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Abstract—This study, consisting of three complimentary top- terrain backscatter at millimeter wavelengths, with a particular
ics, examines of the millimeter-wave backscattering behavior emphasis on 95 GHz.
of terrain at incidence angles extending between 70 and 90
corresponding to grazing angles of 20 to 0°. The first topic
addresses the character of the statistical variability of the radar A. Nomenclature
backscattering cross section per unit areac,. Based on an
evaluation of an extensive data set acquired at 95 GHz, it was By way of introducing some of the terms we intend to use

determined that the Rayleigh fading model (which predicts that . : . . .
a4 is exponentially distributed) provides an excellent fit to the in this paper, let us consider the hypothetical scene depicted

measured data for various types of terrain covers, including bare N Fig. 1. The scene consists of several fields of vegetation
surfaces, grasses, trees, dry snow, and wet snow. The secondgrass, for example) at various stages of growth. Each field
topic relates to the an_gulalfr]varia_bility and dynamic range of the is statistically homogeneousmeaning that it exhibits the
backscattering coefficients”, particularly near grazing incidence.  game |ocal statistics (in terms of plant height, density, water
In this paper, we provide a summary of data reported to date for content, etc.) for any location within that field. The scene
each of several types of terrain covers. The last topic focuses. . ’ ’ . . . )
on bare surfaces. A semi-empirical model fors° is presented IS imaged by a distant radar with resolution cell aréaat
for vertical (VV), horizontal (HH), and cross (HV) polarizations.  the range corresponding to the scene under consideration.
The model parameters include the incidence anglé, the surface The dimensions of4 are such that on the one hand, each
relative dielectric constante, and the surface roughness:s, where  ce|| contains many randomly distributed scatterers, thereby
k =2r/) and s is the surface root mean square (rms) height. satisfying one of the assumptions of Rayleigh fading statistics
Index Terms—Electromagnetic scattering, rough surfaces. [1], while on the other hand4 is much smaller than the overall
field dimensions. Because of this latter feature, the number of
cells N contained in each field is sufficiently large as to allow
) us to examine the statistical properties of the radar backscatter
W HEN we characterize the radar backscatter behavigsyiation across a given field. Each cell in the scene is denoted

of a target, be that a point target such as a truc[g%; a combination of two indexesand j, defined as follows:
a fence, or an urban feature, or a distributed target such. &, inqex withi — 1,2, -, M fields;

as a field of corn or a forest canopy, we usually do so in . ./ 'index within a field withj = 1,2, -+ N cells
terms of two sets of parameters—the target parameters and “{f _ o )

sensor parameters. The target parameters include shape facto Qe radar response is characterized by the following quan-
and dielectric properties and the sensor parameters incl(lES:

the wave frequencyf, the incidence angld, the receive-  “a(i, j) = o(i, j)/A radar cross section per unit area of

I. INTRODUCTION

transmit polarization configuration [such as horizontally polar- cell G, j); .

ized receiver and a vertically polarized transmitter (HV)] and ¢? = j{oalt, §)) = N Z;Vzl oa(i, j) scattering
(possibly) the dimensions of the cell illuminated by the radar coefficient of fields::

antenna. In the microwave region, numerous investigations,, (»,) = probability density function (pdf) of, for all
and extensive measurements of the backscatter from terrain cells of field i

have been made over the past three decades at centimetg(,,) = probability density function (pdf) of, for all
wavelengths, but much fewer observations have been made at cells of all fields within the scene.

millimeter wavelengths, particularly at high-incidence angles | arms of the scene depicted in Fig.pl(o 1) might be the

(low-grazing angles). This paper deals with Iow-grazing-angbedf of one of the fields of vegetation, whereg@ ) would
be the pdf for the entire class of vegetation (all fields) present

, . _ in the scene. We make this distinction for an important reason.
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Fig. 1. Depiction of a radar image of a scene consisting/bffields of vegetation with each field occupied By illuminated cells.

