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Abstract— Numerical simulations of scattering from
one-dimensional (1-D) randomly rough surfaces with
Pierson–Moskowitz (P–M) spectra show that if the kernel
(or propagator) matrix with zeros on its diagonal is used in
the discretized magnetic field integral equation (MFIE), the
results exhibit an excessive sensitivity to the current sampling
interval, especially for backscattering at low-grazing angles
(LGA’s). Though the numerical results reported in this paper
were obtained using the method of ordered multiple interactions
(MOMI), a similar sampling interval sensitivity has been
observed when a standard method of moments (MoM) technique
is used to solve the MFIE. A subsequent analysis shows that
the root of the problem lies in the correct discretization of the
MFIE kernel. We found that the inclusion of terms proportional
to the surface curvature (regarded by some authors as an
additional correction) in the diagonal of the kernel matrix
virtually eliminates this sampling sensitivity effect. By reviewing
the discretization procedure for MFIE we show that these
curvature terms indeed must be included in the diagonal in
order for the propagator matrix to be represented properly.
The recommended current sampling interval for scattering
calculations with P–M surfaces is also given.

Index Terms—Electromagnetic scattering, numerical analysis,
Pierson–Moskowitz spectrum, rough surfaces.

I. INTRODUCTION

NUMERICAL solution techniques play an increasingly
important role in understanding and predicting scattering

from randomly rough surfaces. Recently, a new and powerful
iterative numerical technique, called the method of ordered
multiple interactions (MOMI), has been proposed by Kapp and
Brown for solving the magnetic field integral equation (MFIE),
which describes the current induced on a perfectly conducting
surface [1]. A similar technique called “forward–backward”
has been proposed by Hollidayet al. [2]. For rough surfaces,
MOMI has no apparent convergence problems with very few
iterations being completely adequate to describe the scattered
field. This rapid convergence makes MOMI very effective
computationally and the technique makes extensive numerical
simulations of scattering from quite large surfaces possible.
This attribute is particularly important for low-grazing angles
(LGA’s) of incidence.
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Before any numerical technique can be applied, the in-
tegral equation should be discretized, i.e., cast in a vec-
tor–matrix form. Clearly, the discretization can affect the
accuracy of the computed solutions. When studying scattering
from one-dimensional (1-D) random surfaces with ocean-
like Pierson–Moskowitz (P–M)-type spectra, we found that
questions regarding the stability of the solution with respect
to sampling interval need to be addressed and that these
questions are tied to the understanding of a role of the so-called
“curvature term” in the propagator.

In regard to the MFIE, there has been some discussion [3],
[4] on whether the curvature term (a term which is proportional
to the surface curvature1) should be included in the diagonal of
the propagator matrix in the discretized equation and how this
term affects both the traditional method of moments (MoM)
and MOMI solutions. For P–M surfaces, we observed that
using a propagator matrix without the curvature term can result
in a significant sensitivity in the calculated field to changes
in the sampling interval—an effect that is not present for
surfaces with Gaussian spectrum. This effect is pronounced
in the case of horizontal polarization for backscattering at
LGA’s and is not very evident for vertical polarization. It
appears to be tied to the small-scale (high-frequency) surface
curvature, which is characteristic of the P–M spectrum. A
stable result can be eventually achieved by decreasing the
sampling interval, which, of course, increases the matrix
dimension and computational expense of the algorithm. If,
however, the curvature terms are included in the diagonal of
the propagator matrix, the stable result is obtained at much
larger sampling intervals and no drastic increase in a sampling
rate is necessary.

This finding prompted us to take a more in-depth look at
how the discretization of MFIE is performed, what the role of
the curvature term is, and if it should appear in the propagator
matrix as a result of discretization. Shapes of the spectra
for the currents and the propagator entering the MFIE for
P–M surfaces suggest that they can be treated as band-limited
functions, with the upper wavenumber (or spatial frequency)
beyond which the spectra are assumed to effectively vanish
being related to the cutoff in P–M spectrum. Consequently, the
sampling theorem can be applied to discretize the MFIE. This
consideration suggests choosing the sampling interval based,
in general, onboth the electromagnetic wavelength and the

1We are indebted to one of the reviewers for pointing out the fact that
curvature is classically defined as�xx=(1+�2x)

3=2 for 1-D surfaces. However,
as used herein, the term “curvature” will refer to the second surface derivative
�xx .
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surface spectral cutoff. Also, it shows that the curvature term,
in fact, should appear on the diagonal of the propagator matrix
that results from its discretization by sampling and that no
higher order corrections should be included in either the off-
diagonal or diagonal terms. It should be stressed that although
we used MOMI as the core of our numerical algorithm, the
discussion of discretization refers to the original MFIE before
it is reformulated into MOMI. That is why we fully expect that
similar problems with sampling stability, when the curvature
terms are left out of the diagonal of the propagator matrix,
will be observed no matter what numerical method is used to
solve the discretized MFIE.

II. MFIE FOR TWO-DIMENSIONAL

SCATTERING PROBLEM AND THE MOMI

The MFIE for a two-dimensional (2-D) scattering problem
with a 1-D rough surface and its solution by MOMI are
discussed in [1]. An extensive and very detailed discussion
of the subject is given in [3]. Here we intend to give only a
brief review of the results that will be used in later sections.
All fields and currents are assumed to have a time-harmonic
dependence of the formexp(j!0t).

The idea behind the MFIE is as follows. An incident field
illuminating a perfectly conducting surface excites surface
currents, which radiate and give rise to a scattered field.
By writing expressions for the total field and bringing the
observation point to the surface, one obtains an integral
equation for these surface currents (which, in the 2-D case,
are readily expressed in terms of theE or H field). Once this
integral equation is solved and surface currents are known, the
scattered field can be found using an appropriate off-surface
propagator.

