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On the Universal Behavior of Scattering from
a Rough Surface for Small Grazing Angles

Valerian |. Tatarskii and Mikhail |. Charnotskii

Abstract—It is shown that for scattering from a plane in The scattering amplitude5(q, q¢) in the regionz >
average rough surface, the scattering cross section of the rangemax ¢(r) is defined by the formula
of small grazing angles of the scattered wave demonstrates a
universal behavior. If the angle of incidence is fixed (in general, e
it should not be small), the diffuse component of the scattering _ . . 9
cross section for the Dirichlet problem is proportional to §° Bie(r, 2) expliqr + iv()]5(q, qo)ki/(q)' )
where 6 is the (small) angle of elevation and for the Neumann
problem it does not depend oné. For the backscattering case, 9 .
these dependencies correspondingly becorié and 6°. The result Forg < k the value d“q/kv(q) is equal2t0 thze elemzent
is obtained from the structure of the equations that determine the Of the solid angledS:(k) on the sphereq® + v* = k.
scattering problem rather than the use of an approximation. Equation (4) remains the same for both the Dirichlet and the

Neumann problems. Most of the following relations, however,
will be different for these two problems and we consider them
separately. We also use the Weyl-Sommerfeld formula

Index Terms—Electromagnetic scattering, rough surfaces.

|. INTRODUCTION

N this paper, we investigate the low-grazing-angle (LGA) Go(r +ez;1 +e2)

behavior of the scattering amplitudes for the scalar rough d’q . ) . )
surface scattering problem under the Dirichlet and Neumann = // ™ expliq(r —1') +iv|z = Z'|].  (5)
boundary condition. Usually, the rough surface scattering
problems are attacked using some kind of analytical approx-The reciprocity theorem is true both for the Dirichlet and
imations [5]-[7] or numerical methods [1], [4]. Unlike theihe Neumann problems:
majority of publications in the rough surface scattering theory,
we only use the most general properties of the scattered fields _
for our study. Our technique is based on the exact integral (@ @) = S(=an, —a)- ©)
equations for source functions and scattering amplitudes. We_ o _
show that even at this very general level of analysis, it is pos-ThIS derivation follows the general idea of [3].

sible to obtain certain properties of the scattering amplitudesconSiOIer domairt” bounded by the scattering surface=
at LGA’s of incidence and/or scattering. ¢(r) from the bottom and some plane= z, > (max from the
top. For two arbitrary solution®’ (r, z) and Ex(r, #) of the

homogeneous Helmholtz equation, the Green’s theorem states
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Il. NOTATIONS AND BASIC EQUATIONS

that
We consider the scattering of the plane wave
Eine(r, z) = expliqor—ivyz] (1) // Elr, ((1)] 3E28[I‘,( C)(I‘)]
nr

by the rough surface = ((r). Here, the arbitrary three- 2B, [r, ¢(v)]
dimensional wave vectdr is of the form — Bs|r, ((r)]T’(r)}dE(r)

k=q+ , =(0,0, 1), =0. 2 . »

| q+ev(q) e. ( )_ qe @) :// [El(r, z*)aEZ(;’Z )—Ez(r, Z*)5E1(6I',z) .
The vertical wave number is the function ofq % ® -

V(q):{\/kQ—qQ, for g <k

in/q? —k?, forq>k Suppose now thak' (r, z) = E(r, z;qq) is the total field
Rev >0, Imwv >0 ®3) of the scattering problem with the incident field given by (1),

and because of this relation, the plane wave with the wa@8d the scattered field is presented in the form (4). If the

vector (2) satisfies the Helmholtz equation. second field is an upward-directed plane wave
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results in

R ——
M%E—gg;%] }dE(r)
©)

—explivi¢(r) — iqq 1]

= 8iﬂ'21/06(q0 —q)

where for any functiont” we use the notation

Flr, ¢(r); qo]
on(r)

OF (v, z; qo);
on(r)

z2=((r)

We denote here

Elr, ¢(r); qo] = E(x, qo). (16)
Equations (12)—(15) are the main equations for the following
analysis of the small-angle behavior of the scattering ampli-
tudes. Equations (12) and (14) represent the extinction theorem
for the Dirichlet and Neumann cases and usually are used to

determine the unknown surface sources.