assumptions: 1) each cell should contain several scatterers; 2) [I. DATA SOURCES
the scatterers should be randomly distributed in location so
as to satisfy the assumption that the returns are characterizedh® majority of the data presented in this paper was
by a uniform phase distribution; and 3) the strengths of ti@€quired by two instrumentation grade 95-GHz polarimetric
returns from the scatterers are comparable in magnitude $fatterometer systems, one belonging to the University of
equivalently, that no individual (or few) scatterer(s) shoullflichigan and the other belonging to the Army Research
dominate over the others. These conditions are usually satisfiédporatory. A brief description of each follows.
for any terrain target with statistically homogenous properties,
as Iong as th.e ggll dimensions are much larger than the y_n 95-GHz Polarimetric Scatterometer
dimensions of individual scatterers. According to the Rayleigh
model, the amplitude of the voltage of the scattered signal isThe U-M system is a truck-mounted network analyzer-
Rayleigh distributed and the amplitude of the power of theased polarimetric radar system that operates over a bandwidth
scattered signal is exponentially distributed. As we will se@f up to 2 GHz centered at 95 GHz. Using a coherent-
later in this paperp;(c4) does indeed fit the exponentialon-receive measurement technique, the system is capable of
distribution (within measurement accuracy) for statisticallneasuring the Mueller matrix of a target by transmitting (se-
homogeneous targets (bare soil, gravel, trees, grasses, egugntially) six different polarizations [vertical (V), horizontal
but if we were to combine the data from multiple typegH), 45 linear, 133 linear, left-hand circular (LHC), and
of terrain targets together into a single data set, the pd§ht-hand circular (RHC)] and receiving simultaneously the
of the combined data will not necessarily be exponentialyy- and H-polarized components of the backscattered field
distributed. In that case, the use of the distribution to fit for each transmitted polarization [5]-[7]. The transmitted
p(oa) of a heterogeneous scene may be quite appropriate.power level is 3 dBm and calibration is accomplished by
employing a calibration technigue that uses a metallic sphere
and any depolarizing target (whose scattering matrix need
not be known) [8]. The procedure provides measurements
This paper will attempt to answer the following questionsyjith an accuracy oftl dB in magnitude,+5° in phase
1) Is the pdfp;(c4) exponentially distributed for seem-and a cross-pol isolation of 40 dB. The radar uses a 3-in-
ingly (statistically) homogeneous terrain surfaces whefiameter lens-corrected horn antenna for transmission and a 6-
observed at 95 GHz along directions close to grazing-diameter lens-corrected horn antenna for reception arranged
incidence? in a pseudomonostatic mode. The combination produces a two-
2) What are the general trends exhibiteddfyas a func- way beamwidth of 14 For measurements at incidence angles
tion of angle (in general, but particularly near grazingp to 70 from nadir, the system is mounted atop a truck-
incidence) at 95 GHz for various types of terrain coversiounted boom and, for measurements at angles near grazing,
In addition to answering these two questions, the paper wifle radar is mounted on a computer-controlled gimbal housed
also include a semi-empirical model far” for bare-soil inside of a van. The gimbal is used to control the radar look
surfaces. direction in both azimuth and elevation. From a 1.2-m height

B. Questions
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Fig. 2. Comparison of 95-GHz measured histograms of thepp#lf) and the cumulative distributio® (F" < F’) for grass-covered terrain with theoretical
expectations based on the exponential pdf.

above ground level, the illuminated area at a grazing angleaheight of about 10 m above ground level. At a grazing angle
4, for example, is 0.42 m in azimuth and 6.2 m in range. of 3.4, the dimensions of the ground cell measured by the
radar are 2.9 m in azimuth and about 15 m in range.
In addition to reporting data acquired by the two radar
B. ARL 95-GHz Polarimetric Scatterometer systems described above, we will also include some 95-GHz
The ARL system is a pulse radar that operates in a frequerfigta acquired by the University of Massachusetts polarimetric
stepped mode between 95 and 95.64 GHz [9]. It is configurégatterometer system [10]-[12]. Some of that data is available
to transmit 100-ns-long pulses (with an equivalent randge a joint U-M/U-Mass millimeter-wave radar data handbook
resolution of 15 m) at 45-W peak power and a pulse repetiti¢h3]-
frequency of 10 kHz. Using a 6-in-diameter lens-corrected
horn antenna operated in a monostatic mode, the effective
two-way antenna beamwidth i°.1The radar operates in a
fully coherent mode and can measure the scattering matrix ofFor a statistically homogeneous target, such as fieid
a target in either the V/H polarization coordinate system @ig. 1, the Rayleigh model states that the backscattering cross
the LHC/RHC polarization system. A total of five differentsection per unit area (7, j), behaves like a random variable
calibration targets are employed in the calibration procedusgith an exponential pdf given by
Measurement accuracy 4s1 dB in magnitude;t5° in phase,
and the cross-pol isolation is 35 dB. When deployed in the field 1) { 1
piloa)=

