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On the Discretization of the Integral Equation
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Abstract— Numerical simulations of scattering from Before any numerical technique can be applied, the in-
one-dimensional  (1-D) randomly rough surfaces with tegral equation should be discretized, i.e., cast in a vec-
Pierson-Moskowitz (P-M) spectra show that if the kemel i, matix form. Clearly, the discretization can affect the
(or propagator) matrix with zeros on its diagonal is used in fth ted soluti Wh tudvi tteri
the discretized magnetic field integral equation (MFIE), the accuracyo_ eC(_)mpu ed solutions. en stu y'”g scattering
results exhibit an excessive sensitivity to the current sampling from one-dimensional (1-D) random surfaces with ocean-
interval, especially for backscattering at low-grazing angles like Pierson—Moskowitz (P—-M)-type spectra, we found that
(LGA’s). Though the numerical results reported in this paper questions regarding the stability of the solution with respect
were obtained using the method of ordered multiple interactions sampling interval need to be addressed and that these

f)l\tl)lsoe'\r/lvl)e'd ahes:]m;irt'aﬁg;?g Imgthg(;e(;\f/ilﬂoﬁ”leenrilg\a\t}lloI\/rl])atsecﬁﬁ%rllje guestions are tied to the understanding of a role of the so-called

is used to solve the MFIE. A subsequent analysis shows that ‘Curvature term” in the propagator.
the root of the problem lies in the correct discretization of the In regard to the MFIE, there has been some discussion [3],
MFIE kernel. We found that the inclusion of terms proportional [4] on whether the curvature term (a term which is proportiona|
to the surface curvature (regarded by some authors as an g the syrface curvatubeshould be included in the diagonal of
a_ddltlonal_cc_)rrectlon)_ in the_ dlagonc_al! _of the kernel matrix th ¢ trix in the di tized i d how thi
virtually eliminates this sampling sensitivity effect. By reviewing € propagator matrix in _e_ ISCretized equation and how this
the discretization procedure for MFIE we show that these term affects both the traditional method of moments (MoM)
curvature terms indeed must be included in the diagonal in and MOMI solutions. For P—M surfaces, we observed that
order for the propagator matrix to be represented properly. ysing a propagator matrix without the curvature term can result
The recommended current sampling interval for scattering i 4 significant sensitivity in the calculated field to changes
calculations with P—M surfaces is also given. . . ; .
in the sampling interval—an effect that is not present for
_Index Terms—Electromagnetic scattering, numerical analysis, surfaces with Gaussian spectrum. This effect is pronounced
Pierson-Moskowitz spectrum, rough surfaces. in the case of horizontal polarization for backscattering at
LGA’s and is not very evident for vertical polarization. It
|. INTRODUCTION appears to be tied to the small-scale (high-frequency) surface
curvature, which is characteristic of the P—-M spectrum. A

UMERICAL solution techniques play an mcreasmglystable result can be eventually achieved by decreasing the

important role in understanding and predicting scatterin mpling interval, which, of course, increases the matrix

from randomly rough surfaces. Recently, a new and powerélgnension and computational expense of the algorithm. If,

itera_tive_numeri_cal technique, called the method of order% wever, the curvature terms are included in the diagonal of
multiple interactions (MOMI), has been proposed by Kapp Nfe propagator matrix, the stable result is obtained at much

Brown for solving the magnetic field integral equation (MFIE) o L . ;
. . . ‘farger sampling intervals and no drastic increase in a sampling
which describes the current induced on a perfectly conducting® ™.
fate is necessary.

surface [1]. A similar technique called “forward—backward This finding prompted us to take a more in-depth look at

has been proposed by Holiiday al. [2]. For rough surfaces, how the discretization of MFIE is performed, what the role of

MOMI has no apparent convergence problems with very fet e curvature term is, and if it should appear in the propagator

iterations being completely adequate to describe the scatteﬁggrix as a result of discretization. Shapes of the spectra

field. Th|_s rapid convergence makes MOMI very effecnv_(?or the currents and the propagator entering the MFIE for
computationally and the techniqgue makes extensive numenEI

) . ) . . P—M surfaces suggest that they can be treated as band-limited
smulaﬂqns Of. scatt_enng frqm quite large surface_s possib Unctions, with the upper wavenumber (or spatial frequency)
This attribute is particularly important for low-grazing angle%eyond v;/hich the spectra are assumed to effectively vanish
(LGA’s) of incidence.

being related to the cutoff in P—M spectrum. Consequently, the
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surface spectral cutoff. Also, it shows that the curvature terfpr horizontal polarization/{’ tangential to the surface) we
in fact, should appear on the diagonal of the propagator mathave the following:
that results from its discretization by sampling and that no

higher order corrections should be included in either the off- Ji(z) =2 M (3a)
diagonal or diagonal terms. It should be stressed that although on 2=((w)

we used MOMI as the core of our numerical algorithm, the n_ o 0G(z, ) s
discussion of discretization refers to the original MFIE before Pz, o) =-2 on LG ). (3b)

it is reformulated into MOMI. That is why we fully expect thatIn (2) and (3),Hi(x, =) and i (z, =) represent incident mag-

similar problems with sampling stability, when the curvaturﬁetic or electric fields, respectivelg;(z, #’) is the free-space

terms are left out of the diagonal of the propagator mairi reen’s function and//dn is a derivative along the surface

will be obse_rved _no matter what numerical method is used n%rmal at a given point. The factay’l + C2(x') included in
solve the discretized MFIE. . . .
the propagator results from converting an integration along the

surface to integration along the mean surface plane. In the case
of vertical polarization the currenf(z) is actually the total
magnetic field on the surface, while in the case of horizontal
polarizationJ (x) is the normal derivative of the total electric

The MFIE for a two-dimensional (2-D) scattering problenfield on the surface. The forcing terii(x) is often referred
with a 1-D rough surface and its solution by MOMI areg as a “Kirchhoff current.”

discussed in [1]. An extensive and very detailed discussionThe normal derivatives of the Green’s function are