For the surfaces we are interested in it is convenient to work
in Cartesian coordinates with the horizontalx axis chosen
in the mean surface plane. The surface height above the
mean surface plane is given by a functionz = �(x). It is
assumed that the surface is a perfect electric conductor (PEC)
extending from minus infinity to infinity inx. For such a
surface illuminated by an incident field, the MFIE will have
the form

J(x) = J i(x) +

Z
X
P (x; x0)J(x0) dx0 (1)

whereJ(x) is the surface current to be determined,P (x; x0)
is an integral kernel or propagator, andJ i(x) is a forcing
term due to the incident field. The domain over which the
integration is performed and where all functions are defined
should in principle be infinite, but if some taper for the incident
field is assumed, in practice, one can usually choose it to be
finite. For vertical polarization (Hi tangential to the surface)
the quantities involved in (1) are

J i(x) = 2Hi(x; z)jz=�(x) (2a)

P (x; x0) � 2
@G(x; x0)

@n0

p
1 + �2x(x

0): (2b)

For horizontal polarization (Ei tangential to the surface) we
have the following:

J i(x) = 2
@Ei(x; z)

@n

����
z=�(x)

(3a)

P (x; x0) ��2 @G(x; x0)

@n

p
1 + �2x(x

0): (3b)

In (2) and (3),Hi(x; z) andEi(x; z) represent incident mag-
netic or electric fields, respectively,G(x; x0) is the free-space
Green’s function and@=@n is a derivative along the surface
normal at a given point. The factor

p
1 + �2x(x

0) included in
the propagator results from converting an integration along the
surface to integration along the mean surface plane. In the case
of vertical polarization the currentJ(x) is actually the total
magnetic field on the surface, while in the case of horizontal
polarizationJ(x) is the normal derivative of the total electric
field on the surface. The forcing termJ i(x) is often referred
to as a “Kirchhoff current.”

The normal derivatives of the Green’s function are

@G(x; x0)

@n0
=
k0
4j

��x0(x0)(x� x0) + �(x)� �(x0)p
1 + �2x0 (x0)

p
(x� x0)2 + [�(x)� �(x0)]2

�H
(2)
1

n
k0
p

(x� x0)2 + [�(x)� �(x0)]2
o

(4)

@G(x; x0)

@n
=�k0

4j

��x(x)(x � x0)+�(x) � �(x0)p
1 + �2x(x)

p
(x� x0)2 + [�(x)� �(x0)]2

�H
(2)
1

n
k0
p

(x� x0)2 + [�(x)� �(x0)]2
o

(5)

where H(2)
1 is a first-order Hankel function of the second

kind and k0 is the free-space electromagnetic wavenumber.
It should be pointed out that although the derivation of (1)
involves removal of singularity and therefore the principal
value of the integral should be taken, it turns out that in the
2-D case, integrals of the type appearing in (1) with kernels
given by (2b) or (3b) always converge and taking a Cauchy
principal value is not necessary [5].

Once (1) is solved, the scattered field in a far zone at a
distancer from the center of the illuminated part of the surface
can be found as

F s =
e�j�=4

2
p
2�k0

e�jk0rp
r

Z
X

Q(x; �s)J(x) dx: (6)

For vertical polarization we solve for magnetic field,F s = Hs

and the integral kernel is

Q(x; �s)=jk0[��x(x) sin �s + cos �s] expfjk0[x sin �s

+ �(x) cos �s]g:
(7)

In the case of horizontal polarization one can solve for electric
field, i.e., F s = Es and

Q(x; �s) = � expfjk0[x sin �s + �(x) cos �s]g
p
1 + �2x(x):

(8)

The scattering angle�s appearing in (6)–(8) is defined with
respect to the vertical (z) axis and is assumed to be positive
in a clockwise direction. Equation (6) with (7) and (8) can be
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obtained by using the far-field expansion of either the Green’s
function (horizontal polarization) or its normal derivative
(vertical polarization).

In the case of arbitrarily rough surface, no exact analytical
solution of the MFIE (1) is available, but for each given surface
and an incident field, it can be solved numerically. To do this,
the (1) should be discretized, i.e., put in the vector–matrix form

J = J i + PJ: (9)

In (9), J and J i are vectors andP is a square propagator
matrix. For rough surfaces it is common, e.g., [1], [6], to
discretize the MFIE by taking values of the surface height,
current, and propagator at discrete pointsfxmg, which form a
uniform grid with some spacing�x. That is, themth element
of the surface current vector, themth element of the Kirchhoff
current vector and the (m; n)th element of the propagator
matrix are, respectively

Jm = J(xm); J im = J i(xm)

and

Pmn =P (xm; xn)�x: (10)

The diagonal terms (m = n) of the propagator matrix may
require separate treatment, as will be described below. Fol-
lowing the discretization, a number of numerical techniques
can be applied; the traditional MoM solution to (9) would be

J = (I � P )�1J i (11)

although it is usually more practical to solve a set of linear
equations in the form(I�P )J = J i. In MOMI, the propagator
matrix P is split in the lower and upper triangular matricesL
andU ; P = L + U . It is shown in [1] that (9) can be then
cast in the following form:

J = (I�U )�1(I�L)�1J i+(I�U )�1(I�L)�1LUJ (12)

I being an identity matrix. This equation can now be iterated
with the so-called “new Born term”

JB � (I � U )�1(I � L)�1J i (13)

serving as the zeroth-order iterate. The solution is then ex-
pressed in terms of a series (some operator identities and
rearrangements have to be used, cf. [1]):

J =(I � U )�1
1X
p=0

f[(I � L)�1 � I][(I � U )�1 � I]gP

� (I � L)�1J i (14)

which is the form used in our numerical algorithm. Note
that due to the triangular nature of matrices(I � U ) and
(I � L) no actual matrix inversion is necessary, forward or
back substitution can be used and this eliminates the necessity
to store and invert the propagator matrix. In fact, it turns out
that very few terms in the sum in (14) are needed to achieve
sufficient accuracy. For the rough surfaces we worked with,
we found that the new Born term (13) often gives a reasonable
answer and that two iterations above the new Born term are
more than adequate.

