)

@z

�
d2r:

(7)

Suppose now thatE1(r; z) = E(r; z;q0) is the total field
of the scattering problem with the incident field given by (1),
and the scattered field is presented in the form (4). If the
second field is an upward-directed plane wave

E2(r; z) = exp[�iq1r+ i�1z] (8)

then the right-hand part of (7) can be readily calculated and
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results in

ZZ �
E[r; �(r); q0)

@ exp [i�1�(r) � iq1r]

@n(r)

� exp[i�1�(r)� iq1r]
@E[r; �(r); q0]

@n(r)

�
d�(r)

= 8i�2�0�(q0 � q1) (9)

where for any functionF we use the notation

@F [r; �(r); q0]

@n(r)
�

@F (r; z; q0);

@n(r)

����
z=�(r)

:

If the second field is a downward-directed plane wave, then

E2(r; z) = exp[�iq1r� i�1z] (10)

and instead of (9) we have

ZZ �
E[r; �(r); q0]

@ exp[�iq1r� i�1�(r)]

@n(r)

� exp[�q1r� i�1�(r)]
@E[r; �(r); q0];

@n(r)

�
d�(r)

= �
8i�2

k
S(q1; q0): (11)

For the Dirichlet problem we haveE[r; �(r)] = 0 and (9)

and (11) reduce to

ZZ
exp [�iqr+ i��(r)]F (r; q0) d�(r) = �8i�2��(q� q0)

(12)

andZZ
exp [�iqr� i��(r)]F (r; q0) d�(r) =

8i�2

k
S(q; q0):

(13)

We denote here

@E[r; �(r); q0]

@n(r)
� F (r; q0):

For the Neumann problem@E[r; �(r)]=@n(r) = 0, (9) and

(11) reduce to

ZZ
[� + qr�(r)] exp[�iqr + i��(r)]E(r; q0) d

2r

= 8�2��(q� q0) (14)

andZZ
[�� + qr�(r)] exp[�iqr� i��(r)]E(r; q0) d

2r

= �
8�2

k
S(q; q0): (15)

We denote here

E[r; �(r); q0] � E(r; q0): (16)

Equations (12)–(15) are the main equations for the following
analysis of the small-angle behavior of the scattering ampli-
tudes. Equations (12) and (14) represent the extinction theorem
for the Dirichlet and Neumann cases and usually are used to
determine the unknown surface sources.

III. SMALL -GRAZING-ANGLE BEHAVIOR

OF SCATTERING AMPLITUDES

A. The Dirichlet Problem

Let us compare (12) with (13). The left-hand sides of these
formulas differ only by the sign of� in the exponent. If
we subtract (13) from (12), thesin[��(r)] appears under the
integral and we obtain (after simple algebra)

S(q; q0) =�k��(q� q0) �
k

4�2

ZZ
exp(�iqr) sin[��(r)]

� F (r; q0) d�(r): (17)

The function F (r; q0) in this relation is unknown and
should be determined from (12), but dependence ofS(q; q0)
on q and � is given in (17) in explicit form. This dependent
property of (17) is really the advantage of (17) because it
allows us to investigate the behavior ofS(q; q0) without
determining the source functionF (r; q0).

The main conclusion that follows from (17) is that the
diffuse part of the scattering amplitude for the Dirichlet
problem

Sdif
D (q; q0) � S(q; q0) + k��(q� q0)

=�
k

4�2

ZZ
exp(�iqr) sin[��(r)]

� F (r; q0) d�(r) (18)

contains (in its formal expansion in the Taylor series) only odd
powers of�.1 Indeed, we have

q =
p
k2 � �2; q = qq̂ = q̂

p
k2 � �2 (19)

i.e., q(�) is an even function of �. Therefore,
exp(�iqr) sin[��(r)] is an odd function of�. Thus, if
we multiply and divide the integrand in (18) by�, we obtain

SdifD (q; q0) = �
k�

4�2
�(+)

�
q̂
p
k2 � �2; q0; �

2
�

(20)

1The value� is defined only in the regions� � 0 for q � k or Im� � 0

for q � k. Because of this, it is incorrect to use the term odd function for this
case. Nevertheless, we will use terms odd and even functions of�, meaning
that corresponding expansions in the Taylor series contain only odd or even
powers of�.
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where

�(+)(q̂
p
k2 � �2; q0; �

2)