Il. MFIE FOR TwWO-DIMENSIONAL
SCATTERING PROBLEM AND THE MOMI

of the subject is given in [3]. Here we intend to give only e N AN — el
brief review of the results that will be used in later sections.(axi’/x) :4—0, ST (aj ez )/—ZC(SU) @) —
Al fields and currents are assumed to have a time-harmonic " I+ Ci@) /(e — ') £+ [(() = ((27)]
dependence of the forrxp(jwnt). % HP{/@O V@ =)+ [((z) - ((@)]2 } (4)
The idea behind the MFIE is as follows. An incident fieI%G , i , ,
iluminating a perfectly conducting surface excites surface (&, ') -0 —Go () (@ — ) +¢(x) — (o)
currents, which radiate and give rise to a scattered field. 97 4 1+ Q) (e — ) +[C(x) = ¢(a)]
By Writin_g expr_essions for the total field anql bringin_g the % HEQ){]CO V@ =2+ [((x) - C(l")]Q} (5)
observation point to the surface, one obtains an integral

equation for these surface currents (which, in the 2-D cas 2 ; . .
. . ) : H -
are readily expressed in terms of theor H field). Once this titiere 1 - 1S @ first-order Hankel function of the second

) T ind and k, is the free-space electromagnetic wavenumber.
integral equation is solved and surface currents are known, Should be pointed out that although the derivation of (1)
scattered field can be found using an appropriate Oﬁ'surfai%%olves removal of singularity and therefore the principal
tor . : .
propagator. . o . value of the integral should be taken, it turns out that in the
For the surfaces we are interested in it is convenient to WOé%D case, integrals of the type appearing in (1) with kernels

in Cartesian coordinates with the horizontalaxis chosen . .
: ; iven by (2b) or (3b) always converge and taking a Cauchy
in the mean surface plane. The surface height above the . .

principal value is not necessary [5].

mean surface plane is given by a function= ((z). It is nce (1) is solved, the scattered field in a far zone at a

assum_ed that the §urfage 'sa perf_ec_t _elec_tnc conductor (P ancer from the center of the illuminated part of the surface
extending from minus infinity to infinity inx. For such a can be found as

surface illuminated by an incident field, the MFIE will have , ,
the form P emdm/d ez ikor

ZWT/XQ($,93)J($)CZI. (6)

J(z) = J'(x) —1-/ P(z, ¢")J(z")da' (1) For vertical polarization we solve for magnetic field; = H*
X and the integral kernel is

where J(z) is the surface current to be determingtiz, ') Q(x, 05)= jko[—(o () sin 05 + cos 6] exp{jko[x sin 0;

is an integral kernel or propagator, and(z) is a forcing + () cos 6,]}.
term due to the incident field. The domain over which the @)
integration is performed and where all functions are defined

should in principle be infinite, but if some taper for the inciderih the case of horizontal polarization one can solve for electric
field is assumed, in practice, one can usually choose it to fi&d, i.e., F* = E£* and

finite. For vertical polarization/{® tangential to the surface)

the quantities involved in (1) are Q(z, 0;) = —exp{jkolz sin 0, + ((z) cos 0]} /1 + (2 (x).
(8)
T (@) = 20" (2, 2)].=¢0) (28) The scattering anglé, appearing in (6)—(8) is defined with
G (z, z') respect to the verticalk] axis and is assumed to be positive
P Nz2——1—4/1 2(x').
(2, ) on' +6 (@) (2b) in a clockwise direction. Equation (6) with (7) and (8) can be
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obtained by using the far-field expansion of either the Green’sThe discretization of the MFIE can affect the accuracy of
function (horizontal polarization) or its normal derivativats solution and the calculated scattered field. One parameter
(vertical polarization). that can obviously have an impact and whose choice should
In the case of arbitrarily rough surface, no exact analyticht addressed is the sampling intervak. Also, there have
solution of the MFIE (1) is available, but for each given surfadeeen different treatments of the diagonal elements of the
and an incident field, it can be solved numerically. To do thipropagator matrix in (10). In the original version of MOMI
the (1) should be discretized, i.e., put in the vector—-matrix forft] the diagonal elements of the propagator matfrjx,, were
set to be zero. Other authors [6] include in the diagonal a term
that is proportional to the second derivative of the surface
height and is often referred to as a “curvature term”:

J=J +PJ. (9)

In (9), / and J’ are vectors and’ is a square propagator
matrix. For rough surfaces it is common, e.g., [1], [6], to
discretize the MFIE by taking values of the surface height,
current, and propagator at discrete poifits, }, which form a
uniform grid with some spacing.x. That is, themth element
of the surface current vector, theth element of the Kirchhoff |, (15), the upper sign corresponds to the case of vertical
current vector and then(, n)th element of the propagatory|arization and the lower to the horizontal polarization. In
matrix are, respectively [1], it is argued that this term can be neglected if it is small
T = J(x), T =T () compar(_ed_ to one, which can alwa_lys be achieveql by choosing
Az sufficiently small. The question about the inclusion of
this term was also addressed in [3] and [4]. One of the
Prn = P2, wn)Az. (10)  conclusions was that the curvature term does not affect the
rate of MOMI convergence. It was also reported that for one

require separate treatment, as will be described below. Fs?mple sinusoidal surface with high curvature and the incident

. . o . " " field coming at 45 with respect to the normal, the inclusion
lowing the discretization, a number of numerical technlque§ : ; ) : .
- o . ot the curvature term did permit an increase in the sampling
can be applied; the traditional MoM solution to (9) would be L !
interval resulting in the same scattered field as would be
J=(I-P)J (11) obtained without the curvature term but with tighter sampling.
o _ ~ Nevertheless, for a randomly rough surface with Gaussian
althou_gh |t_ is usually more practical to solve a set of ||nef§pectrum and root mean square (rms) slopes as high ‘as 45
equations in the fornt/—P).J = J*. In MOMI, the propagator jjjuminated at the incident angle of 85no effects related to
matrix P is split in the lower and upper triangular matrices inclusion or exclusion of the curvature term were observed.
andU; P = L+ U. It is shown in [1] that (9) can be thenThe study in [3] regarded the curvature term as an additional
cast in the following form: correction to the already extracted self term and pointed out
J=(I-U)y " (I—L)y ' J+(I-U)""(I—L)"'LUJ (12) that it may be inconsistent to mc_lude this correction on _the
diagonal of the propagator matrix and not include similar