The discretization of the MFIE can affect the accuracy of
its solution and the calculated scattered field. One parameter
that can obviously have an impact and whose choice should
be addressed is the sampling interval�x. Also, there have
been different treatments of the diagonal elements of the
propagator matrix in (10). In the original version of MOMI
[1] the diagonal elements of the propagator matrixPmm were
set to be zero. Other authors [6] include in the diagonal a term
that is proportional to the second derivative of the surface
height and is often referred to as a “curvature term”:

Pmm = � �xx(xm)

2�[1 + �2x(xm)]
�x: (15)

In (15), the upper sign corresponds to the case of vertical
polarization and the lower to the horizontal polarization. In
[1], it is argued that this term can be neglected if it is small
compared to one, which can always be achieved by choosing
�x sufficiently small. The question about the inclusion of
this term was also addressed in [3] and [4]. One of the
conclusions was that the curvature term does not affect the
rate of MOMI convergence. It was also reported that for one
sample sinusoidal surface with high curvature and the incident
field coming at 45� with respect to the normal, the inclusion
of the curvature term did permit an increase in the sampling
interval resulting in the same scattered field as would be
obtained without the curvature term but with tighter sampling.
Nevertheless, for a randomly rough surface with Gaussian
spectrum and root mean square (rms) slopes as high as 45�

illuminated at the incident angle of 85�, no effects related to
inclusion or exclusion of the curvature term were observed.
The study in [3] regarded the curvature term as an additional
correction to the already extracted self term and pointed out
that it may be inconsistent to include this correction on the
diagonal of the propagator matrix and not include similar
corrections proportional to higher surface derivatives in off-
diagonal terms.

In the next section, we present the results of numerical
calculations of scattering from randomly rough surfaces with
P–M spectra and these results suggest that for such surfaces
the curvature term can play an important role and should
be included in the diagonal of the propagator matrix. In
Section IV we will discuss the procedure that leads to the
discretized MFIE (9), (10), and suggest a choice of the
sampling interval for P–M surfaces. It will be shown thatonce
the proper sampling interval is chosen, the curvature term in
(15) must appear on the diagonal of the propagator matrix,
the off-diagonal terms should be samples of the propagator as
given by(10), and there should be no higher order corrections
to either the diagonal or the off-diagonal terms.

III. SIMULATION RESULTS FORSCATTERING

FROM 1-D PIERSON–MOSKOWITZ SURFACES

We used MOMI to calculate the scattering from ocean-like
randomly rough perfectly conducting surfaces described by a
P–M spectrum. For the 1-D surfaces we used a 1-D version
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of the P–M spectrum proposed by Thorsos [7]

W (K) =
�

4jKj3 exp

�
� �g2

K2U4

�
: (16)

In (16), K is the spatial wavenumber (which can be both
positive and negative),U is the windspeed at a height of 19.5
m, g = 9:81 m/s2 is gravity acceleration and other constants
are� = 8:10� 10�3 and� = 0:74. The mean-square surface
height is

h2 =

Z
1

�1

W (K) dK =
�U4

4�g2
: (17)

The spectrum (16) has a peak at a wavenumber

Kp =

r
2�

3

g

U2
(18)

which can be interpreted as corresponding to the dominant
wave having the wavelength

�p =
2�

Kp

= �

r
6

�

U2

g
: (19)

The P–M spectrum (16) has only one variable parameter, the
windspeedU , which controls both the mean-square surface
height and the dominant surface wavelength (and also the
surface correlation length which can be shown to be closely
related to�p), as can be seen from (17) and (19).

A characteristic feature of the P–M spectrum (16) is its
power-law behavior at large surface wavenumbersK. In fact,
due to this behavior integrals of the type (17) describing
the mean-square slope, mean-square curvature, and all higher
derivatives will be divergent unless some cutoff wavenumber
Kc is chosen, i.e., the spectrum assumes the form

W1(K) =

�
W (K); jKj < Kc

0; otherwise
: (20)

This means that for Pierson–Moskowitz surfaces the short-
wave surface structure is the major contributor to the mean-
square surface slope and higher derivatives. A particular choice
of Kc is likely to affect scattering from the surface, especially
at LGA’s, and this subject probably deserves a separate study.
In natural ocean surfaces such a cutoff occurs due to viscous
damping mechanisms and can vary if, for example, pollutants
or surfactants are present. In most of our simulations we fixed
the cutoff to be five times the electromagnetic wavenumber,
i.e.,

Kc = 5k0 (21)

which definitely includes all potential Bragg scatterers.
The electromagnetic wavelength we use is�0 = 23 cm. We

chose to work with surfaces corresponding to the windspeed
U = 5 m/s. This yields the dominant surface wavelength, as
determined from (19), to be�p = 22:8 m = 99:1�0. This
allowed us to work with surface sizes that included several
dominant wavelengths but still were not very large electrically.
It should be pointed out that as one moves toward grazing,
other considerations come into play and require increasingly
larger surfaces to be used in the simulations. The rms surface

height corresponding to this windspeed is [from (17)]h =
0.133 m= 0.58�0.

The incident field is taken to be a plane wave with a
modified Gaussian taper suggested by Thorsos [6]

F i(x; z) = expf�jk0(x sin �i � z cos �i)[1 +w(x; z)]g

� exp

�
�
(x+ z tan �i)2

g2

�
(22)

where, again,F is either theE or H field, depending on
the polarization considered. In (22) the incident angle�i is
defined with respect to the vertical (z) axis and is assumed to
be positive in a counterclockwise direction;g is the parameter
that controls the tapering [not to be confused with gravity
acceleration in (16)], andw(x; z) = f2(x+ z tan �i)2=g2 �
1g=(k0g cos �i)2. The choice ofg = Ls=6 (Ls = finite
surface length) gives an acceptable tapering at the edges. In
the case of horizontal polarization a normal derivative of (22)
is needed to calculate the Kirchhoff currentJ i; analytical
expression for such a derivative can be easily obtained from
(22).