=

ZZ
exp

�
�i
p
k2 � �2 q̂r

� sin[��(r)]
�

� F (r; q0) d�(r) (21)

depends only on�2. If � = 0, this function is equal to some
independent of� constant

�(+)(q̂k; q0; 0) =

ZZ
exp(�ikq̂r)�(r)F (r; q0) d�(r)

(22)

and in the region of small� we obtain

Sdif
D

(q; q0) = �
k�

4�2
[�(+)(q̂k; q0; 0) + O(�2)] (23)

or

lim
�!0

Sdif
D

(q; q0)

�
= �

k

4�2
�(+)(q̂k; q0; 0): (24)

Certainly, the applicability of (23) depends on several condi-
tions. The most important restriction is related to expansion of
sin[��(r)] in powers of�. It is evident that we should require
the restriction

�j�jmax � 1; or sin �gr �
1

kj�jmax
(25)

where �gr is the grazing angle of the scattered wave. Some
other conditions may appear in different applications (for
example, the size of footprint).

The result obtained does not involve any approximation for
the unknown source functionF . This result is an exact conse-
quence of Helmholtz equation, Dirichlet boundary condition,
and radiation condition.

On the other hand, the scattering amplitude satisfies the reci-
procity condition (6), which allows us to write the reciprocal
to (24)

lim
�0!0

Sdif
D

(q; q0)

�0
= �

k

4�2
�(+)(�q̂0k; �q; 0): (26)

If both � and�0 are small, both (24) and (26) must be true
and we obtain the result

lim
�!0

lim
�0!0

Sdif
D

(q; q0)

��0
= XD(q̂; q̂0): (27)

where the functionXD(q̂; q̂0) depends only on directions of
the incident and scattered waves.

B. The Neumann Problem

The Neumann problem is a little more complicated than
the Dirichlet problem, but we can perform a quite similar
analysis. Let us add (14) forE and (15), determiningS. After

completing some simple algebra we obtain

S(q; q0) = k��(q � q0)�
i�k

4�2

ZZ
exp(�iqr)E(r; q0)

� sin[��(r)]d2r �
kq

4�2

ZZ
r�(r)

� exp(�iqr)E(r; q0) cos[��(r)] d
2r: (28)

Equation (28) for the Neumann problem is analogous to (17)
obtained for the Dirichlet problem. If we consider the diffuse
part of the scattering amplitude for the Neumann problem, we
obtain

Sdif

N (q; q0) �S(q; q0) � k��(q� q0)

=�
kq

4�2

ZZ
r�(r) exp(�iqr)E(r; q0)

� cos[��(r)] d2r �
i�k

4�2

ZZ
� exp(�iqr)E(r; q0) sin[��(r)] d

2r: (29)

Equation (29) shows that when� ! 0, q!kq̂

lim
�!0

Sdif

N (q; q0)

= TN (q̂; q0)

= �
k2q̂

4�2

ZZ
r�(r) exp(�ikq̂r)E(r; q0) d

2r: (30)

The integral in (30) converges if the rough surface becomes
plane at infinity (r� ! 0 if r ! 1).

Equation (30) shows that for the Neumann problem, the
scattering amplitude in the region of small scattering grazing
angles does not depend on this angle.

It follows from the reciprocity condition (6) that in the
region of small angles of incidence�0 � k, the property that
is similar to (30) is true:

lim
�0!0

Sdif

N (�q0; �q) = lim
�0!0

Sdif

N (q; q0)

=TN (�q̂0; �q): (31)

Thus, if both� and �0 are small,Sdif
N (q; q0) remains some

constant. In particular, the backscattering amplitude and cross
section in the case of the Neumann problem are independent
of the elevation angle if this angle is small.

Similar to the Dirichlet case,E(r; q0) is some unknown
functional of �(r) and (30) and (31) are not any approx-
imations, but exact results that follow from the Helmholtz
equation, Neumann boundary condition, and radiation condi-
tion.

IV. COMPARISON WITH PERTURBATION THEORY

A. The Dirichlet Problem

The well-known result of perturbation theory [6] for the
scattering amplitude for the Dirichlet problem is

Sdif

D; 1(q; q0) = 2i��0ke�(q � q0): (32)

where

e�(q) � 1

4�2

ZZ
exp(�iqr)�(r) d2r: (33)
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This result also can be obtained from (17) if we keep the
zero-order term in�(r) for F (r; q0) and expandsin[��(r)]
to the first order in�(r).