I being an identity matrix. This equation can now be iterategprrections proportional to higher surface derivatives in off-

Py =t See(@m) (15)

271+ G2 (xm )]

and

The diagonal termsn{ = n) of the propagator matrix may

with the so-called “new Born term” diagonal terms.
_ i In the next section, we present the results of numerical
Jp=(I-U)" (I-L)"J (13) calculations of scattering from randomly rough surfaces with

serving as the zeroth-order iterate. The solution is then eP?M spectra and these resuilts suggest that for such surfaces

pressed in terms of a series (some operator identities atfxlg _culrvgttijre_ tetrrr]n c(:ja_m playl a? tlrrlnportant rotle andtghOlIJId
rearrangements have to be used, cf. [1]): € Included in the diagonal of the propagator matrix. in

Section IV we will discuss the procedure that leads to the
> discretized MFIE (9), (10), and suggest a choice of the
_ -1 -1 -1 P
J=(-U) Z {(I=L)7 =L =U)" —1} sampling interval for P—M surfaces. It will be shown tloaice
1”_,0 the proper sampling interval is chosen, the curvature term in
(I=L) T (14) (15) must appear on the diagonal of the propagator matrix,

L . . . the off-diagonal terms should be samples of the propagator as
which is the form used in our numerical algorithm. Notg iven by(10), and there should be no higher order corrections
that due to the triangular nature of matrices— /) and J Vo), g

L L to either the diagonal or the off-diagonal terms.
(I — L) no actual matrix inversion is necessary, forward or ¢ g

back substitution can be used and this eliminates the necessity
to store and invert the propagator matrix. In fact, it turns out
that very few terms in the sum in (14) are needed to achieve
sufficient accuracy. For the rough surfaces we worked with,
we found that the new Born term (13) often gives a reasonableWWe used MOMI to calculate the scattering from ocean-like
answer and that two iterations above the new Born term asndomly rough perfectly conducting surfaces described by a
more than adequate. P—M spectrum. For the 1-D surfaces we used a 1-D version

I1l. SIMULATION RESULTS FORSCATTERING
FROM 1-D PERSON-MOSKOWITZ SURFACES
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of the P—M spectrum proposed by Thorsos [7] height corresponding to this windspeed is [from (1%)}=
P 0.133 m= 0.58\,.
W(K) = 4?? exp{—%}, (16) The incident field is taken to be a plane wave with a

modified Gaussian taper suggested by Thorsos [6]
In (16), K is the spatial wavenumber (which can be both Fi(w, z) = exp{—jko(x sin 0; — = cos 0;)[1 +w(z, 2)]}

positive and negative]/ is the windspeed at a height of 19.5 tan 0,12
m, ¢ = 9.81 m/¢’ is gravity acceleration and other constants - exp {_W} (22)
area = 8.10 x 1073 and 3 = 0.74. The mean-square surface g
height is where, again,f' is either theE or H field, depending on
oo 4 the polarization considered. In (22) the incident anglds
h* = / W(K)dK = Z 5 (17) defined with respect to the vertical)(axis and is assumed to
- & be positive in a counterclockwise directianijs the parameter
The spectrum (16) has a peak at a wavenumber that controls the tapering [not to be confused with gravity
acceleration in (16)], and(«, z) = {2(z + z tan 6;)?/¢* —
o= ]9 (18) 1}/(kog cos 0;)”. The choice ofy = L.,/6 (L, = finite
! 3 U? surface length) gives an acceptable tapering at the edges. In
which can be interpreted as corresponding to the domindR¢ case of horizontal polarization a normal derivative of (22)
wave having the wavelength is need_ed to calculate th_e Klrchhoff curreﬂjt; analyncal
expression for such a derivative can be easily obtained from
2 6 U? 19) (22).
PR, i B g ( To describe scattering from each surface realization a

The P-M spectrum (16) has only one variable parameter, t?llesztatlc _normallzed radar cross section (NRC8)(¢;, 6,)
can be introduced

windspeedlU, which controls both the mean-square surface

height and the dominant surface wavelength (and also the o0, 0,) = lim 2ar |10 (23)
surface correlation length which can be shown to be closely o r—00 /|F77(x 0)|2 da
related toA,), as can be seen from (17) and (19). ’

A characteristic feature of the P—M spectrum (16) is itghere F* is given by (6). The backscattered NRCS is
power-law behavior at large surface wavenumbérdn fact, 0 (6;) = o(6;, —0;). a"(6;, 6,) can be averaged over an

. . . . bsc
due to this behavior integrals of the type (17) describinghsemble of several surface realizations to obtain an average
the mean-square slope, mean-square curvature, and all higggecs (™).

derivatives will be divergent unless some cutoff wavenumber gyrface realizations were generated using the spectral tech-

K. is chosen, i.e., the spectrum assumes the form nique similar to that described in [6]. First, independent
() = W(EK), |K|<K. 20) compJex (%aussian variables yvith zero means apd varjances
1 =10, otherwise’ Wi (K;)AK are generated at discrete wavenumHéts} (A K

is the spacing between adjacent samples in the spectral do-
This means that for Pierson-Moskowitz surfaces the shoitain) to represent a spectruf(K;) of a particular surface
wave surface structure is the major contributor to the meagalization. This is done only for nonnegative wavenumbers
square surface slope and higher derivatives. A particular choigigce Z(K;) must possess certain symmetry properties to
of K. is likely to affect scattering from the surface, especiallgssure that surface heights are real. Spectra of first and second
at LGA’s, and this subject probably deserves a separate stusiyiface derivatives can be obtained by multiplyitigi;) by
In natural ocean surfaces such a cutoff occurs due to viscqus; and(jK;)?, respectively. Then, the fast Fourier transform
damping mechanisms and can vary if, for example, pollutanfsFT) is used to calculate the surface heights and values
or surfactants are present. In most of our simulations we fixed surface derivatives at discrete valuesaofTo generate a
the cutoff to be five times the electromagnetic wavenumbejurface of lengthl,, the step size in the spectral domain
ie., should be