I1l. SMALL -GRAZING-ANGLE BEHAVIOR
OF SCATTERING AMPLITUDES

If the second field is a downward-directed plane wave, then

Es(r, z) = exp[—iqir — ivy 2] (10)

and instead of (9) we have

//{ , C(r); qo]a eXP[—ig:(rr; i C(v)]

—exp[—aqir — in((r)] W} )
= 82']7;2 (a1, qn)- -

For the Dirichlet problem we hav&[r
and (11) reduce to

L¢()] = 0 and (9)

// exp [—igr + iv¢(r)]F(r, qp) dE(r) = —8im?vé(q — qp)

12)

and .

J[ espliar = ivgwlF e a0) =) = St a0)
13

We denote here

OE[r,¢(r); qo]
dn(r)

F(r, qo).

For the Neumann probledZ[r
(11) reduce to

, ¢(r)]/0n(r) =0, (9) and

[ [+ avewi essl-iar + g (60w, a0) '

= 871-21/6(q —qo) (14)
and
//[—V +qV{(r)] exp[—iqr — iv((x)]E(r, qo)d’r
= (. o). (15)

. The Dirichlet Problem

Let us compare (12) with (13). The left-hand sides of these
formulas differ only by the sign o’ in the exponent. If
we subtract (13) from (12), then[r((r)] appears under the
integral and we obtain (after simple algebra)

e [f svtosn st

(17)

S(‘]; (10) ——kyé(q QO

x F(r, qo) dX(r )

The function F(r, qq) in this relation is unknown and
should be determined from (12), but dependencé'(ef, qo)
on q and v is given in (17) in explicit form. This dependent
property of (17) is really the advantage of (17) because it
allows us to investigate the behavior 6fq, q¢) without
determining the source functioR(x, qp).

The main conclusion that follows from (17) is that the
diffuse part of the scattering amplitude for the Dirichlet
problem

SH(a, qo) = S( q) Qo) + kvé(q— qo)

LAY/ P

X F(I‘ qo) dX(r) (18)

contains (in its formal expansion in the Taylor series) only odd
powers ofv.! Indeed, we have

g=Vk?—1v? q=qq=qVk?—-1? (19)

ie., q(v) is an even function of v. Therefore,

exp(—iqr) sin[¢(r)] is an odd function ofr. Thus, if
we multiply and divide the integrand in (18) by we obtain

k

S, qo) = ~i

Y o) (q k2 —v? qo; v 2) (20)

1The valuev is defined only in the regions > 0 for ¢ < k or Ime > 0
for ¢ > k. Because of this, it is incorrect to use the term  odd function for this
case. Nevertheless, we will use terms odd and even functions mieaning
that corresponding expansions in the Taylor series contain only odd or even
powers ofv.
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where completing some simple algebra we obtain
<I>(+)(q k2 — 12, qo;1?) S(q, qo) =kvé(q—qo) — — // exp(—iqr)E(r, qpn)
. .\ sin[v((r
= // exp (—Z\/ k2 —1? qr) w x sin[v(r)] d’r — — // V{(r)
X F(r, qq) dX(r) (21) X exp(—iqr)E(r, qo) cos[w((x)] d’r. (28)

depends only on?. If v = 0, this function is equal to some Equation (28) for the Neumann problem is analogous to (17)

independent o constant obtained for the Dirichlet problem. If we consider the diffuse
part of the scattering amplitude for the Neumann problem, we

obtain
SV (a, qo)ES(q) qo) — kvé(q—qo)

471-2 / V¢(r) exp(—iqr)E(r, qo)
and in the region of small we obtain u/k //

o+ (ak, qo; // exp(—ikqr)((r)F(r, qo) dX(r)
(22)

x cos[v((r)] d*r — —

. k
S5 (q, @) = —ﬁ [@F)(ak, qo; 0)+ O(¥?)]  (23) x exp(—iqr)E(r, (lO)Sln v((r)]d*r.  (29)
Equation (29) shows that when— 0, q —kq
or
, hm St (4, q0)
lim S D) F gk o 0 24
UT})T__H (q y 9o, ) ( ) _TN(qJ qO
k’q

Certainly, the applicability of (23) depends on several condi- = ~72 // V((r) exp(—ikqr)E(r, qo)d’r.  (30)

tions. The most important restriction is related to expansion of
sin[v¢(r)] in powers ofv. It is evident that we should requweThe integral in (30) converges if the rough surface becomes

the restriction plane at infinity ¥¢ — 0 if r — o0).
Equation (30) shows that for the Neumann problem, the

scattering amplitude in the region of small scattering grazing
angles does not depend on this angle.