I1l. RADAR BACKSCATTER STATISTICS

. . . — - 0, foros >0
for measuring the backscatter of terrain, the radar is mounted o exp(=oa/ol), 74 = 1)
on an elevation-over-azimuth computer-controlled pedestal at

K3

0, foro, <0
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where ¢) is the backscattering coefficient of field It is conditions. The process is equivalent to normalizingof the
called a Rayleigh fading model because the electric field oélls of each of the fields in Fig. 1 to the mean value for that
the received signal, which is proportional 467, is Rayleigh field before combining the data from all the cells for all the
distributed. By introducing the fading random varialfie= fields. The total number of independent samples is then

o4 /o), we can express, as a product of the form

N = 64N, N,, 7)
op =0} F (2
where N, is the number of cells in a mission and,, is
with the number of missions. In the case of the grass-covered
. terrain whosep(F') and P(F < F’) are shown in Fig. 2,
p(F) = { 8 ; ;g: ? z 8 (3) N =14976. We note that the calculated value of the standard

deviation sy is 0.97 for VV polarization and 0.98 for HV
polarization, both of which are very close to the theoretical
value of 1.0 given by (4). Also, the measured data exhibits
excellent agreement with the exponential model.

The example depicted in Fig. 2 for grass-covered terrain
is typical of all the combinations of terrain covers, incidence
o ) ) ~angles, and polarizations examined in this study. The terrain

The validity of the exponential pdf was examined usingqyer that exhibited the greatest deviation from the typical
data recorded by the two 95-GHz systems described in €navior for grass is trees and even then the agreement with
preceding section for each of the following types of terraigjo exponential pdf predicted by the Rayleigh fading model
1) bare surff_;lces, i_ncluding soil, gravel, concrete, and asphf.gt;‘,ery good, as demonstrated by the data presented in Fig. 3
2) grasses, including both dense short grasses and sparsgdglljeciduous trees. It is important to note that the data for
grasses; 3) deciduous trees; 4) coniferous trees; 5) dry snRMgs does not include mixed categories: a cell observed by
cover; and 6) wet snow cover. The examination was performggds aqar is defined to belong to the terrain category called
over several incidence angles ranging between 70 ahd®8 (105 only if the cell contains trees and no other categories.

each of the three principal linear polarizations—VV, HV, angpys a cell that was partially a ground surface and partially
HH. In each individual examination, we generated histogramsiree was excluded from consideration.

of the pdfp(F') and of the cumulative distribution

For the exponential pdf given by (3), the mean valuend
standard deviationr of the normalized random variable are

F IV. ANGULAR RESPONSE OFc"
PP = [ r)dr 6 | |

0 With the exception of electromagnetically smooth surfaces,
) o our data base of 95-GHz measurements of the radar backscatter
An example of the results is shown in Fig. 2 for grasses wheggm terrain shows that the VV-polarized and HH-polarized
a total of 14976 data points were availabledat= 86.6°. |eyels of the backscattering coefficients are always within
The scene observed by the radar contained many cells tajg of one another regardless of incidence angle and in most
were grass covered. Each of these were observed at 64 equallyes the difference in level is close to zero. The backscatter
spaced (10 MHz) different frequencies extending between R%n0nse of bare soil surfaces will be the subject of the next
and 95.64 GHz. For a system with a range resolulidd = 15 geciion of this paper, where we will examine the behavior
m, the decorrelation bandwidth / is given by [1, p. 72] of the copolarized rati@?, /o, explicitly. Hence, we have

150 decided to limit our discussion in the present section to the
Af~— MHz =10 MHz. (6) VV-polarized and HV-polarized components only. The data
AR displayed in Figs. 4-8 covers the incidence-angle range from