K, = 5kq (21) AK =27/L,. (24)

which definitely includes all potential Bragg scatterers. Inclusion of spectral values within the wavenumber range
The electromagnetic wavelength we uséds= 23 cm. We K., will require the following number of points in the

chose to work with surfaces corresponding to the windspeggectral domain:

U =5 m/s. This yields the dominant surface wavelength, as 2K,y  2Kuple  Kupls

determined from (19), to bd, = 22.8 m = 99.1),. This N =9, = 1 (25)

allowed us to work with surface sizes that included severa

. . . he same number of points after the FFT represents surface
dominant wavelengths but still were not very large eIectncaII;g.am les over the surface lengfl, which gives a samplin
It should be pointed out that as one moves toward grazin P > 9 Ping

: ) . o : |ﬁterval on the surface equal to
other considerations come into play and require increasingly

larger surfaces to be used in the simulations. The rms surface Ar=L,/N =7/Ky. (26)
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K., should obviously be chosen at least as large as the spectraks —— T ; ; T
cutoff K. in the P-M spectrum (20). Making it higher does i . Sampling AX=AX2/8¥0-501257~0
not alter the spectral content of the surface since outside 25
+ K, the spectrumiV; (X)) is zero anyway, but it results in :
a smaller sampling interval\z, as is clear from (26). The  -35- : I i ,
largest possible sampling interval needed to represent a surfage :
with spectral cutoffi. will be Azy = /K., i.e., atleasttwo T-sr .
points per the shortest wavelength present on the surface. For '
our choice ofK. in (21), this means -55

65 |

Since a radix 2 FFT is used to compute the surface points ""
from its spectrum, the number of poindé must be a power 7 T T T . . . 0 10 o
of two. We choseAz, to be our basic sampling interval. 8,, degrees
Together withV, = 8192 = 213 points this provided a surface o _ ' _ o
lengih L, = §19.2. This surace lengih was deemed 16}, Salc nomeized adar ciose secion (o st eaaton o
be acceptable for our study for various reasons but pnmar@yrvamfe term not included.
because it contained several dominant surface wavelengths
The P-M spectrum in (16) has a peak/gt that moves closer 0% ‘ ( ‘
to zero and becomes sharper as the windsgéddcreases. 7t “en | —0— 2 MOMI iterations
One would like to choose&\ K’ small enough to represent this o eration
b iterations (new Born) ||
peak adequately and certainly not to miss it altogether. This v
means choosingh K < K, or, equivalently,L; > A,. The 5hoos
tapering parameter in this casegis= L, /6 = 136.5A, which
is sufficiently large to use the tapered incident field in (22L§ 4
safely for incident angles up to 8384°. When a smaller ©
sampling interval was needed, we increadeég, [cf. (26)].
That is, we kept the random spectral valugek;) already 2
generated the same, added zeros up to the new higher value
of Ky, and then took the FFT of this newly constructed
spectrum. This resulted in the generation of the same (but |, ; i ;
tighter sampled) surface realization. Again, due to the radix 2 ° !
FFT used it was convenient to decredse by a factor of two.
The result of the outlined procedure are values of thry. 2. Normalized radar cross section in the backscattered direction
surface heighl{C(xm)}, sIope{Cm (Im)}, and second deriva- ¢: = 80°, sing_le r_ealization of a P-M sur_face) versus sampling interval.
. . Horizontal polarization, curvature term not included.
tive {¢;»(z,)} at discrete values of, z,, = (m — 1 —
N/2)Ax, m = 1,2, ---, N. By substituting these values in
(2) and (3) [and using (4), (5), and (22)] we get discretized We observed similar differences in the NRCS when applying
values of the current and propagator shown in (10). TdoM (11) with zeros on the diagonal of the propagator matrix,
calculate a scattered field from (6), we also take the valug®ugh we had to work with smaller surfaces due to the large
of a kernel@ only at points{z,,, } so the integral in (6) is also memory requirements of MoM.
replaced by a discrete sum. A typical behavior of the backscattered field as the sampling
We started by applying MOMI with its propagator matrixinterval changes is shown in Figs. 2 andé3 € 80°). Fig. 2
containing zeros on its diagonal. Fig. 1 shows the calcahows the NRCS, which is proportional to the square of field
lated bistatic cross section for one surface realization anthgnitude and Fig. 3 shows the phase of the scattered field
a horizontally polarized field incident at 8qonly negative with the factore™/*" that is present in (6) ignored. Each
scattering angles corresponding to backward scattering &grire displays results calculated using zero, one, and two
shown). One curve on the graph corresponds to the samplitegations of MOMI above the new Born term. One can see
interval Az, and another to the interval eight times smallethat points corresponding to one and two iterations of MOMI
Az = Azy/8 [the spectral cutoff wavenumber, as has begsractically coincide, so MOMHoes converge no matter what
stipulated, remains the same, as given by (21)]. It can bampling interval is chosen, but for different sampling intervals
observed that two curves start showing some differenciégonverges to different value&ig. 3 suggests that even for
even at moderate scattered angles and as the observati@nsampling interval oAz = Az, /16 = A,/160 the phase
direction moves toward grazing these differences becorokthe scattered field still has not reached its final value and
more and more pronounced. Similar behavior is observed foould change if we reduced the sampling interval further.
bistatic cross sections corresponding to smaller incident anglesThis dependence of the calculated NRCS on the sampling
although the differences in decibels are, in general, smaller foterval appears to be tied to the short wave structure on
those angles. the surface. Fig. 4 presents bistatic cross sections for hor-