To describe scattering from each surface realization a
bistatic normalized radar cross section (NRCS),�0(�i; �s)
can be introduced

�0(�i; �s) = lim
r!1

2�rjF sj2Z
jF i(x; 0)j2 dx

(23)

where F s is given by (6). The backscattered NRCS is
�0bsc(�i) � �0(�i; ��i). �0(�i; �s) can be averaged over an
ensemble of several surface realizations to obtain an average
NRCS h�0i.

Surface realizations were generated using the spectral tech-
nique similar to that described in [6]. First, independent
complex Gaussian variables with zero means and variances
W1(Kl)�K are generated at discrete wavenumbersfKlg(�K
is the spacing between adjacent samples in the spectral do-
main) to represent a spectrumZ(Kl) of a particular surface
realization. This is done only for nonnegative wavenumbers
since Z(Kl) must possess certain symmetry properties to
assure that surface heights are real. Spectra of first and second
surface derivatives can be obtained by multiplyingZ(Kl) by
jKl and(jKl)

2, respectively. Then, the fast Fourier transform
(FFT) is used to calculate the surface heights and values
of surface derivatives at discrete values ofx. To generate a
surface of lengthLs, the step size in the spectral domain
should be

�K = 2�=Ls: (24)

Inclusion of spectral values within the wavenumber range
±Kup will require the following number of points in the
spectral domain:

N =
2Kup

�K
=

2KupLs

2�
=
KupLs

�
: (25)

The same number of points after the FFT represents surface
samples over the surface lengthLs; which gives a sampling
interval on the surface equal to

�x = Ls=N = �=Kup: (26)
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Kup should obviously be chosen at least as large as the spectral
cutoff Kc in the P–M spectrum (20). Making it higher does
not alter the spectral content of the surface since outside
�Kc the spectrumW1(K) is zero anyway, but it results in
a smaller sampling interval�x, as is clear from (26). The
largest possible sampling interval needed to represent a surface
with spectral cutoffKc will be �x0 = �=Kc, i.e., at least two
points per the shortest wavelength present on the surface. For
our choice ofKc in (21), this means

�x0 = �=(5k0) = �0=10: (27)

Since a radix 2 FFT is used to compute the surface points
from its spectrum, the number of pointsN must be a power
of two. We chose�x0 to be our basic sampling interval.
Together withN0 = 8192 = 213 points this provided a surface
length Ls = 819:2�0. This surface length was deemed to
be acceptable for our study for various reasons but primarily
because it contained several dominant surface wavelengths�p.
The P–M spectrum in (16) has a peak atKp that moves closer
to zero and becomes sharper as the windspeedU increases.
One would like to choose�K small enough to represent this
peak adequately and certainly not to miss it altogether. This
means choosing�K � Kp or, equivalently,Ls � �p. The
tapering parameter in this case isg = Ls=6 = 136:5�0 which
is sufficiently large to use the tapered incident field in (22)
safely for incident angles up to 83�–84�. When a smaller
sampling interval was needed, we increasedKup [cf. (26)].
That is, we kept the random spectral valuesZ(Kl) already
generated the same, added zeros up to the new higher value
of Kup, and then took the FFT of this newly constructed
spectrum. This resulted in the generation of the same (but
tighter sampled) surface realization. Again, due to the radix 2
FFT used it was convenient to decrease�x by a factor of two.

The result of the outlined procedure are values of the
surface heightf�(xm)g, slopef�x(xm)g, and second deriva-
tive f�xx(xm)g at discrete values ofx; xm = (m � 1 �
N=2)�x; m = 1; 2; � � � ; N . By substituting these values in
(2) and (3) [and using (4), (5), and (22)] we get discretized
values of the current and propagator shown in (10). To
calculate a scattered field from (6), we also take the values
of a kernelQ only at pointsfxmg so the integral in (6) is also
replaced by a discrete sum.

We started by applying MOMI with its propagator matrix
containing zeros on its diagonal. Fig. 1 shows the calcu-
lated bistatic cross section for one surface realization and
a horizontally polarized field incident at 80� (only negative
scattering angles corresponding to backward scattering are
shown). One curve on the graph corresponds to the sampling
interval �x0 and another to the interval eight times smaller:
�x = �x0=8 [the spectral cutoff wavenumber, as has been
stipulated, remains the same, as given by (21)]. It can be
observed that two curves start showing some differences
even at moderate scattered angles and as the observation
direction moves toward grazing these differences become
more and more pronounced. Similar behavior is observed for
bistatic cross sections corresponding to smaller incident angles,
although the differences in decibels are, in general, smaller for
those angles.

Fig. 1. Bistatic normalized radar cross section (for a single realization of
a P–M surface). Horizontal polarization,�i = 80�, two MOMI iterations,
curvature term not included.

Fig. 2. Normalized radar cross section in the backscattered direction
(�i = 80

�, single realization of a P–M surface) versus sampling interval.
Horizontal polarization, curvature term not included.

We observed similar differences in the NRCS when applying
MoM (11) with zeros on the diagonal of the propagator matrix,
though we had to work with smaller surfaces due to the large
memory requirements of MoM.

A typical behavior of the backscattered field as the sampling
interval changes is shown in Figs. 2 and 3 (�i = 80�). Fig. 2
shows the NRCS, which is proportional to the square of field
magnitude and Fig. 3 shows the phase of the scattered field
with the factor e�jk0r that is present in (6) ignored. Each
figure displays results calculated using zero, one, and two
iterations of MOMI above the new Born term. One can see
that points corresponding to one and two iterations of MOMI
practically coincide, so MOMIdoes converge no matter what
sampling interval is chosen, but for different sampling intervals
it converges to different values.Fig. 3 suggests that even for
the sampling interval of�x = �x0=16 = �0=160 the phase
of the scattered field still has not reached its final value and
would change if we reduced the sampling interval further.