Hence, the multifrequency radar observations are statisticefi§ t0 90. The terrain classes include bare surfaces (including
independent, which means that the total number of statisticafigre soil, asphalt, and gravel), grasses, trees, dry snow cover,
independent samples of, of grass available from a givenand wet snow cover. For each terrain class, the displayed
mission (one-time observation of a scene) isV6dwhere N, data comes from multiple sources and each source consists
is the number of terrain cells covered with grass. The raddfsmultiple observations, often made at different locations and
were used to make observations at different times during tf@ different terrain conditions. That is why the data for grass
day, as well as on different days. Each of these observatidfii- 5), for example, exhibits a significant change in level
is called a mission. The average valueoof, namelys? for between 70 and 74 the data at 60 and 70belong to a
field 7, may change between missions due to physical changeeasurement set different from that of the data at the higher
in the grass cover or underlying soil surface. Hence, beforggles.
combining data from different missions we normalized the Examination of the data presented in Figs. 4-8 leads to the
data associated with a given mission to the mean value feflowing observations.
that mission. Through this process we were able to generatd) The backscatter from terrain observed by a radar is a
data sets with large values 8f, while avoiding the problem of result of surface scattering, volume scattering, or some
mixing up targets of different types or targets under different  combination of both scattering mechanisms. For the
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Fig. 3. Comparison of 95-GHz measured histograms of theppéif) and the cumulative distributio® (F < F’) for tree-covered terrain with theoretical
expectations based on the exponential pdf.

2)

3)

surfaces represented by Fig. # exhibits a negative and 20 dB for HV polarization at 60to close to 40 dB
slope with incidence angle, with steeper slopes asso- for both polarizations at 88 The dynamic range for HH
ciated with the smoother surfaces (the highest level polarization (not shown) is comparable to that for VV
values correspond to very rough surfaces and lowest polarization.

level values correspond to a very smooth surface). The

data in Figs. 5-8, corresponding to grasses, trees, and

dry and wet snow, indicate that the angular variation of V- BACKSCATTERING MODEL FOR ROUGH SURFACES

o® is comparable to that of rough surfaces. A random surface is one whose two-dimensional height
At any given angle and for any particular polarizatiorprofile z(x, y) varies randomly (nondeterministically) as a
the dynamic range for a given terrain class can be amction of spatial position. The vertical variation of such a
large as 20 dB or more. In the case of surfaces, tharface is characterizable in terms of the height probability
variation is in response to roughness and moisture caffensity functionp(z). For most natural surfaceg(z) is a
tent. The vegetation classes (grasses and trees) exhikito-mean Gaussian function [17] with a rms height (standard
¢ variations due to density, height, shape, and moistuderivation)s. The range that exhibits may extend between
content, and the backscatter by snow is governed hipout 0.5 mm for an artificially prepared surface that has been
crystal size, liquid water content, snow depth, and snasmoothed out by a highway construction roller, up to about 4
density [14]-[16]. cm for a freshly plowed field.

Fig. 9 displays the upper and lower boundaries of the en-The horizontal variation of the height(z, y) may be
velope containing alt° values for all terrain categoriesdescribed by the correlation functigfz: (z1, y1); 22(22, y2)]
combined. The dynamic range for each of the polarizathere z; and z; are the heights at locations;, v;) and
tions increases from about 15 dB for VV polarizatiorfz,, y»). Most natural surfaces tend to be azimuthally sym-
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104, where/ is the surface correlation length. For a typical soil
surface withf = 10 cm observed at atX-band wavelength
Fig. 5. Measured values of’ at 95 GHz for VV and HV polarizations for A = 3 cm, the sampling requirement translates into measuring
grass-covered terrain. almx 1 m segment at a spacing of 3 mm in both
the z- and y-directions. These requirements represent the
metric as well as statistically stationary, which means thaapability limits of a high-resolution laser ranging system,
p does not depend on the specific locations of the twehich is not only difficult to set up and operate outside of a
points, but instead depends on the distandgetween them laboratory environment, but it would also take it several hours
in which case we write the surface correlation function simplgf measurement time to sample the surface at the required
as p(r). Whereas measuring the height distributigl?) and spacing. At shorter wavelengths, the sampling requirement is
determining the rms heightare manageable tasks in practiceven more stringent and consequently impossible to meet in
(it is fairly difficult to measures with an accuracy better thanpractice.
+0.5 mm), the same is not true with regargito). To measure  In general, all random-surface scattering models are inti-
p(r) with an accuracy compatible with analytical or numericahately coupled to two physical parameters: 1) the complex
calculations of radar backscattering from a surface, it @electric constant of the surfaceand 2) the surface rough-
necessary to sample the surface height 1) in two dimensioness parameters and p(r) [18]. Because of the difficulty
2) at a spacing no greater thar/10 where A is the radar associated with measuring(r) for outdoor surfaces under
wavelength; and 3) over a surface segment no shorter thetural conditions, it has been somewhat difficult to evaluate