6
N

T

1+

2
-log,(AX/AX,)
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190 T T T -15 T T
—o— 2 MOMI iterations —— Sampling Ax=Ax,=0.13,
| --%-- 1 MOMI iteration | | Sampling Ax=Ax/8=0.0125%,
180 ~—4.— 0 MOMI iterations (new Born) 25 R RN - :

Phase, degrees

m
Va5
150 [ %
sy bl
140
130 [ 88 |
120 It L L 75 1 1 1 1 1 1 L 1
0 1 2 3 4 9 8 70 60 50 -40 30 20 -0 0
-log,(Ax/AX,) 0,, degrees
Fig. 3. Phase of the backscattered fieftd & 80°, single realization of Fig. 5. Bistatic normalized radar cross section (for a single realization of
a P-M surface) versus sampling interval. Horizontal polarization, curvatugeP—M surface). Horizontal polarizatiod; = 80°, 2 MOMI iterations,
term not included. curvature term included.
15 T T T . . .
—— Sampling Ax=Ax;=0.12, g its spectral cutoff is given by (21). These new results show that
25| o Sampling Ax=Ax,/8=0.0125 | the bistatic NRCS calculated with the sampling interal,

{ is virtually the same as the NRCS obtained from calculations
with a much smaller interval of\z,/8. This presents quite
a different picture from the situation shown in Fig. 1. The
behavior of the scattered field versus the sampling interval is
o, 65 A g ; e { again examined in Figs. 6 and 7 for backscattering &t 80
Fig. 6 shows that once the curvature term is included, there is
no noticeable change in NRCS. In Fig. 7 a slight change in
the phase of the calculated backscattered field can be noticed
: as one moves from the sampling interval &, to Azgy/2,
105 ; ; ‘ ‘ K : . l but after that its value remains constant. As the sampling
-0 80 70 60 50 40 30 20 -0 o interval is decreased both the NRCS and phase of the scattered
0, degrees field calculated without curvature eventually converge to their
Fig. 4. Bistatic normalized radar cross section (for a single realization 6Punterparts calculated with the curvature term. Note that the
a P-M surface with spectral cutoff wavenumber reducedto= 27/Ao). phase of the field calculated without curvature term does not
il;l]glrlljzdoené.al polarizationg; = 80°, two MOMI iterations, curvature term not reach this stak_JIe value even at a sampling ?ntervgl as small
as Azq/16. This demonstrates that, with the inclusion of the
curvature term, one indeed achieves stability with respect to
izontal polarization calculated with sampling intervalst,  the sampling interval and obtains the correct values of the
and Az,/8 for a surface with a spectral cutoff wavenumbescattered field without resorting to the heavy oversampling that
K. = ko which is five times smaller than the cutoff. would have been necessary otherwise.
used in previous simulations. This figure should be comparedsg far we addressed only the case of horizontal polarization.
to Fig. 1 and now one can see almost no differences excewlr vertical polarization, we found that when the propagator
for a few nulls near grazing where some discrepancy fgatrix without the curvature terms is used, the calculated
not surprising given the extremely low levels. This appareNNRCS does not possess the sensitivity to the size of the
cause and effect relation between the observed changessampling interval that was observed in the case of horizon-
calculated NRCS with the sampling interval and the shotal polarization. This fact is demonstrated in Fig. 8, where
wave components suggests that the effect should not dculations of the bistatic NRCS for vertical polarization
seen if a surface with Gaussian spectrum is used becausanidl an incident angle of 8Care presented for two different
effectively contains no short-wave components since they ammpling intervals. Actually, if one examines the absolute
exponentially suppressed. difference in a scattered field calculated without the curvature
As has been mentioned, it is the short-wave components ttexim at two different sampling intervals, this difference will
are the main contributors to the rms slope and especially the, on the average, larger for vertical polarization than for
rms curvature of the P—M surface. Consequently, including therizontal polarization. But since the magnitude of the field
curvature terms (15) in the diagonal of the propagator matrcattered in the backward direction is significantly larger in
may be one possible remedy to the problem. NRCS calcuthe case of vertical polarization, the relative changes in the
tions with the curvature term included are shown in Fig. 5. THeld (and, therefore, NRCS) are negligibly small compared to
surface is the same as was used for calculations in Figs. 1wBiat was observed for the horizontal polarization. Inclusion
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P-M surface) versus sampling interval. Horizontal polarization. sampling intervalf; = 80°, single realization of a P-M surface.

of the curvature terms in the diagonal of the propagator mattisere M = N, x 16 = 2'7 and {z;} are taken with the
in the case of vertical polarization also significantly reduceampling intervalAxz,/16. Only one surface realization is
variation in the calculated field and the NRCS as one changasisidered. Fig. 9 shows(Az) for the current calculated
the sampling interval but, again, this variation is relativelwith and without the curvature term for both horizontal and
small from the beginning. vertical polarizations and; = 80°. When the curvature term

It is interesting to look at the behavior of the relative mearis not included, the relative mean square error in the current is
square error in the current versus sampling. Assuming thessentially the same for horizontal and vertical polarizations.
current calculated at the smallest sampling intervahef /16  Yet, as we have seen, in the case of horizontal polarization
with the curvature term included to be the “exact” currerthis error does produce significant relative variations in NRCS,
Jo, we define the relative mean square error in the curremhile for vertical polarization, these variations are negligible.

calculated with some sampling intervalx as This once more confirms the well-known fact that an error
. | X in the current does not necessarily translate into a significant
e(Az) = - Z [ Taw(2n) — Jo(z)|?] - (28) €rrorin _the scattered field. Each time Fhe sampling interval is
ol | N = divided in half,s(Ax) for the current without curvature term