This dependence of the calculated NRCS on the sampling
interval appears to be tied to the short wave structure on
the surface. Fig. 4 presents bistatic cross sections for hor-
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Fig. 3. Phase of the backscattered field (�i = 80
�, single realization of

a P–M surface) versus sampling interval. Horizontal polarization, curvature
term not included.

Fig. 4. Bistatic normalized radar cross section (for a single realization of
a P–M surface with spectral cutoff wavenumber reduced tok0 = 2�=�0).
Horizontal polarization,�i = 80

�, two MOMI iterations, curvature term not
included.

izontal polarization calculated with sampling intervals�x0
and�x0=8 for a surface with a spectral cutoff wavenumber
Kc1 = k0 which is five times smaller than the cutoffKc

used in previous simulations. This figure should be compared
to Fig. 1 and now one can see almost no differences except
for a few nulls near grazing where some discrepancy is
not surprising given the extremely low levels. This apparent
cause and effect relation between the observed changes in
calculated NRCS with the sampling interval and the short-
wave components suggests that the effect should not be
seen if a surface with Gaussian spectrum is used because it
effectively contains no short-wave components since they are
exponentially suppressed.

As has been mentioned, it is the short-wave components that
are the main contributors to the rms slope and especially the
rms curvature of the P–M surface. Consequently, including the
curvature terms (15) in the diagonal of the propagator matrix
may be one possible remedy to the problem. NRCS calcula-
tions with the curvature term included are shown in Fig. 5. The
surface is the same as was used for calculations in Figs. 1–3;

Fig. 5. Bistatic normalized radar cross section (for a single realization of
a P–M surface). Horizontal polarization,�i = 80

�, 2 MOMI iterations,
curvature term included.

its spectral cutoff is given by (21). These new results show that
the bistatic NRCS calculated with the sampling interval�x0
is virtually the same as the NRCS obtained from calculations
with a much smaller interval of�x0=8. This presents quite
a different picture from the situation shown in Fig. 1. The
behavior of the scattered field versus the sampling interval is
again examined in Figs. 6 and 7 for backscattering at 80�.
Fig. 6 shows that once the curvature term is included, there is
no noticeable change in NRCS. In Fig. 7 a slight change in
the phase of the calculated backscattered field can be noticed
as one moves from the sampling interval of�x0 to �x0=2,
but after that its value remains constant. As the sampling
interval is decreased both the NRCS and phase of the scattered
field calculated without curvature eventually converge to their
counterparts calculated with the curvature term. Note that the
phase of the field calculated without curvature term does not
reach this stable value even at a sampling interval as small
as�x0=16. This demonstrates that, with the inclusion of the
curvature term, one indeed achieves stability with respect to
the sampling interval and obtains the correct values of the
scattered field without resorting to the heavy oversampling that
would have been necessary otherwise.

So far we addressed only the case of horizontal polarization.
For vertical polarization, we found that when the propagator
matrix without the curvature terms is used, the calculated
NRCS does not possess the sensitivity to the size of the
sampling interval that was observed in the case of horizon-
tal polarization. This fact is demonstrated in Fig. 8, where
calculations of the bistatic NRCS for vertical polarization
and an incident angle of 80� are presented for two different
sampling intervals. Actually, if one examines the absolute
difference in a scattered field calculated without the curvature
term at two different sampling intervals, this difference will
be, on the average, larger for vertical polarization than for
horizontal polarization. But since the magnitude of the field
scattered in the backward direction is significantly larger in
the case of vertical polarization, the relative changes in the
field (and, therefore, NRCS) are negligibly small compared to
what was observed for the horizontal polarization. Inclusion
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Fig. 6. Normalized radar cross section in the backscattered direction
(�i = 80

�, single realization of a P–M surface) versus sampling interval.
Horizontal polarization.

Fig. 7. Phase of the backscattered field (�i = 80
�, single realization of a

P–M surface) versus sampling interval. Horizontal polarization.

of the curvature terms in the diagonal of the propagator matrix
in the case of vertical polarization also significantly reduces
variation in the calculated field and the NRCS as one changes
the sampling interval but, again, this variation is relatively
small from the beginning.

It is interesting to look at the behavior of the relative mean-
square error in the current versus sampling. Assuming the
current calculated at the smallest sampling interval of�x0=16
with the curvature term included to be the “exact” current
J0, we define the relative mean square error in the current
calculated with some sampling interval�x as

"(�x) =
1

kJ0k

"
1

N

NX
k=1

jJ�x(xk)� J0(xk)j
2

#
: (28)

In (28) the valuesfxkg are taken with the sampling interval
�x; J�x denotes the current calculated with this sampling
interval (with or without the curvature term) and

kJ0k =
1

M

MX
l=1

jJ0(xl)j
2 (29)

Fig. 8. Bistatic normalized radar cross section (for a single realization of
a P–M surface). Vertical polarization,�i = 80

�, two MOMI iterations,
curvature term not included.

Fig. 9. Relative mean square error in the calculated surface current versus
sampling interval.�i = 80�, single realization of a P–M surface.

whereM = N0 � 16 = 217 and fxlg are taken with the
sampling interval�x0=16. Only one surface realization is
considered. Fig. 9 shows"(�x) for the current calculated
with and without the curvature term for both horizontal and
vertical polarizations and�i = 80�. When the curvature term
is not included, the relative mean square error in the current is
essentially the same for horizontal and vertical polarizations.
Yet, as we have seen, in the case of horizontal polarization
this error does produce significant relative variations in NRCS,
while for vertical polarization, these variations are negligible.
This once more confirms the well-known fact that an error
in the current does not necessarily translate into a significant
error in the scattered field. Each time the sampling interval is
divided in half,"(�x) for the current without curvature term
decreases by approximately 6 dB, which means that rms error
in the current decreases by a factor of two. When the curvature
term is included,"(�x0=8) is reduced dramatically, with the
relative mean square error for horizontal polarization being
smaller than that for vertical polarization. Note that"(�x0)
for the currents with curvature is well below"(�x0=8) for
the currents without curvature.
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Fig. 10. Average bistatic normalized radar cross section (average over 100
surfaces with P–M spectrum). Horizontal polarization,�i = 80

�, two MOMI
iterations,�x = �x0=2 = �0=20.