It follows from the reciprocity condition (6) that in the
where 6. is the grazing angle of the scattered wave. Soniggion of small angles of incidenag < %, the property that
other conditions may appear in different applications (fdf similar to (30) is true:

V|¢|max < 1, Or sin b, < (25)

1
kICmax

example, the size of footprint). o lim S (—an, —q) = lim SY'(q, qn)
The result obtained does not involve any approximation for vo— vo—0
the unknown source functiofi. This result is an exact conse- =Tn(—q0, —9q). (31)

guence of Helmholtz equation, Dirichlet boundary condmoml,hus if bothw and vy are small, 5% (q, qo) remains some
0 3 0

and radiation condition. constant. In particular, the backscattenn amplitude and cross
On the other hand, the scattering amplitude satisfies the reci- P g amp

ection in the case of the Neumann problem are independent
procity condition (6), which allows us to write the reciprocal
o (24) of the elevation angle if this angle is small.

Similar to the Dirichlet caseE(r, qq) is some unknown
. 4 (q, qo) o funcf[ional of {(r) and (30) and (31) are not any approx-
Vlon_{lo o 122 (—ok, —q; 0).  (26) imations, but exact results that follow from the Helmholtz
equation, Neumann boundary condition, and radiation condi-
If both v and v, are small, both (24) and (26) must be trudion.
and we obtain the result
V. COMPARISON WITH PERTURBATION THEORY

) ) Sdlf o

lim lim b (9 o) =Xn(q, qq)- 27)

v=Owe=0 Vi A. The Dirichlet Problem
where the functionX; (4, q,) depends only on directions of The well-known result of perturbation theory [6] for the
the incident and scattered waves. scattering amplitude for the Dirichlet problem is

S (q, qo) = 2ivvokl(q — qo). 32
B. The Neumann Problem 5.1(% a0) ivvok(q = ao) (32)
The Neumann problem is a little more complicated tha\Mhere

the Dirichlet problem, but we can perform a quite similar C(q // exp(—iqr)¢(r) d’r. (33)
analysis. Let us add (14) fdr and (15), determining. After
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This result also can be obtained from (17) if we keep th&. The Dirichlet Problem
zero-order term in((x) for F'(r, qo) and expandsin[v((r)] In order to obtain the Kirchhoff approximation, we assume

to the first order in¢(r). that the source function in (18) corresponds to the reflection
Comparison of (32) with (27) shows that for the Dmchle{;rom the local tangent plane (see details in [2])

problem, the first perturbation term for the scattering amplitude

reveals the same dependencewom, as the first term of the [vo + a0 VC(r)]

expansion in powers af and/orv;. F(r, qo) ~ — NSO expliqor—irp((r)]. (37)
r

B. The Neumann Problem The Kirchhoff approximation for the scattering amplitude has

With our definition of the scattering amplitude, the wellthe form
known first-order perturbation result for the scattering ampli-
tude has the form

Sl @)~ g [ o+ a6 s
SV 1(a, a0) = —2ik[k” — qqp)C(a —qo).  (34) x expli(qo—q)r — ivo((x)]d*r.  (38)

This result can also be obtained from our basic (29) if we . . _
keep the zero-order term in powers i) for E(r, qo)? In the limit of the small grazing angle — 0 we have

Ey(r, qo) = 2 exp(iqor) S(r])]fr( (4, q0) 2 5 // vo + o V{(r)J¢(r)

and keep the first-order terms {tr) in the other integrands x expli(qo—a)r — ivo((r)] d*r. (39)
of (29). After calculating two integrals we obtain (34); that is
the standard result for the Bragg scattering for the NeumannObviously, Kirchhoff approximation exhibits the same be-
problem. havior of the small grazing angle as the exact solution (23).