Incidence Angle 6 (degrees)
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wet snow-covered terrain. range from 70 to 88or, equivalently, over the grazing-angle
range from 2 to 20. This section provides an overview of the
10. : : | | , , [ observed radar backscatter at 95 GHz at low-grazing angles
s b 4 and presents a semi-empirical model that was generated by
: 0 1 . . N
0. 0y (max) E extending the angular range of the previously published model.
5 :__.________“oohv(max) 4
oL TTTm= ——— 3 A. Sensitivity to Roughness and Moisture Content

= We do know that at a given frequency, the moisture content
4 of a soil medium determines the soil’s dielectric constant and
4 that the dielectric constant, in turn, determines the Fresnel
4 reflectivities of the surface, but we do not know the exact form
- of the relationship between the backscattering coeffictéraf

o’ (dB)

all terrain classes ~

-40. - (surfaces, bushes, trees, ~ - areal random surface and its H- and V-polarized reflectivities.
-45. | dry snow, wet snow) DAY 4 According to the geometric optics model [18F,(¢) of a very
50, B b Lo | L : X L3 rough surface is directly proportional t, the nadir reflectiv-
5. 60 65 70 75 8. 8. 9. jty of the surface, regardless of the incidence arglSince at
Incidence Angle 6 (degrees) millimeter wavelengths most natural surfaces are quite rough

Fig. 9. Dynamic range ot° for terrain at 95 GHz. The maximum and EIGCt_r(_)magnetlca"y’_We (_:an ude to examlne the expected
minimum curves represent the upper and lower bounds between which $@NSitivity ofc® to soil moisture content. Fig. 10 shows curves
measured values are contained. of I'y versus volumetric moisture content, calculated using
the soil dielectric model given in Appendix E of Ulaley al.
[19]. Even though the model was developed on the basis of
the applicability of theoretical models and to compare themicrowave data, it is assumed to be valid at millimeter-wave
predictions with experimental observations. This has led fiequencies as well. With the exception of very dry desert-
greater reliance on the development of semi-empirical moddilee environments, the moisture content of naturally occurring
for characterizing radar scattering by terrain, where sensoils is rarely below 0.05 g/cinand it usually cannot support
empirical refers to mathematical expressions that match tmeisture contents greater than 0.4 glc@ver this range, the
behavior of the experimental data, but are also cast in a fodynamic range is about 5.5 dB at 10 GHz, but less than 3 dB
that adheres to the general behavior of theoretical models. Eb®5 GHz. Hence, most of the variation exhibitedddyat 95
example, scattering theory predicts that a surface will exhilitHz would be due to surface roughness.
VV and HH backscattering coefficients of equal magnitude To illustrate the importance of surface roughness, we show
when the scale of roughness (represented by the rms heighfEig. 11 plots ofs° versus incidence angle for two surfaces,
s) becomes very large compared Xo Hence, a good semi- a relatively smooth surface withs = 1.6 (wherek = 27 /X)
empirical model should reflect such a trend. and a rough surface withs = 8.7. The difference in level
Based on field investigations conducted over the past eightreases with increasing incidence angle for bofh) and
years, we have developed such semi-empirical models for twf), (¢}, exhibits a similar behavior also). The solid curves
ranges of the microwave spectrum. The first study coversown in the figures were generated on the basis of the model
the 1-10 GHz range in frequency and the 20-7énge in discussed in the next subsection.
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-10.0 T T T
-15.0 ]
—~ 200 b . ks = 0.48, Model
m /m
=] = ks = 1.30, Model
. -25.0 ] °e ks = 1.60, Model
<
300 ] ks =0.48, 35 GHz
ks=1.30,95 GHz
-35.0 4 ks = 1.60, 95 GHz
-60. L
10. 30. 50. 70. 90.
-40.0 L : 1
70. 75. 80. 85. 90. Incidence Angle 6 (Degrees)
Incidence Angle 6 (Degrees) Fig. 12. Measured values of the VV and HV backscattering coefficients,
plotted as a function of incidence angle for three different surface roughnesses,
@ all characterized byts < 2. The continuous curves are based on the model
given in the text.
) i
~ —_ ks = 5.20, Model
> Jaa]
o= E ............ ks = 15.3, Model
© ] % b T TNay, | - ks = 8.70, Model
o] ks = 5.20, 95 GHz
1 a ks =15.3,95 GHz
! I I A ks = 8.70,95 GHz
2 75 80 85 90 40, ' ' ‘
- : : : - 10. 30. 50. 70. 90.
Incidence Angle 8 (Degrees) Incidence Angle 6 (Degrees)
(b) Fig. 13. Measured values of the VV and HV backscattering coefficients,