_ o decreases by approximately 6 dB, which means that rms error
In (28) the values(z; } are taken with the sampling interval;, the cyrrent decreases by a factor of two. When the curvature
Az, Ja, denotes the current calculated with this sampling, s includeds( Az, /8) is reduced dramatically, with the
interval (with or without the curvature term) and relative mean square error for horizontal polarization being
1M smaller than that for vertical polarization. Note thdt\z)
|J0]] = i Z | Jo(21)]? (29) for the currents with curvature is well belowAz,/8) for
1=1 the currents without curvature.
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Fig. 10. Average bistatic normalized radar cross section (average over ¥j§, 11. Ratio (expressed in decibels) of average bistatic normalized radar
surfaces with P-M spectrum). Horizontal polarizatién= 80°, two MOMI  cross sections calculated without and with the curvature term (average
iterations,Az = Az /2 = Ao/20. over 100 surfaces with P—M spectrum). Also shown is a similar ratio of
normalized radar cross sections corresponding to one P—M surface. Horizontal
polarization,d; = 80°, two MOMI iterations,Az = Azo/2 = A\g/20.
Finally, let us address the question of how the inclusion

or omission of the curvature term affects the average NRCS . . . .
. X o - The cl | MoM hd bed in [8 b lied
Fig. 10 displays the average bistatic NRCS (the average  classical MoM approach described in [8] can be applie

. o t¢> discretize the MFIE in (1). Two sets of linearly indepen-
taken over 100 surfaces) for horizontal polarization and At functions{e, (z)} and {t..(z)} (called expansion and

incident angle of 89D that was calculated with and_w'thOUttestmg functions, respectively) and a scalar product) are
curvature term; the mean field was not extracted, so it shows.uP :
) A o introduced. The reasonable scalar product of two possibly
in the specular direction. The sampling interval®f, /2 was

: complex-valued functiong and ¢ can be defined as
used. For most of the scattering angles the two curves run on

top of each other but as the scattering angle approacBé%, _ / "
the differences start showing up, with the NRCS calculated (f(2), 9(@)) = x f(@)g(z) dv (30)

without the curvature term having larger values. Around the. . . . .
; . . : with the asterisk denoting the complex conjugate. Assuming
grazing scattering angle of90° calculations without the

curvature term result in an overestimation of average NRCSE{:[ the sefe, (2)} is complete for the class of functions that

more than 10 dB. Fig. 11 shows the ratio of the average NR unknown current () belongs to, one can write
calculated without the curvature term to the average NRCS J(x) = Z Tnen () (31)
with this term. Expressed in decibels, this ratio corresponds -

to the distance between the curves shown in Fig. 10. FOF1 h , ici hi L
comparison, the similar ratio is plotted in Fig. 11 for onl)yv ere{J, } are the expansion coefficients. This expression is

one surface realization. One can see that, in general, stituted in (1) and a scalar product is taken of both sides

average NRCS shows much less sensitivity to the inclusi8 this equation with each of the testing functions
or exclusion of the curvature term than the NRCS for a Sin%-, Toltm (%), €n(2))

surface realization. Still, at scattering angles near grazing, e¢en '

the average NRCS is very sensitive to the presence or absence

of the curvature term. = (tm(x), J'(2)) + Z In /}((tm(f)a Pz, 2'))e, (¢') da'.

(32)
IV. DISCRETIZATION OF THE MFIE AND

THE NECESSITY OF THE CURVATURE TERM It can be seen that in order for (32) to assume the vector—-matrix

form (9) with J = [J,,] from (31), an additional multiplication
In the previous section it was shown that when the MFIE & both sides of (32) by the matrix inver§,, (), e, (x))]~'
solved for P-M surfaces with the diagonal of the propagatts in general, necessary. However, if we require that
matrix set to zero, in some cases very tight sampling is
required to obtain a stable value for ¥hegscattere% f?eld. {tm (@), €n (2)) = i b (33)
However, inclusion of the curvature terms in the diagongl, —are some positive constants adg, is a Kronecker
appears to remedy this problem. \We now examine the detajlsita), i.e., testing and expansion functions should be mutually

of discretization to find out why curvature terms should bgrthogonal, the goal is readily achieved with the quantities
included in the diagonal of the propagator matrix and whethgppearing in (9) being

there should be any higher order corrections, as well as to
develop some recommendations for choosing the sampling =[J,], Ji=
interval when discretizing the MFIE for P—M surfaces. - U,
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and of the functions with finite spectral width. It is known that
— _ L / N for the class of band-limited functions that have zero spectral
P=[Fmn) = [_ /X (tm (), Pz, 2 )en (@) da’|. (34) components beyond some wavenumbgr, the functions

A

Furthermore, if the expansion functiods, (x)} are chosen (@) = sin w(z/Ax — n)) Ar = 7/K, (36)
to be orthogonal andt,,(x)} are chosen to belong to the m(x/Ax —n)

same class of functions, then the completenesgeqfz)} form a complete set (cf. for example, [9]). These functions are

for this class together with (33) means thatz) ~ ntn () orthogonal with respect to the scalar product (30) (domin
wherec, are nonzero constants, so the expansion and testjod, .o mad to be infinite)
e

functions are essentially the same. If the testing functions ar
chosen outside the class that, (x)} belong to (one can use (sm (), sp(2)) = Azbyp. (37)
¢ functions as an example), this, of course, is not true. _ ) . )
Our goal is to apply the formalism described above to sény funct|o_nf qf this _class of band-limited functions can be
how and under what conditions a simple discretization such &@gPanded in this basis
(10) is possible. It is tempting to ugefunctions as expansion flz) = Z Fon(2)
and testing functions because this would immediately formally -
give the discretized (9) with sampled quantities (10). However, _ - .
in this case one cannot write an expansion (31) for awth expansion coefficients being
reasonable continuous or square-integrable function such as _ 1 _
we expect/(z) to be to begin with. Another choice (pursued, In = Az {50 (2), f(@)) = f(nA). (38)

for example, in [3]) is to usé functions as testing functionSthe previous two equations are essentially the main result
together with rectangular pulse expansion functions [in thi the sampling theorem indicating that band-limited function

case, for example, (33) can be satisfied]. This approaghy, pe reconstructed from its properly taken samples using
however, seems to have its own deficiencies. First, rectanglﬁc_wpe basis functions.