Finally, let us address the question of how the inclusion
or omission of the curvature term affects the average NRCS.
Fig. 10 displays the average bistatic NRCS (the average is
taken over 100 surfaces) for horizontal polarization and an
incident angle of 80� that was calculated with and without
curvature term; the mean field was not extracted, so it shows up
in the specular direction. The sampling interval of�x0=2 was
used. For most of the scattering angles the two curves run on
top of each other but as the scattering angle approaches�90�,
the differences start showing up, with the NRCS calculated
without the curvature term having larger values. Around the
grazing scattering angle of�90� calculations without the
curvature term result in an overestimation of average NRCS by
more than 10 dB. Fig. 11 shows the ratio of the average NRCS
calculated without the curvature term to the average NRCS
with this term. Expressed in decibels, this ratio corresponds
to the distance between the curves shown in Fig. 10. For
comparison, the similar ratio is plotted in Fig. 11 for only
one surface realization. One can see that, in general, the
average NRCS shows much less sensitivity to the inclusion
or exclusion of the curvature term than the NRCS for a single
surface realization. Still, at scattering angles near grazing, even
the average NRCS is very sensitive to the presence or absence
of the curvature term.

IV. DISCRETIZATION OF THE MFIE AND

THE NECESSITY OF THECURVATURE TERM

In the previous section it was shown that when the MFIE is
solved for P–M surfaces with the diagonal of the propagator
matrix set to zero, in some cases very tight sampling is
required to obtain a stable value for the scattered field.
However, inclusion of the curvature terms in the diagonal
appears to remedy this problem. We now examine the details
of discretization to find out why curvature terms should be
included in the diagonal of the propagator matrix and whether
there should be any higher order corrections, as well as to
develop some recommendations for choosing the sampling
interval when discretizing the MFIE for P–M surfaces.

Fig. 11. Ratio (expressed in decibels) of average bistatic normalized radar
cross sections calculated without and with the curvature term (average
over 100 surfaces with P–M spectrum). Also shown is a similar ratio of
normalized radar cross sections corresponding to one P–M surface. Horizontal
polarization,�i = 80

�, two MOMI iterations,�x = �x0=2 = �0=20.

The classical MoM approach described in [8] can be applied
to discretize the MFIE in (1). Two sets of linearly indepen-
dent functionsfen(x)g and ftm(x)g (called expansion and
testing functions, respectively) and a scalar producth �; �i are
introduced. The reasonable scalar product of two possibly
complex-valued functionsf andg can be defined as

hf(x); g(x)i =

Z
X

f�(x)g(x) dx (30)

with the asterisk denoting the complex conjugate. Assuming
that the setfen(x)g is complete for the class of functions that
the unknown currentJ(x) belongs to, one can write

J(x) =
X
n

Jnen(x) (31)

wherefJng are the expansion coefficients. This expression is
substituted in (1) and a scalar product is taken of both sides
of this equation with each of the testing functionsX
n

Jnhtm(x); en(x)i

= htm(x); J i(x)i+
X
n

Jn

Z
X

htm(x); P (x; x0)ien(x
0) dx0:

(32)

It can be seen that in order for (32) to assume the vector–matrix
form (9) withJ = [Jn] from (31), an additional multiplication
of both sides of (32) by the matrix inverse[htm(x); en(x)i]�1

is, in general, necessary. However, if we require that

htm(x); en(x)i = am�mn (33)

(am are some positive constants and�mn is a Kronecker
delta), i.e., testing and expansion functions should be mutually
orthogonal, the goal is readily achieved with the quantities
appearing in (9) being

J = [Jn]; J i =

�
1

am
htm(x); J i(x)i

�
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and

P � [Pmn] =

�
1

am

Z
X

htm(x); P (x; x0)ien(x
0) dx0

�
: (34)

Furthermore, if the expansion functionsfen(x)g are chosen
to be orthogonal andftm(x)g are chosen to belong to the
same class of functions, then the completeness offen(x)g
for this class together with (33) means thattn(x) = cnen(x)
wherecn are nonzero constants, so the expansion and testing
functions are essentially the same. If the testing functions are
chosen outside the class thatfen(x)g belong to (one can use
� functions as an example), this, of course, is not true.

Our goal is to apply the formalism described above to see
how and under what conditions a simple discretization such as
(10) is possible. It is tempting to use� functions as expansion
and testing functions because this would immediately formally
give the discretized (9) with sampled quantities (10). However,
in this case one cannot write an expansion (31) for any
reasonable continuous or square-integrable function such as
we expectJ(x) to be to begin with. Another choice (pursued,
for example, in [3]) is to use� functions as testing functions
together with rectangular pulse expansion functions [in this
case, for example, (33) can be satisfied]. This approach,
however, seems to have its own deficiencies. First, rectangle
pulse functions do not form a complete set for the class of
continuous functions, so (31) cannot be exact and (9) will
involve some error from the start. Further, elements of the
discretized propagator will contain integration over the pulse
width in x0 coordinate

Pmn =

Z x
n
+�x=2

xn��x=2

P (xm; x0) dx0 (35)

to obtain a simplified form as given by (10) some additional
approximations of these integrals will be necessary. In fact,
it is the evaluation of these integrals obtained by expanding
the propagator in a Taylor series aroundxn that led Kapp in
[3] to consider the curvature term as an additional correction
resulting from accounting for more terms in Taylor series
and to argue that these corrections should also be considered
for the off-diagonal elements. Still, from this approach, it is
not clear what value for the sampling interval (pulse width)
should be chosen to discretize the MFIE. It is important to
realize that even if the integrals (35) are evaluatedexactly
(or, equivalently,all terms in the Taylor expansion of the
propagator are accounted for), there will still be some error
in the solution due to poor approximation of the continuous
currentJ(x) by rectangular pulses.