Comparison of (32) with (27) shows that for the Dirichlet
problem, the first perturbation term for the scattering amplitude
reveals the same dependence on�; �0 as the first term of the
expansion in powers of� and/or�0:

B. The Neumann Problem

With our definition of the scattering amplitude, the well-
known first-order perturbation result for the scattering ampli-
tude has the form

Sdif

N; 1(q; q0) = �2ik[k
2
� qq0]e�(q � q0): (34)

This result can also be obtained from our basic (29) if we
keep the zero-order term in powers of�(r) for E(r; q0)2

E0(r; q0) = 2 exp(iq0r)

and keep the first-order terms in�(r) in the other integrands
of (29). After calculating two integrals we obtain (34); that is
the standard result for the Bragg scattering for the Neumann
problem.

Let us consider now the scattering amplitude for the Neu-
mann problem for small� without restrictions on�(r). It
follows from (29) that the second term in the right-hand side of
(29) has the second order in powers of�, but the first term has
the zero-order component in powers of�. Thus, the leading
term of the expansion in powers of� in the region of small
� is equal to

Sdif

N (q; q0) ��
k2q̂

4�2

ZZ
r�(r) exp(�ikq̂r)

� E(r; q0) d
2r (35)

and is independent of�. Equation (35) is valid for arbitrary
� and � � k, but (34) is true for small� and arbitrary�.
If we consider the case when both� and � are small, we
should substitute in (35)E0(r; q0) = 2 exp(iq0r) instead of
E(r; q0). In this case, we obtain

Sdif

N (q; q0) ��
k2q̂

2�2

ZZ
r�(r)

� exp[�i(kq̂ � q0)r] d
2r

=�2ik(k2�kq̂q0)e�(kq̂ � q0) (36)

which is a particular case of (34) in the region of small�. Thus,
both formulas coincide in the region of their overlapping.

V. COMPARISON WITH THE KIRCHHOFF APPROXIMATION

Here, we examine the small grazing angle behavior of the
scattering amplitude in the Kirchhoff approximation.

2This is just a doubled incident field evaluated at the reference planez = 0.
This result can also be obtained from (14) in the zero order in�(r).

A. The Dirichlet Problem

In order to obtain the Kirchhoff approximation, we assume
that the source function in (18) corresponds to the reflection
from the local tangent plane (see details in [2])

F (r; q0) � �2i
[�0 + q0r�(r)]p
1 + [r�(r)]2

�exp[iq0r�i�0�(r)]: (37)

The Kirchhoff approximation for the scattering amplitude has
the form

Sdif

D;K(q; q0) �
ik

2�2

ZZ
[�0 + q0r�(r)] sin[��(r)]

� exp[i(q0�q)r� i�0�(r)]d
2r: (38)

In the limit of the small grazing angle� ! 0 we have

Sdif

D;K(q; q0) �
ik�

2�2

ZZ
[�0 + q0r�(r)]�(r)

� exp[i(q0�q)r� i�0�(r)] d
2r: (39)

Obviously, Kirchhoff approximation exhibits the same be-
havior of the small grazing angle as the exact solution (23).
It is worth noting that formula (39) can be obtained directly
from (23) by the same approximation of the source function.

B. The Neumann Problem

We make the same assumption that the source function in
(29) corresponds to the reflection from the local tangent plane
(see details in [8])

E(r; q0) = 2 exp[iq0r� i�0�(r)]�(r; q0): (40)

Equation (29) for the diffuse scattering amplitude now takes
the form

Sdif

N;K(q; q0) ��
kq

2�2

ZZ
r�(r)

� exp[i(q0�q)r� i�0�(r)] cos[��(r)] d
2r

�
i�k

2�2

ZZ
exp[i(q0�q)r� i�0�(r)]

� sin[��(r)] d2r: (41)

In the limit of small grazing angles we have

Sdif

N; K(q; q0) ��
k2q̂

2�2

ZZ
exp[i(q0 � kq̂)r� i�0�(r)]

�r�(r) d2r: (42)

Similarly to the exact solution (30), the scattering ampli-
tude in Kirchhoff approximation approaches a finite limit at
small grazing angles. Equation (42) can be obtained from the
exact small grazing angle asymptote by applying Kirchhoff
approximation to the dipole source function in (30).