Let us consider now the scattering amplitude for the Nell-is worth noting that formula (39) can be obtained directly
mann problem for smalb without restrictions on((r). It from (23) by the same approximation of the source function.
follows from (29) that the second term in the right-hand side of
(29) has the second order in powersobut the firstterm has g The Neumann Problem
the zero-order component in powers af Thus, the leading
term of the expansion in powers ofin the region of small
v is equal to

We make the same assumption that the source function in
(29) corresponds to the reflection from the local tangent plane
(see details in [8])

dif k”q .
Sy (@) o) ~ T Ar? / V(r) exp(—ikqr) E(r, qo) = 2 expliqor — ivy¢(x)]P(x, q0). (40)
x E(r, qo)d’r (35)
Equation (29) for the diffuse scattering amplitude now takes
and is independent of. Equation (35) is valid for arbitrary the form
¢ andv < k, but (34) is true for smal; and arbitraryv.
If we consider the case when bothand { are small, we Sd' « (4 q0) / V((r)
should substitute in (35F(r, qo) = 2 exp(iqor) instead of 2n?

E(r, qp). In this case, we obtain x expli(qo—q)r — ivp((r)] cos[v((r)] d d%r
ik
Sdnv(qJ 1) // V(e T 9.2 // expli(qo—q)r — ivp((r)]
X Sln[I/C r (41)

x exp[—i(kq — qo) v]d’r
= —2ik(k*—kqqy)C(kq — qg) (36) In the limit of small grazing angles we have

which is a particular case of (34) in the region of smallhus, ir
both formulas coincide in the region of their overlapping. SN, k(4 Qo) // expli(qo — kq)r — ivo((r)]

X VC (42)
V. COMPARISON WITH THE KIRCHHOFF APPROXIMATION
Here, we examine the small grazing angle behavior of theSlmllarIy to the exact solution (30), the scattering ampli-

scattering amplitude in the Kirchhoff approximation. tude in Kirchhoff approximation approaches a finite limit at
small grazing angles. Equation (42) can be obtained from the

2This is just a doubled incident field evaluated at the reference plan@. exact S_mal_l grazing ar_lgle asymptote bY ap_plymg Kirchhoff
This result can also be obtained from (14) in the zero order(i. approximation to the dipole source function in (30).
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VI. CONCLUSIONS In Barrick’s paper [10] the problem of grazing scattering
The scattering cross sectionto the unit of solid angle is above the impedance surface with the boundary condition
related to the scattering amplitude by? 8E[1; ¢(r)] b bZEfr, C()] = 0 (46)
472 9 "
o(q, qo) = k_2<|5(q’ Q)| > (43) was considered. The result obtained in this paper show&'the
_ behavior of the backscattering cross-section for any impedance
where (- - ) denotes the averaging. Z for small 6. If Z — oo, we should obtain the Dirichlet

fixed in the region of small grazing angles of scattered wavggper agree with each other. However, in the céise 0 we
the ratio of the scattering cross sectiens/o is proportional gbtain the Neumann problem and these results contradict each

to the square of the small elevation angle other. This contradiction is caused by the singular behavior of
op(q; qo) the scattering cross section as a function of two parameters
— = L~y ~sin®l, v <k, (44) andZ. If we consider this problem by the perturbation method,

N (@ D) we obtain the following for the scattering amplitude:

In the case of backscattering € —q,, v = 1), the second _vwp(k? — qq, — k22?) +

power changes to the fourth Sg)(q, qo) = —2ik 0+ 52) v 1 k) ((q—qo). (47)
on(q, —q) ~ vt sintl, v <k (45) If Z = oo, we obtain (32) for the Dirichlet case E=0 _
on(q, —q) and (34) for the Neumann case. However, if we consider

: . . . . finite Z and small kZ, the result is proportional to,
An interesting question arises from the analysis of the ex- VS brop

erimental data concerning the relation between the scc';ltterlsrl1milarly to the Dirichlet case. Thus, for smafl and small
P 9 ; 1%he result depends on the relation betweeand £Z. If