pulse functions do not form a complete set for the class of 1,4 spectra off(z), J(z), and P(x, ') have a character-

. . . ) ) )
continuous functions, so (31) cannot be exact and (9) Williic shape that can be regarded as band-limited and suggests
involve some error from the start. Further, elements of thga choice of the wavenumbés, , beyond which the spectra
discretized propagator will contain integration over the pulsg g these functions are essentially zero.

width in ' coordinate Fig. 12 shows a shape of a 2-D Fourier spectrum of the
¢ ntAz]2 propagatorP(z, '), as given by (3b) for horizontal polariza-
Pon :/

P(ay, o')da’ (35) tion and one random surface realization; some coarse-graining
was applied to reduce the number of points to plot. Because of

to obtain a simplified form as given by (10) some addition&omputational constraints the spectral cutoff of the surface in
approximations of these integrals will be necessary. In fadfis particular case was chosen to be = 2.5k, Fig. 13

it is the evaluation of these integrals obtained by expandifégPlays the spectrum of the propagator given in (2b) for
the propagator in a Taylor series aroung that led Kapp in vertical polarization and the same surface. The spectrum of
[3] to consider the curvature term as an additional correctié@€ Propagator consists of two narrow “blades,” each having
resulting from accounting for more terms in Taylor seried half-length of K., that are centered dt-ko, ko) and at
and to argue that these corrections should also be consideded —ko). In the case of horizontal polarization (Fig. 12)
for the off-diagonal elements. Still, from this approach, it i§1ese two blades are oriented along fheaxis (which is dual

not clear what value for the sampling interval (pulse widtHp z-coordinate). So, the spectrum is essentially nonzero only
should be chosen to discretize the MFIE. It is important # the rectangular domain with" varying within (ko + )
realize that even if the integrals (35) are evaluagedctly and A’ varying within the range somewhat larger (by the
(or, equivalently,all terms in the Taylor expansion of thethickness of the “blades”) thask,. Certainly, the spectrum
propagator are accounted for), there will still be some err6@n be considered band-limited within a larger square domain
in the solution due to poor approximation of the continuoudvhich is more convenient for our consideration) with the
current.J(z) by rectangular pulses. upper limit

_ In our approach, we will use the sz?\mpling theorem a_nd K, = ky + K, (39)
ideas and concepts related to it. Let us first make the following

observation: for well-behaved surfaces the limit of (4) and (%) both X and K’. The same discussion applies to the vertical
asz — «' exists; the functions in (4) and (5) can be defined a@blarization propagator (now the picture is turned b$)30ith

xz = 2’/ to be equal to this limit and, thus, the propagator in (Ipe same result (39) for the wavenumber domain upper limit
is a continuous function. P—M surfaces that we work with havg,, .

a distinct spectral cutoff, as stated in (20). The hope may beFourier spectra of Kirchhoff currentg’(z) calculated ac-
that the current and propagator, being functionally dependewirding to (2a) or (3a) and (22) in general have a peak at
on the surface height, might also have their spectra locat&d= —k, sin #; accompanied by a “pedestal” that is centered
predominantly within some finite range of wavenumbers s the same wavenumber and has the half-widthExamples
they can be reasonably regarded as belonging to the classuch spectra (normalized to their peaks) are shown using a

n—Axn/2
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Fig. 15. Example of the Fourier spectrum of the Kirchhoff current (single
realization of a P-M surface). Vertical polarizatién,= 80°, surface spectral
cutoff is Skq.

Fig. 13. Two-dimensional Fourier spectrum of the propagator (linear scale

single realization of a P-M surface). Vertical polarization, surface spectral
cutoff is 2.5o. of the corresponding quantities)

logarithmic scale in Figs. 14 and 15 for horizontal and vertical J(K) = J'(K) + QL/ P(K, =K")J(K')dK' (40)
polarizations, respectively, arfif = 80°. In these examples a T J—oo

surface realization with the “usual” spectral cutoff ¥, [as . . , i -

in (21)] was used. The level of the pedestal can be differevjygmh suggests that iP(z, 2') and J*(z) are band-limited,

depending on the incident angle and polarization. In the cas ) must also be a band-limited function since the right-hand

. R .~ ~"side in (40) is then zero foK > K,,.
of horizontal polarization, it is higher because a derivative Is . . S
Let us point out once again that at moderate incident

inyolved in J*(x) in (3a) and as one moves f[oward grazingan les away from grazing the pedestal described above is still
this pedestal can contain an appreciable fraction of the SpeCHf}‘Eerved in the spectra of boffi(z) and./(z), although this

energy. The pedestal /7extend_s within the waver;umber raNtestal may now contain a lesser fraction of spectral energy
between—k sin 6; + I.. So if we want to treat/ () as & compared to the main spectral peak-d sin 6;. In any case,
band-limited function, (39) is also a reasonable choice for glege spectra may be regarded as band-limited with the choice

incident angles. of the upper spectral limi<, from (39) being adequate or
Spectra of the Currentg(x) for horizontal and vertical even more than adequa‘[e for all incident ang|es_

polarizations are shown in Figs. 16 and 17, again,ffor=  OnceP(x, «’), J/(x), and.J () are treated as band-limited
80°. These currents also exhibit the pedestal mentioned abduActions, a moment method approach described at the begin-
and can be considered band-limited functions with given ning of this section can be applied wifs, (z)} from (36)

by (39). In fact, the MFIE in (1) can be rewritten in theserving as both the expansion and testing functidis. is
spectral domain as (symbols with tilda sign denote spectaken from (39) and this, in turn, determines an appropriate
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(the upper sign corresponds to the vertical polarization and
the lower to the horizontal). Upon multiplying (42) b

and substitutinge = mAxz = z,, we get for the diagonal
elements of the propagator matrix exactly the “curvature term”
given in (15). So, the important conclusion of the sampling
approach outlined above is that the curvature term should
appear on the diagonal of the propagator matrix and it is not
an additional correction. When we leave the curvature terms
out, we, in fact, solve the MFIE with an altered kernel and this
is bound to produce the kind of differing results we saw in the
Section Il no matter what particular numerical technique is
applied to solve the MFIE. Indeed, we saw (cf. Figs. 2 and 3)
that if the curvature term is not included, MOMI still converges
K/k, rapidly, but it converges to different answers. It simply means
that at each given sampling interval MOMI finds the solution