TATARSKII AND CHARNOTSKII: UNIVERSAL BEHAVIOR OF SCATTERING FOR SMALL GRAZING ANGLES 71

VI. CONCLUSIONS

The scattering cross section� to the unit of solid angle is
related to the scattering amplitudeS by3

�(q; q0) =
4�2

k2


jS(q; q0)j

2
�

(43)

where h� � �i denotes the averaging.
It follows from our results that if the angle of incidence is

fixed in the region of small grazing angles of scattered waves
the ratio of the scattering cross sections�D=�N is proportional
to the square of the small elevation angle�

�D(q; q0)

�N (q; q0)
� �2 � sin2 �; � � k: (44)

In the case of backscattering (q = �q
0
, � = �0), the second

power changes to the fourth

�D(q; �q)

�N (q; �q)
� �4 � sin4 �; � � k: (45)

An interesting question arises from the analysis of the ex-
perimental data concerning the relation between the scattering
cross sections of vertically polarized electromagnetic waves
(�V V ) and horizontally polarized waves (�HH ). For a one-
dimensional rough interface between a vacuum and a perfectly
conducting material, a scattering of the horizontally polarized
wave corresponds to the Dirichlet problem and a scattering
of the vertically polarized wave corresponds to the Neumann
problem. If the cross-polarization scattering is small, we can
use the results obtained for the Dirichlet and for the Neumann
problems as a good approximation for the electromagnetic
wave scattering. Thus, our consideration is of interest for the
relation between�V V and�HH cross sections.

It is interesting to compare our results to the small grazing
angle results obtained in [9]. The theory presented in [9] is
based on the surface model in the form of “bosses” randomly
distributed on the plane. For this surface model, the method of
images allows us to obtain an exact solution for a single boss
on the plane if an exact solution for a finite body consists of the
boss and its mirror image is available. Single-boss scattering
amplitudes in Twersky’s treatment [9, eq. (11)] reveal the same
small-grazing-angle dependence as (23) and (31). This single-
boss scattering amplitude agrees with the perturbation theory
(Born scattering) in the case of a small boss. However, for the
scattering cross sections for the ensemble of bosses randomly
distributed on the plane V, Twersky reports�D(q; q0) =
O(�4) and �N (q; q0) = O(�2). This difference appears in
the process of averaging and is caused, in our opinion, by
some arbitrary assumptions involved in the calculations. It is
clear that these results cannot, in general, be correct because
they do not agree with the perturbation theory limit.

3This formula is valid for the finite scattering area. In the limiting case of
infinite scattering surface, the limit

�0(q; q0) = lim
A!1

4�2

k2A



jS(q; q0)j

2
�

exists, which describes the scattering cross section from the unit of scattering
surface (see, e.g., [2]).

In Barrick’s paper [10] the problem of grazing scattering
above the impedance surface with the boundary condition

@E[r; �(r)]

@n
+ ikZE[r; �(r)] = 0 (46)

was considered. The result obtained in this paper shows the�4

behavior of the backscattering cross-section for any impedance
Z for small �. If Z ! 1, we should obtain the Dirichlet
problem and results obtained in Barrick’s paper and in this
paper agree with each other. However, in the caseZ = 0 we
obtain the Neumann problem and these results contradict each
other. This contradiction is caused by the singular behavior of
the scattering cross section as a function of two parameters�
andZ. If we consider this problem by the perturbation method,
we obtain the following for the scattering amplitude:

S
(1)
Z

(q; q0) = �2ik
��0(k2 � qq0 � k2Z2)

(� + kZ)(�0 + kZ)
e�(q�q0): (47)

If Z = 1, we obtain (32) for the Dirichlet case ifZ = 0
and (34) for the Neumann case. However, if we consider
finite Z and small� � kZ, the result is proportional to�,
similarly to the Dirichlet case. Thus, for smallZ and small
�, the result depends on the relation between� and kZ. If
Z � �=k � 1, the dependence of the scattering amplitude
on � agrees with the solution of the Neumann problem, but
if �=k � Z � 1, the Neumann problem can not serve as
a good approximation for the impedance problem. Note that
the critical angle� = arcsin(Z) corresponds to the Brewster
angle. The real behavior of the scattering amplitude as a
function of� will depend on the relation between the scattering
angle, beamwidth, and Brewster angle. In principle, both cases
are possible under different conditions.

The more detailed version of the paper is published in [11].
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