In our approach, we will use the sampling theorem and
ideas and concepts related to it. Let us first make the following
observation: for well-behaved surfaces the limit of (4) and (5)
asx! x0 exists; the functions in (4) and (5) can be defined at
x = x0 to be equal to this limit and, thus, the propagator in (1)
is a continuous function. P–M surfaces that we work with have
a distinct spectral cutoff, as stated in (20). The hope may be
that the current and propagator, being functionally dependent
on the surface height, might also have their spectra located
predominantly within some finite range of wavenumbers so
they can be reasonably regarded as belonging to the class

of the functions with finite spectral width. It is known that
for the class of band-limited functions that have zero spectral
components beyond some wavenumberKu, the functions

sn(x) =
sin �(x=�x� n)

�(x=�x� n)
; �x = �=Ku (36)

form a complete set (cf. for example, [9]). These functions are
orthogonal with respect to the scalar product (30) (domainX
is assumed to be infinite)

hsm(x); sn(x)i = �x�mn: (37)

Any function f of this class of band-limited functions can be
expanded in this basis

f(x) =
X

n

fnsn(x)

with expansion coefficients being

fn �
1

�x
hsn(x); f(x)i = f(n�x): (38)

The previous two equations are essentially the main result
of the sampling theorem indicating that band-limited function
can be reconstructed from its properly taken samples using
sinc-type basis functions.

The spectra ofJ i(x); J(x); andP (x; x0) have a character-
istic shape that can be regarded as band-limited and suggests
the choice of the wavenumberKu, beyond which the spectra
of all these functions are essentially zero.

Fig. 12 shows a shape of a 2-D Fourier spectrum of the
propagatorP (x; x0), as given by (3b) for horizontal polariza-
tion and one random surface realization; some coarse-graining
was applied to reduce the number of points to plot. Because of
computational constraints the spectral cutoff of the surface in
this particular case was chosen to beKc = 2:5k0 Fig. 13
displays the spectrum of the propagator given in (2b) for
vertical polarization and the same surface. The spectrum of
the propagator consists of two narrow “blades,” each having
a half-length ofKc, that are centered at(�k0; k0) and at
(k0; �k0). In the case of horizontal polarization (Fig. 12)
these two blades are oriented along theK-axis (which is dual
to x-coordinate). So, the spectrum is essentially nonzero only
in the rectangular domain withK varying within�(k0 + kc)
and K0 varying within the range somewhat larger (by the
thickness of the “blades”) than�k0. Certainly, the spectrum
can be considered band-limited within a larger square domain
(which is more convenient for our consideration) with the
upper limit

Ku = k0 +Kc (39)

in bothK andK0. The same discussion applies to the vertical
polarization propagator (now the picture is turned by 90�) with
the same result (39) for the wavenumber domain upper limit
Ku.

Fourier spectra of Kirchhoff currentsJ i(x) calculated ac-
cording to (2a) or (3a) and (22) in general have a peak at
K = �k0 sin �i accompanied by a “pedestal” that is centered
at the same wavenumber and has the half-widthKc. Examples
of such spectra (normalized to their peaks) are shown using a
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Fig. 12. Two-dimensional Fourier spectrum of the propagator (linear scale
single realization of a P–M surface). Horizontal polarization, surface spectral
cutoff is 2.5k0.

Fig. 13. Two-dimensional Fourier spectrum of the propagator (linear scale
single realization of a P–M surface). Vertical polarization, surface spectral
cutoff is 2.5k0.

logarithmic scale in Figs. 14 and 15 for horizontal and vertical
polarizations, respectively, and�i = 80�. In these examples a
surface realization with the “usual” spectral cutoff of5k0 [as
in (21)] was used. The level of the pedestal can be different
depending on the incident angle and polarization. In the case
of horizontal polarization, it is higher because a derivative is
involved in J i(x) in (3a) and as one moves toward grazing,
this pedestal can contain an appreciable fraction of the spectral
energy. The pedestal extends within the wavenumber range
between�k0 sin �i �Kc. So if we want to treatJ i(x) as a
band-limited function, (39) is also a reasonable choice for all
incident angles.

Spectra of the currentsJ(x) for horizontal and vertical
polarizations are shown in Figs. 16 and 17, again, for�i =
80�. These currents also exhibit the pedestal mentioned above
and can be considered band-limited functions withKu given
by (39). In fact, the MFIE in (1) can be rewritten in the
spectral domain as (symbols with tilda sign denote spectra

Fig. 14. Example of the Fourier spectrum of the Kirchhoff current (single
realization of a P–M surface). Horizontal polarization,�i = 80

�, surface
spectral cutoff is 5k0 .

Fig. 15. Example of the Fourier spectrum of the Kirchhoff current (single
realization of a P–M surface). Vertical polarization,�i = 80

�, surface spectral
cutoff is 5k0 .

of the corresponding quantities)

~J(K) = ~J i(K) +
1

2�

Z
1

�1

~P (K; �K0) ~J(K0) dK0 (40)

which suggests that ifP (x; x0) and J i(x) are band-limited,
J(x) must also be a band-limited function since the right-hand
side in (40) is then zero forK > Ku.

Let us point out once again that at moderate incident
angles away from grazing the pedestal described above is still
observed in the spectra of bothJ i(x) andJ(x), although this
pedestal may now contain a lesser fraction of spectral energy
compared to the main spectral peak at�k0 sin �i. In any case,
these spectra may be regarded as band-limited with the choice
of the upper spectral limitKu from (39) being adequate or
even more than adequate for all incident angles.

OnceP (x; x0), J i(x), andJ(x) are treated as band-limited
functions, a moment method approach described at the begin-
ning of this section can be applied withfsn(x)g from (36)
serving as both the expansion and testing functions.Ku is
taken from (39) and this, in turn, determines an appropriate
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Fig. 16. Example of the Fourier spectrum of the surface current (single
realization of a P–M surface). Horizontal polarization,�i = 80

�, two MOMI
iterations, surface spectral cutoff is 5k0 .