.Normalized spectrum, dB

Fig. 16. Example of the Fourier spectrum of the surface current (smgjg the MFIE with a perturbed propagator. Another |mp0rtant
realization of a P—-M surface). Horizontal polarizatién,= 80°, two MOMI | hat the off-di | hould b |
iterations, surface spectral cutoff is conclusion is that the off-diagonal terms should be just samples
of the propagator as well as the diagonal elements should only
o , , ‘ , ‘ contain the curvature terms (15). Once the proper sampling

interval such as given in (41) is chosen, there is no reason
to include any additional correction terms like ones that may
arise from the evaluation of (35) by expansion of the integrand
in a Taylor series or to expect that these higher order terms
will improve the accuracy of the solution.

It should be pointed out that the inclusion of the surface
curvature in the numerical algorithm by no means complicates
it since the values for surface curvature can be easily generated
together with surface heights and slopes using the spectral
technique outlined in Section IlI.

Let us finally address a question of calculating the scattered
field. The far-field propagatof) [given by (7) and (8)] also
can be treated as band-limited functions with a spectrum
concentrated within the limits o K, as given in (39). Upon
Fig. 17. Example of the Fourier spectrum of the surface current (singidlbstitution of the expansion (31) fdfz) and applying (38),
realization of a P-M surface). Vertical polarizatidgh, = 80°, two MOMI  the integra| in (6) can be written as a discrete sum

iterations, surface spectral cutoff i&h
[ @@ 001 )= 3 1 [ R0
sampling intervalAz in (36) as X
\ = Az Z JnQ(nAzx, 6,). (43)
™ 0
= . 41 n
ko + K. 201+ K. /ko) (41)

[ Y
=] =]

_Normalized spectrum, dB

-
iy
=]

Az =

So, the scattered field can be calculated from the sampled

Elements of vectors and matrix in (34) can be rewritten usirggirface current and the similarly sampled propagégtor

(38) [with a,,, = Az, as can be seen comparing (33) to (37)]. We can compare the sampling interval suggested in (41)

The expression foP,,,, in (34) involves a 2-D scalar productto what we were using in Section Ill. Our largest sampling

defined similarly to (30) and it then can be related to theterval there was, from (27)Az, = X,/10, while for the

samples ofP(x, z’) through a 2-D version of (38), namelychosen spectral cutoff in (21) formula (41) gives a smaller

(S, (2)s0 (), fz, ")) /(Azx)? = f(mAwz, nAx). Thus, we Vvalue of Az = A,/12. Indeed, in Fig. 7 we noticed a slight

finally do arrive at the discretization shown in (10). change in the phase of the calculated field (with included
Note that this approach clearly requires that the valuggrvature term) as the sampling interval changed frxm,

for the diagonal terms for the propagator should be jut Axo/2 (which is less thani,/12). Still the change is

the samples of the propagator taken at the same point very small, which suggests that quite accurate results may be

' = mAx: Py, = P(mAz, mAz)Az. As was mentioned, possible with somewhat larger sampling intervals than given

though the value oP(x, z’) from (2b), (4) or (3b), (5) at such by (41). From Fig. 9, we saw that relative mean square error

points is indeterminate (behaving as 0/0), it can be shown tti@atthe current atAzo = Ao /10 for the surface with a cutoff

the limit does exist and is given by given by (21) is still below—60 dB. However, we believe

that the sampling interval should not be larger thahi'.
hm Pz, z') ==+ Cor (%) (42) since otherwise the surface structure will not be represented
ol 271 4 (2 ()] correctly (due to spectral aliasing effects). Also, we would
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like to point out that (41) should not be applied to surfacdhank the other members of their laboratory for their interest
with low spectral cutoffs (say, belowk,), especially if the in this work and their friendly support.

backscattered field at LGA's is of interest. This is because for
such low cutoffs it will be mainly the spectral components of
the current outside the pedestal, which is now quite “narrow”
due to the small cutoff, that are responsible for the low-grazing
scattered field [one can see it by writing the integral in (6) in
terms of Fourier spectra of and )] and these components 2]
will be sensitive to the spectral aliasing due to their extremely
small amplitude. In fact, some differences in NRCS that we

saw in Fig. 4 are probably due to these effects. In a sense, thedk

“low-cutoff” surfaces might prove to be “tougher” for low-
grazing backscattering calculations and require even tighté4!
sampling than P—M surfaces with high cutoffs like (21).

V. CONCLUSION [5]

Numerical simulations of scattering from the [g]
Pierson—Moskowitz surfaces show that if the curvature
term is not included in the diagonal of the propagator inm
the discretized MFIE, the results can exhibit excessive
sensitivity to the sampling interval and may require very tighté!
sampling to reach the stable value. This effect is especially)
significant for the scattering at LGA'’s in the case of horizontal
polarization and has an impact on average quantities such
as the average normalized radar cross section. However,
when the curvature terms are included in the diagonal of
the propagator matrix, the calculated scattered field react
the stable value at much larger sampling interval. Caret
consideration of the discretization of MFIE shows the
curvature terms indeed must be included in the diagor
of the propagator, being simply the sampled values of tl
propagator as well as the off-diagonal elements; there sho
be no additional correction terms once a proper sampli
interval is chosen. The recommendation for choosing such a
interval when calculating scattering from Pierson—Moskowiﬂ
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