plotted as a function of incidence angle for three different surface roughnesses,

Fi_g. 11. VVand HV backscatter responses of a relatively smooth S.Oil surfage characterized bys > 5. The continuous curves are based on the model
with ks = 1.6 and a rough surface withs = 8.7 at 95 GHz. The continuous given in the text

curves were calculated on the basis of the model given in the text.

generated empirically. The results are

B. Two-Component Roughness Model - &(4.4[1 — exp(—0.15ks cos 6)] cos® 0 + 0.1 (8)
All theoretical surface scattering models predict tlé&t VP 41 9

should decrease very rapidly in magnitude fagpproaches {1 — exp[~0.00067(ks)]} sin” 0) ©)

grazing incidence. Analysis of the experimental measurements Ty =PTy, (10)

that we conducted at 35 and 95 GHz, over a range of surface 027) = qg'gﬂ (11)

roughness extending betweén = 0.48 and 15.3, suggests, here

that a surface exhibits one of two types of scattering patterns B 1/(3T0) .—0.4ks72

depending on itsks value. For surfaces withks < 2, ¢° p=[1-(20/m) € ] (12)

continues to decrease with increasifigat a fairly steep q=0.23 Fé/Q {1 — exp[—ks(0.276° — 0.14 67

slope up to 88, the maximum angle for which we have +0.0166 4 0.17)]} (13)

measurements. This behavior is illustrated in Fig. 12 for VV Ji—1 2

and HV polarizations. In contrast, whers > 5 (Fig. 13), Iy = ﬁ (14)

€

o° exhibits a rather gentle slope with angle. These two types
of angular scattering patterns near grazing incidence suggeih ¢ = ¢/ — j¢”’ being the relative dielectric constant of the
that perhaps the scattering is the sum of two mechanisms, &od medium and is the incidence angle in radians. The model
due to predominantly horizontal surface facets and anothejuations are the basis for all of the calculated curves shown
due to predominantly vertical surface facets, similar to tha Figs. 11-13.

sketch shown in Fig. 14. The horizontal facets would exhibit We close this section by showing in Fig. 15 plots of the
an angular dependence fof that varies asos” 6, whereas copolarized and cross-polarized ratipsand ¢, respectively,

the vertical facets would exhibitsin” ¢ dependence (similar as a function ofts at two incidence angles. The plots for

to a dipole). Both scattering mechanisms are proportional were calculated using (12) withy, = 0.13, corresponding to
the nadir reflectivityl'; and each is a function of surfacea volumetric soil moisture content of 0.18 g/niThe data
roughnesgks). Functional forms fow?”,, ¢, , ands?’, were points shown in the figure had varying values of moisture,
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terrain, most likely included heterogeneous terrain consisting
of several different terrain types. Furthermore, the data may
have included nonterrain targets or some of the pixels may
have contained only one or two dominant scatterers, thereby
violating one of the tenets of the Rayleigh model. Such a
séittuation can easily arise if the pixel of a high-resolution radar
image contains a single trunk of a tree and the trunk-ground
combination behaves like a strong corner reflector.

Two other major contributions of this study are the docu-

Vertical facet

Horizontal facet

Fig. 14. Sketch of a surface profile depicting a surface that consists
horizontal and vertical facets of various sizes.

20 T T T T . . . . .
. . mentation of the dynamic range exhibited &Y for various
= 0.0 oo e el S terrain types, angles, and polarization combinations, and the
v;f 20F Lo ° ] introduction of a semi-empirical model for characterizingy
°\b a0k — Model at 8=20° 1 of bare surfaces in terms of physical parameters of the surface.
= o Model at §=82°
e 60 4
i : o] Measured at 6=20° REFERENCES
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