Cross sec(;mhns_of \'Ee|r|tlca”}|/ polacljrlzed electromé\gnetlc Wav%§<< v/k < 1, the dependence of the scattering amplitude
(ovv) and horizontally polarized waves £ 7). For a one- v agrees with the solution of the Neumann problem, but

s : : 0
dlmenspnal rough interface b_etween avacuum and aperfe ﬂ}y/k < Z < 1, the Neumann problem can not serve as
conducting material, a scattering of the horizontally polarized

- .a good approximation for the impedance problem. Note that
wave corresponds to the Dirichlet problem and a scatteri J PP b P

: : H$E critical angled = arcsin(Z) corresponds to the Brewster
of the vertically polarized wave corresponds to the Neumann : . .

o . angle. The real behavior of the scattering amplitude as a
problem. If the cross-polarization scattering is small, we can

use the results obtained for the Dirichlet and for the Neuma unction of » will depend on the relation between the scattering

bl d imation for the elect %ﬂgle, beamwidth, and Brewster angle. In principle, both cases
problems as a good approximation for Ihe €lectromagneti, possible under different conditions.

wave scattering. Thus, our c0n3|derat|0n_ is of interest for tﬁeThe more detailed version of the paper is published in [11].
relation betweemwyy andeoy g cross sections.

It is interesting to compare our results to the small grazing
angle results obtained in [9]. The theory presented in [9] is
based on the surface model in the form of “bosses” randomly The authors would like to thank Dr. D. E. Barrick, CODAR
distributed on the plane. For this surface model, the method@€¢ean Sensors Ltd., Los Altos, CA, who sent us his paper
images allows us to obtain an exact solution for a single bdd$)] prior to its publication. They would also like to thank
on the plane if an exact solution for a finite body consists of tii&¢o anonymous reviewers for their comments that were taken
boss and its mirror image is available. Single-boss scatteritigo account in the final version of this paper.
amplitudes in Twersky’s treatment [9, eq. (11)] reveal the same
small-grazing-angle dependence as (23) and (31). This single- REFERENCES
boss scattering amplitude agrees with the perturbation theoﬁ'] D. E. Barrick, “Near-grazing illumination and shadowing of rough
(Born scattering) in the case of a small boss. However, for the surfaces,”"Radio Sci.,vol. 30, pp. 536-580, 1995.

scattering cross sections for the ensemble of bosses randon[ﬁ M. I. Charnotskii and V. |. Tatarskii, “Tilt-invariant theory of rough-
9 i/ surface scattering: |,Waves Random Medisol. 5, pp. 361-380, 1995.
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0(1/4) and oy (q, qo) = 0(1/2)_ This difference appears in Progress in Optics,E. Wolf, Ed. Amsterdam, The Netherlands:

; ; ; Fi North-Holland, 1984, vol. 21, pp. 1-67.
the proce_ss of averaglng ar?d IS Cau_sed' In-our OP'”'O”' _X] C. L. Rino and H. D. Ngo, “Application of beam simulation to scattering
some arbitrary assumptions involved in the calculations. It iS ™ at low grazing angles—I: Methology and validatioriRadio Sci.,vol.
clear that these results cannot, in general, be correct becaug]es\?, pp. 1365-1379, 1994.

. . - . T. Shaw and A. J. Dougan, “Half-space Green's function and
they do not agree with the perturbatlon theory limit. applications to scattering of electromagnetic waves from ocean-like

N . . . . o surfaces,"Waves Random Medi&pl. 5, pp. 341-359, 1955.
This formula is valid for the finite scattering area. In the limiting case of[g] A. G. Voronovich, Wave Scattering From Rough Surface®erlin,
infinite scattering surface, the limit Germany: Springer-Verlag, 1994.
) [7] , “On the theory of electromagnetic waves scattering from sea
oo(q, qo) = lim 4L<|S(q q0)|2> surface at low grazing anglesRadio Sci.yol. 31, pp. 1519-1530, 1995.
’ A—co k2 A ! [8] M. I. Charnotskii and V. I. Tatarskii, “Tilt-invariant theory of rough-
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