Fig. 17. Example of the Fourier spectrum of the surface current (single
realization of a P–M surface). Vertical polarization,�i = 80

�, two MOMI
iterations, surface spectral cutoff is 5k0 .

sampling interval�x in (36) as

�x =
�

k0 +Kc

=
�0

2(1 +Kc=k0)
: (41)

Elements of vectors and matrix in (34) can be rewritten using
(38) [with am = �x, as can be seen comparing (33) to (37)].
The expression forPmn in (34) involves a 2-D scalar product
defined similarly to (30) and it then can be related to the
samples ofP (x; x0) through a 2-D version of (38), namely
hsm(x)sn(x

0); f(x; x0)i=(�x)2 = f(m�x; n�x). Thus, we
finally do arrive at the discretization shown in (10).

Note that this approach clearly requires that the values
for the diagonal terms for the propagator should be just
the samples of the propagator taken at the same pointx =
x0 = m�x: Pmm = P (m�x; m�x)�x. As was mentioned,
though the value ofP (x; x0) from (2b), (4) or (3b), (5) at such
points is indeterminate (behaving as 0/0), it can be shown that
the limit does exist and is given by

lim
x0
!x

P (x; x0) = �
�xx(x)

2�[1 + �2
x
(x)]

(42)

(the upper sign corresponds to the vertical polarization and
the lower to the horizontal). Upon multiplying (42) by�x
and substitutingx = m�x � x

m
we get for the diagonal

elements of the propagator matrix exactly the “curvature term”
given in (15). So, the important conclusion of the sampling
approach outlined above is that the curvature term should
appear on the diagonal of the propagator matrix and it is not
an additional correction. When we leave the curvature terms
out, we, in fact, solve the MFIE with an altered kernel and this
is bound to produce the kind of differing results we saw in the
Section III no matter what particular numerical technique is
applied to solve the MFIE. Indeed, we saw (cf. Figs. 2 and 3)
that if the curvature term is not included, MOMI still converges
rapidly, but it converges to different answers. It simply means
that at each given sampling interval MOMI finds the solution
to the MFIE with a perturbed propagator. Another important
conclusion is that the off-diagonal terms should be just samples
of the propagator as well as the diagonal elements should only
contain the curvature terms (15). Once the proper sampling
interval such as given in (41) is chosen, there is no reason
to include any additional correction terms like ones that may
arise from the evaluation of (35) by expansion of the integrand
in a Taylor series or to expect that these higher order terms
will improve the accuracy of the solution.

It should be pointed out that the inclusion of the surface
curvature in the numerical algorithm by no means complicates
it since the values for surface curvature can be easily generated
together with surface heights and slopes using the spectral
technique outlined in Section III.

Let us finally address a question of calculating the scattered
field. The far-field propagatorQ [given by (7) and (8)] also
can be treated as band-limited functions with a spectrum
concentrated within the limits of�Ku as given in (39). Upon
substitution of the expansion (31) forJ(x) and applying (38),
the integral in (6) can be written as a discrete sumZ

X

Q(x; �s)J(x) dx =
X
n

Jn

Z
X

sn(x)Q(x; �s) dx

=�x
X
n

JnQ(n�x; �s): (43)

So, the scattered field can be calculated from the sampled
surface current and the similarly sampled propagatorQ.

We can compare the sampling interval suggested in (41)
to what we were using in Section III. Our largest sampling
interval there was, from (27),�x0 = �0=10, while for the
chosen spectral cutoff in (21) formula (41) gives a smaller
value of�x = �0=12. Indeed, in Fig. 7 we noticed a slight
change in the phase of the calculated field (with included
curvature term) as the sampling interval changed from�x0
to �x0=2 (which is less than�0=12). Still the change is
very small, which suggests that quite accurate results may be
possible with somewhat larger sampling intervals than given
by (41). From Fig. 9, we saw that relative mean square error
in the current at�x0 = �0=10 for the surface with a cutoff
given by (21) is still below�60 dB. However, we believe
that the sampling interval should not be larger than�=Kc

since otherwise the surface structure will not be represented
correctly (due to spectral aliasing effects). Also, we would
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like to point out that (41) should not be applied to surfaces
with low spectral cutoffs (say, below2k0), especially if the
backscattered field at LGA’s is of interest. This is because for
such low cutoffs it will be mainly the spectral components of
the current outside the pedestal, which is now quite “narrow”
due to the small cutoff, that are responsible for the low-grazing
scattered field [one can see it by writing the integral in (6) in
terms of Fourier spectra ofJ andQ] and these components
will be sensitive to the spectral aliasing due to their extremely
small amplitude. In fact, some differences in NRCS that we
saw in Fig. 4 are probably due to these effects. In a sense, these
“low-cutoff” surfaces might prove to be “tougher” for low-
grazing backscattering calculations and require even tighter
sampling than P–M surfaces with high cutoffs like (21).

V. CONCLUSION

Numerical simulations of scattering from the
Pierson–Moskowitz surfaces show that if the curvature
term is not included in the diagonal of the propagator in
the discretized MFIE, the results can exhibit excessive
sensitivity to the sampling interval and may require very tight
sampling to reach the stable value. This effect is especially
significant for the scattering at LGA’s in the case of horizontal
polarization and has an impact on average quantities such
as the average normalized radar cross section. However,
when the curvature terms are included in the diagonal of
the propagator matrix, the calculated scattered field reaches
the stable value at much larger sampling interval. Careful
consideration of the discretization of MFIE shows that
curvature terms indeed must be included in the diagonal
of the propagator, being simply the sampled values of the
propagator as well as the off-diagonal elements; there should
be no additional correction terms once a proper sampling
interval is chosen. The recommendation for choosing such an
interval when calculating scattering from Pierson–Moskowitz
surfaces is given. We would also like to point out that our
simulation results once again demonstrated the robustness of
MOMI when applied to randomly rough surfaces—this time
for the surfaces with Pierson–Moskowitz spectrum.
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